
X Access Control Extension
Specification

Eamon F. Walsh
2006

Revision History
Revision 1.0 19 Oct 2006 Revised by: efw
Initial Version

The X Access Control Extension (XACE) is a set of generic "hooks" that can be used by other X
extensions to perform access checks. The goal of XACE is to prevent clutter in the core dix/os
code by providing a common mechanism for doing these sorts of checks. The concept is
identical to the Linux Security Module (LSM) in the Linux Kernel.

XACE is a generalization of the "Security" extension, which provides a simple on/off trust
model, with untrusted windows being restricted in certain areas. Most of XACE consists simply
of replacing the Security-specific checks in the dix/os layer with generic callback lists. However,
the framework is flexible enough to allow for hooks to be added or deprecated in the future.

This paper describes the implementation of XACE, changes to the core server DIX and OS
layers that have been made or are being considered, and each of the security hooks that XACE
offers at the current time and their function. It is expected that changes to XACE be documented
here. Please notify the authors of this document of any changes to XACE so that they may be
properly documented.

1. Introduction

1.1. Prerequisites

This document is targeted to programmers who are writing security extensions for X. It is assumed that
the reader is familiar with the C programming language. It is assumed that the reader understands the
general workings of the X protocol and X server. It is highly recommended that the reader review the
specifications for the SECURITY and APPGROUP extensions. The relevant documents are all available
in the X.Org documentation package.

1

XACE-Spec

1.2. Purpose

XACE makes it easier to implement new security models for X by providing a set of pluggable hooks
that extension writers can use. The idea is to provide an abstraction layer between security extensions
and the core DIX/OS code of the X server. This prevents security extensions writers from having to
understand the inner workings of the X server and it prevents X server maintainers from having to deal
with multiple security subsystems, each with its own intrusive code.

For example, consider the X.Org X server’s resource subsystem, which is used to track different types of
server objects using ID numbers. The act of looking up an object by its ID number is a security-relevant
operation which security extension writers would likely wish to control. For one or two security
extensions it may be acceptable to simply insert the extension’s code directly into the resource manager
code, bracketed by ifdef’s. However for more extensions this approach leads to a tangle of code,
particularly when results need to be logically combined, as in if statement conditions. Additionally,
different extension writers might place their resource checking code in different places in the server,
leading to difficulty in tracking down where exactly a particular lookup operation is being blocked.
Finally, this approach may lead to unexpected interactions between the code of different extensions,
since there is no collaboration between extension writers.

The solution employed by the X Access Control Extension is to place hooks (calls into XACE) at
security-relevant places, such as the resource subsystem mentioned above. Other extensions, typically in
their initialization routines, can register callback functions on these hooks. When the hook is called from
the server code, each callback function registered on it is called in turn. The callback function is provided
with necessary arguments needed to make a security decision, including a return value argument which
can be set to indicate the result. XACE itself does not make security decisions, or even know or care how
such decisions are made. XACE merely enforces the result of the decision, such as by returning a
BadAccess error to the requesting client.

This separation between the decision-making logic and the enforcement logic is advantageous because it
allows a great variety of security models to be developed without resorting to intrusive modifications to
the core systems being secured. The challenge is to ensure that the hook framework itself provides hooks
everywhere they need to be provided. Once created, however, a hook can be used by everyone, leading to
less duplication of effort.

1.3. Prior Work

1.3.1. Security Extension

XACE is primarily based on the SECURITY extension. This extension introduced the concept of
"trusted" and "untrusted" client connections, with the trust level established by the authorization token
used in the initial client connection. Untrusted clients are restricted in several areas, notably in the use of
background "None" windows, access to server resources owned by trusted clients, and certain keyboard

2

XACE-Spec

input operations. Server extensions are also declared "trusted" or "untrusted," with only untrusted
extensions being visible to untrusted client connections.

The primary limitation of the SECURITY extension is a lack of granularity. The trust level of client
connections is set at connection time and is not changed. Creating untrusted clients is cumbersome since
untrusted authorizations must be generated dynamically (they cannot be specified in the authorization file
used by the server at startup time), and the default trusted behavior is not restricted in any way. The
author of the SECURITY extension did anticipate the need for flexibility in some areas, but the XACE
modifications introduce a much broader level of generalization.

