[//000000001]: # (math::calculus \- Tcl Math Library)
[//000000002]: # (Generated from file 'calculus\.man' by tcllib/doctools with format 'markdown')
[//000000003]: # (Copyright © 2002,2003,2004 Arjen Markus)
[//000000004]: # (math::calculus\(n\) 1\.1 tcllib "Tcl Math Library")
[ Main Table Of Contents | Table Of Contents | Keyword Index | Categories | Modules | Applications ]
# NAME
math::calculus \- Integration and ordinary differential equations
# Table Of Contents
- [Table Of Contents](#toc)
- [Synopsis](#synopsis)
- [Description](#section1)
- [PROCEDURES](#section2)
- [EXAMPLES](#section3)
- [Bugs, Ideas, Feedback](#section4)
- [See Also](#seealso)
- [Keywords](#keywords)
- [Category](#category)
- [Copyright](#copyright)
# SYNOPSIS
package require Tcl 8\.5 9
package require math::calculus 1\.1
[__::math::calculus::integral__ *begin* *end* *nosteps* *func*](#1)
[__::math::calculus::integralExpr__ *begin* *end* *nosteps* *expression*](#2)
[__::math::calculus::integral2D__ *xinterval* *yinterval* *func*](#3)
[__::math::calculus::integral2D\_accurate__ *xinterval* *yinterval* *func*](#4)
[__::math::calculus::integral3D__ *xinterval* *yinterval* *zinterval* *func*](#5)
[__::math::calculus::integral3D\_accurate__ *xinterval* *yinterval* *zinterval* *func*](#6)
[__::math::calculus::qk15__ *xstart* *xend* *func* *nosteps*](#7)
[__::math::calculus::qk15\_detailed__ *xstart* *xend* *func* *nosteps*](#8)
[__::math::calculus::eulerStep__ *t* *tstep* *xvec* *func*](#9)
[__::math::calculus::heunStep__ *t* *tstep* *xvec* *func*](#10)
[__::math::calculus::rungeKuttaStep__ *t* *tstep* *xvec* *func*](#11)
[__::math::calculus::boundaryValueSecondOrder__ *coeff\_func* *force\_func* *leftbnd* *rightbnd* *nostep*](#12)
[__::math::calculus::solveTriDiagonal__ *acoeff* *bcoeff* *ccoeff* *dvalue*](#13)
[__::math::calculus::newtonRaphson__ *func* *deriv* *initval*](#14)
[__::math::calculus::newtonRaphsonParameters__ *maxiter* *tolerance*](#15)
[__::math::calculus::regula\_falsi__ *f* *