The benefit of the SECURITY extension is that its authors already had identified the proper places in the
core X server code to place their trust level checks. Thus, the only thing that needed to be done for
XACE was to swap out these checks for more generic XACE hooks. The SECURITY authors also
introduced several features into the core server code, such as the "Security" versions of the resource
lookup functions, and the custom ProcVectors used to dispatch client requests.

With the introduction of XACE, the SECURITY extension has been rewritten to sit on top of XACE,
thus maintaining backwards compatibility.

1.3.2. Solaris Trusted Extensions

Trusted Extensions for Solaris has an X extension (Xtsol) which adds security functionality. Some of the
XACE hooks in the current set were derived from security checks made by the Xtsol code. In other
places, where the Xtsol and SECURITY extensions both have checks, a single XACE hook replaces both.

1.3.3. Linux Security Modules

XACE is influenced by the Linux Security Modules project, which provides a similar framework of
security hooks for the Linux kernel.

1.4. Future Work

1.4.1. Security Hooks

It is anticipated that the set of security hooks provided by XACE will change with time. Some of the
current hooks provide legacy functionality for the SECURITY extension and may become deprecated.
More hooks will likely be added as well, as more portions of the X server are subjected to security
analysis. Existing hooks may be added in more places in the code, particularly protocol extensions.
Currently, the only method XACE provides for restricting access to protocol extensions is to deny access
to them entirely.

3

XACE-Spec

It should be noted that XACE includes hooks in the protocol dispatch table, which allow a security
extension to examine any incoming protocol request (core or extension) and block the request before it is
handled by the server (resulting in a BadAccess error). This functionality can be used as a stopgap
measure for security checks that are not supported by the other XACE hooks. The end goal, however, is
to have hooks integrated into the server proper, as the SECURITY extension has done.

In the future, it may be worthwhile to integrate XACE directly into the X server code, removing its status
as an "extension" (XACE defines no new protocol). This would eliminate the ifdef directives that
bracket the XACE hooks, and would allow for further integration with the surrounding code. It would
also avoid the need to use the extension loader to initialize XACE. The use of modern coding techniques
such as static inlining could also be used to improve performance in the hook mechanism.

1.4.2. X Authentication

The X server supports several authentication methods. Currently, they are implemented directly in the
OS layer of the X server. However, with new improvements to the Pluggable Authentication Modules
(PAM) library, it may be possible to move these authentication methods out of the server, implementing
each one as a PAM module. This would separate security-specific code from the X server, as well allow
the authentication code in the OS layer to be cleaned up significantly. However, the author has not
studied the problem in great detail, so it’s too early to tell whether this idea is workable.

Another area where the X authentication code could use some cleanup is the SECURITY extension’s
"Query Security" authentication pseudo-method. This method is used to determine whether or not an X
server supports certain "site policies," identified via strings. This method can also be used to assert
requirements about extension security. This part of the SECURITY extension was not refactored along
with the rest of the extension as part of the XACE work. As part of the PAM project described above, it
would be beneficial if this authentication method could be moved out to a PAM module or simply
dropped. Doing this would allow the SECURITY extension to be loaded as a module instead of being
built-in, since the auth code is the only remaining part of that extension that needs to be compiled in.

1.4.3. Core X Server

There are some minor improvements that could be made to the core X server itself outside of XACE. As
will be discussed, security extension writers are expected to use the devPrivates mechanism to store
security state with various server object. This mechanism is currently duplicated for each structure type
that supports it; it may be possible to use macros to generate the functions for each supported structure
type, at least reducing the code size. This would also make it easier to support more structures; only a
new structure field would be required along with slight changes to the code that allocates the structure.
Extending devPrivates support to other structures, or even generic resources, would be beneficial for
security extension writers. The feasibility of doing this generalization is currently being investigated by
the author. In addition, initialization and teardown callbacks are needed as described in Section 2.1.2;
support for them is currently spotty.

4

XACE-Spec

The module loader should be looked at to see if the extension loading sequence could be improved.
There are comments to that effect in the module loading code, which read (paraphrasing): "Please make
extension loading not suck." Right now, there are two intialization functions that extensions can use: a
"setup" function which is called first, before any ExtensionEntry structures are created, and an "init"
function which is called when the structure is created. This is OK, but the order in which the setup
functions are called is odd: loadable extensions are called first, before built-in extensions. The calls also
happen from totally different places in the code, with loadables being set up from the InitOutput
function which is nonintuitive. Finally, the extension support code has large, cumbersome lists of
extensions bracketed by ifdef’s, along with boolean variables meant to be used for dynamic
configuration of extensions which are in practice unused. Perhaps autotools could be used to build the list
of extensions to load, instead of having a hard-coded list. The author is investigating possibilities for
work in this area.

2. Usage

2.1. Storing Security State

The first thing you, the security extension writer, should decide on is the state information that your
extension will be storing and how it will be stored. XACE itself does not provide any mechanism for
storing state. Two methods of storing security state are discussed here.

2.1.1. Global Variables

One method of storing state is simply to use global variables in the extension code. Tables can be kept
corresponding to internal server structures, updated to stay synchronized with the structures themselves.

2.1.2. Device Privates

Another method of storing state is to attach your extension’s security data directly to the server
structures. This method is possible via the devPrivates mechanism provide by the DIX layer.
However, only the server structures listed in Table 1 currently support this mechanism; work is in
progress to add other structure types (see Section 1.4.3).

Table 1. Current devPrivates support in DIX.

Structure Supports
Pre-Allocation

Cleared to Zero Callbacks Available

ClientRec Yes Yes Init/Free

ExtensionEntry Yes Yes No

ScreenRec No Yes No

5

XACE-Spec

Structure Supports
Pre-Allocation

Cleared to Zero Callbacks Available

WindowRec Yes No Init

GCRec Yes No No

PixmapRec Yes No No

ColormapRec No Yes Init

DeviceIntRec No Yes No

For an example of how to use devPrivates, refer to the SECURITY extension source code in
Xext/security.c which makes use of them for storing state in the ClientRec and ExtensionEntry
structures. Basically, your extension must register for space in each structure type. This is done slightly
differently depending on the structure; see the SECURITY example as well as dix/privates.c, which
contains the implementation. All structures provide an instance of DevUnion, indexed by a number that
is returned to you in the devPrivates array member of the structure. This union can be used as a long
value or a pointer. Some structures allow a byte count to be provided at registration time, which will be
automatically allocated and returned through the pointer member of the union.

The registration must be done in the extension setup routine for the ExtensionEntry structure only; for all
other structures it can be performed in the extension init routine. See the SECURITY code for
registration examples.

When a structure having devPrivates support is allocated, the space requested by all registrants is
allocated along with it. In some cases, the newly allocated memory is cleared to zero. Work is underway
to make sure that all supported structures have the memory cleared; the ones that currently do are listed
in Table 1. However, your security extension may need to take further action to initialize the newly
created data. How exactly this is done depends on the structure. Again, some structures don’t currently
provide a way for your extension to be called immediately when a structure instance is created. The
ClientRec and WindowRec structures do have support for this, as indicated in Table 1. Examine the
SECURITY source for more information. The eventual goal is to have a callback, XACE or otherwise,
notifying when each supported structure is initialized.

The same applies to freeing memory or otherwise tearing down your security state when an object is
being destroyed. Some structures don’t currently have callbacks associated with this event which would
allow a security extension to gain control. The ClientRec structure does have support. The eventual goal
is to provide a mechanism for this purpose.

Note: Memory allocated through the devPrivates mechanism itself will be freed automatically.

6

XACE-Spec

2.2. Using Hooks

2.2.1. Overview

XACE has two header files that security extension code may need to include. Include Xext/xacestr.h
if you need the structure definitions for the XACE hooks. Otherwise, include Xext/xace.h, which
contains everything else including constants and function declarations.

XACE hooks use the standard X server callback mechanism. Your security extension’s callback
functions should all use the following prototype:

void MyCallback(CallbackListPtr *pcbl pointer userdata pointer calldata);

When the callback is called, pcbl points to the callback list itself. The X callback mechanism allows the
list to be manipulated in various ways, but XACE callbacks should not do this. Remember that other
security extensions may be registered on the same hook. userdata is set to the data argument that was
passed to XaceRegisterCallback at registration time; this can be used by your extension to pass data
into the callback. calldata points to a value or structure which is specific to each XACE hook. These
are discussed in the documentation for each specific hook, below. Your extension must cast this argument
to the appropriate pointer type.

To register a callback on a given hook, use XaceRegisterCallback:

Bool XaceRegisterCallback(int hook CallbackProcPtr callback pointer userdata);

Where hook is the XACE hook you wish to register on, callback is the callback function you wish to
register, and userdata will be passed through to the callback as its second argument, as described
above. See Table 2 for the list of XACE hook codes. XaceRegisterCallback is typically called from
the extension initialization code; see the SECURITY source for examples. The return value is TRUE for
success, FALSE otherwise.

To unregister a callback, use XaceDeleteCallback:

Bool XaceDeleteCallback(int hook CallbackProcPtr callback pointer userdata);

where the three arguments are identical to those used in the call to XaceRegisterCallback. The
return value is TRUE for success, FALSE otherwise.

7

XACE-Spec

2.2.2. Hooks

The currently defined set of XACE hooks is shown in Table 2. As discussed in Section 1.4.1, the set of
hooks is likely to change in the future as XACE is adopted and further security analysis of the X server is
performed.

Table 2. XACE security hooks.

Hook Identifier Callback Argument Type Refer to
XACE_CORE_DISPATCH XaceCoreDispatchRec Section 2.2.2.1

XACE_EXT_DISPATCH XaceExtAccessRec Section 2.2.2.2

XACE_RESOURCE_ACCESS XaceResourceAccessRec Section 2.2.2.3

XACE_PROPERTY_ACCESS XacePropertyAccessRec Section 2.2.2.4

XACE_MAP_ACCESS XaceMapAccessRec Section 2.2.2.5

XACE_DRAWABLE_ACCESS XaceDrawableAccessRec Section 2.2.2.6

XACE_BACKGRND_ACCESS XaceMapAccessRec Section 2.2.2.7

XACE_DEVICE_ACCESS XaceDeviceAccessRec Section 2.2.2.8

XACE_HOSTLIST_ACCESS XaceHostlistAccessRec Section 2.2.2.9

XACE_EXT_ACCESS XaceExtAccessRec Section 2.2.2.10

XACE_WINDOW_INIT XaceWindowRec Section 2.2.2.11

XACE_AUTH_AVAIL XaceAuthAvailRec Section 2.2.2.12

XACE_KEY_AVAIL XaceKeyAvailRec Section 2.2.2.13

XACE_AUDIT_BEGIN XaceAuditRec Section 2.2.2.14

XACE_AUDIT_END XaceAuditRec Section 2.2.2.14

In the descriptions that follow, it is helpful to have a listing of Xext/xacestr.h available for reference.

2.2.2.1. Core Dispatch

This hook allows security extensions to examine all incoming core protocol requests before they are
dispatched. The hook argument is a pointer to a structure of type XaceCoreDispatchRec. This structure
contains a client field of type ClientPtr and a rval field of type int.

The client field refers to the client making the incoming request. Note that the complete request is
accessible via the requestBuffer member of the client structure. The REQUEST family of macros,
located in include/dix.h, are useful in verifying and reading from this member.

The rval field should be set to FALSE if the request is to be denied. The result of a denied request is a
BadAccess error, which is delivered to the client.

8

XACE-Spec

2.2.2.2. Extension Dispatch

This hook allows security extensions to examine all incoming extension protocol requests before they are
dispatched. The hook argument is a pointer to a structure of type XaceExtAccessRec. This structure
contains a client field of type ClientPtr, a ext field of type ExtensionEntry*, and a rval field of type
int.

The client field refers to the client making the incoming request. Note that the complete request is
accessible via the requestBuffer member of the client structure. The REQUEST family of macros,
located in include/dix.h, are useful in verifying and reading from this member.

The ext field refers to the extension being accessed. This is required information since extensions are
not associated with any particular major number.

The rval field should be set to FALSE if the request is to be denied. The result of a denied request is a
BadAccess error, which is delivered to the client.

2.2.2.3. Resource Access

This hook allows security extensions to monitor all resource lookups. The hook argument is a pointer to
a structure of type XaceResourceAccessRec. This structure contains a client field of type ClientPtr, a
id field of type XID, a rtype field of type RESTYPE, a access_mode field of type Mask, a res field
of type pointer, and a rval field of type int.

The client field refers to the client on whose behalf the lookup is being performed. Note that this may
be serverClient for server lookups.

The id field is the resource ID being looked up.

The rtype field is the resource type being looked up.

The access_mode field encodes the type of action being performed. The valid values are defined in
include/resource.h (look for SecurityReadAccess). This field is a legacy of the SECURITY
extension.

Warning

The access_mode field is not widely used by the core server and is often the
default "unknown" value. The semantics of this field may be changed in the future.

The res field is the resource itself: the result of the lookup.

9

XACE-Spec

The rval field should be set to FALSE if the lookup is to be denied. The result of a denied request is a
lookup failure, which will have varying effects on the client (or server) depending on the type of resource.

2.2.2.4. Property Access

This hook allows security extensions to monitor all property accesses. The hook argument is a pointer to
a structure of type XacePropertyAccessRec. This structure contains a client field of type ClientPtr, a
pWin field of type WindowPtr, a propertyName field of type Atom, a access_mode field of type
Mask, and a rval field of type int.

The client field refers to the client which is accessing the property. Note that this may be
serverClient for server lookups.

The pWin field is the window on which the property is being accessed.

The propertyName field is the name of the property being accessed.

The access_mode field encodes the type of action being performed. The valid values are defined in
include/resource.h (look for SecurityReadAccess). This field is a legacy of the SECURITY
extension.

The rval field should be set to one of the Operation constants defined in Xext/xace.h. The options are
to allow, deny, or ignore the request. The difference between denying and ignoring is that an ignored
request returns successfully but either does nothing (for a write) or returns an empty string (for a read).

Warning

The semantics of the access_mode field and the rval field may be changed in the
future. See the warning in Section 2.2.2.3.

2.2.2.5. Map Access

This hook allows security extensions to approve or deny requests to map windows. The hook argument is
a pointer to a structure of type XaceMapAccessRec. This structure contains a client field of type
ClientPtr, a pWin field of type WindowPtr, and a rval field of type int.

The client field refers to the client making the request.

The pWin field refers to the window being mapped.

10

XACE-Spec

The rval field should be set to FALSE if the request is to be denied. Currently, the result of a denied
request is a successful return leaving the window unmapped. In the future, this may be changed to return
a BadAccess error to the client.

2.2.2.6. Drawable Access

This hook allows security extensions to force censoring of overlapping windows when a GetImage
request is made. Refer to the "Image Security" section of the SECURITY extension specification for
more information. The hook argument is a pointer to a structure of type XaceDrawableAccessRec. This
structure contains a client field of type ClientPtr, a pDraw field of type DrawablePtr, and a rval field
of type int.

The client field refers to the client making the request.

The pDrawable field refers to the subject of the GetImage request.

The rval field should be set to FALSE if the drawable is to be checked for overlapping windows and
censored appropriately.

2.2.2.7. Background Access

This hook allows security extensions to force censoring of background "None" windows, preventing
contents of other windows from showing through. The hook argument is a pointer to a structure of type
XaceMapAccessRec. This structure contains a client field of type ClientPtr, a pWin field of type
WindowPtr, and a rval field of type int.

The client field refers to the client making the request, typically a CreateWindow request.

The pWin field refers to the window being created.

The rval field should be set to FALSE if the background is to be censored.

Warning

This hook may be merged with the drawable access hook at some point in the
future.

11

XACE-Spec

2.2.2.8. Device Access

This hook allows security extensions to restrict certain actions by clients related to keyboard input. For
the specifics, refer to the "Input Security" section of the SECURITY extension specification. The hook
argument is a pointer to a structure of type XaceDeviceAccessRec. This structure contains a client
field of type ClientPtr, a dev field of type DeviceIntPtr, a fromRequest field of type Bool, and a rval
field of type int.

The client field refers to the client attempting to access the device (keyboard). Note that this may be
serverClient.

The dev field refers to the input device being accessed.

The fromRequest field is TRUE if the access is the result of a client request; FALSE otherwise.

The rval field should be set to FALSE if the client is to be restricted. The result of the return value varies
depending on the context of the call.

Warning

This hook is a legacy of the SECURITY extension and covers only the core server.
Extensions do exist, such as XEVIE, that allow clients to intercept and modify input
events.

The input subsystem in X.Org is in a state of change and it is expected that input
event security will not be fully addressed until later versions of XACE.

2.2.2.9. Host List Access

This hook allows security extensions to approve or deny requests to read or change the host access list.
The hook argument is a pointer to a structure of type XaceHostlistAccessRec. This structure contains a
client field of type ClientPtr, a access_mode field of type Mask, and a rval field of type int.

The client field refers to the client making the request.

The access_mode field encodes the type of action being performed. The valid values are defined in
include/resource.h (look for SecurityReadAccess). Currently this field is set to read access for
ProcListHosts and write access otherwise.

12

XACE-Spec

The rval field should be set to FALSE if the request is to be denied. The result of a denied request is a
BadAccess error, which is delivered to the client.

2.2.2.10. Extension Access

This hook allows security extensions to approve or deny requests involving supported server extensions.
The hook argument is a pointer to a structure of type XaceExtAccessRec. This structure contains a
client field of type ClientPtr, a ext field of type ExtensionEntry*, and a rval field of type int.

The client field refers to the client making the request.

The ext field refers to the extension being queried.

The rval field should be set to FALSE if the client is not to be made aware of the extension. For a
QueryExtension request, a denial results in a response indicating the extension is not present. For a
ListExtensions request, a denial results in the exclusion of the extension from the returned list.

2.2.2.11. Window Initialization

This hook allows security extensions to set up security state for newly created windows. The hook
argument is a pointer to a structure of type XaceWindowRec. This structure contains a client field of
type ClientPtr, and a pWin field of type WindowPtr.

The client field refers to the client owning the window. Note that this may be serverClient.

The pWin field refers to the newly created window.

This hook has no return value.

2.2.2.12. Authorization Availability Hook

This hook allows security extensions to examine the authorization associated with a newly connected
client. This can be used to set up client security state depending on the authorization method that was
used. The hook argument is a pointer to a structure of type XaceAuthAvailRec. This structure contains a
client field of type ClientPtr, and a authId field of type XID.

The client field refers to the newly connected client.

The authId field is the resource ID of the client’s authorization.

13

XACE-Spec

This hook has no return value.

Note: This hook is called after the client enters the initial state and before the client enters the
running state. Keep this in mind if your security extension uses the ClientStateCallback list to
keep track of clients.

This hook is a legacy of the APPGROUP Extension. In the future, this hook may be phased out in
favor of a new client state, ClientStateAuthenticated.

2.2.2.13. Keypress Availability Hook

This hook allows security extensions to examine keypresses outside of the normal event mechanism.
This could be used to implement server-side hotkey support. The hook argument is a pointer to a
structure of type XaceKeyAvailRec. This structure contains a event field of type xEventPtr, a keybd
field of type DeviceIntPtr, and a count field of type int.

The event field refers to the keyboard event, typically a KeyPress or KeyRelease.

The keybd field refers to the input device that generated the event.

The count field is the number of repetitions of the event (not 100\% sure of this at present, however).

This hook has no return value.

Warning

The warning in Section 2.2.2.8 applies to this hook. This hook is provided mainly
for support of the Trusted Solaris extension.

2.2.2.14. Auditing Hooks

Two hooks provide basic auditing support. The begin hook is called immediately before an incoming
client request is dispatched and before the dispatch hook is called (refer to Section 2.2.2.1). The end
hook is called immedately after the processing of the request has finished. The hook argument is a
pointer to a structure of type XaceKeyAvailRec. This structure contains a client field of type ClientPtr,
and a requestResult field of type int.

The client field refers to client making the request.

14

XACE-Spec

The requestResult field contains the result of the request, either Success or one of the protocol error
codes. Note that this field is significant only in the end hook.

These hooks have no return value.

3. Protocol

3.1. Requests

XACE does not define any X protocol.

3.2. Events

XACE does not define any X protocol.

3.3. Errors

XACE does not define any X protocol.

15

	1. Introduction
	1.1. Prerequisites
	1.2. Purpose
	1.3. Prior Work
	1.3.1. Security Extension
	1.3.2. Solaris Trusted Extensions
	1.3.3. Linux Security Modules

	1.4. Future Work
	1.4.1. Security Hooks
	1.4.2. X Authentication
	1.4.3. Core X Server

	2. Usage
	2.1. Storing Security State
	2.1.1. Global Variables
	2.1.2. Device Privates

	2.2. Using Hooks
	2.2.1. Overview
	2.2.2. Hooks
	2.2.2.1. Core Dispatch
	2.2.2.2. Extension Dispatch
	2.2.2.3. Resource Access
	2.2.2.4. Property Access
	2.2.2.5. Map Access
	2.2.2.6. Drawable Access
	2.2.2.7. Background Access
	2.2.2.8. Device Access
	2.2.2.9. Host List Access
	2.2.2.10. Extension Access
	2.2.2.11. Window Initialization
	2.2.2.12. Authorization Availability Hook
	2.2.2.13. Keypress Availability Hook
	2.2.2.14. Auditing Hooks

	3. Protocol
	3.1. Requests
	3.2. Events
	3.3. Errors

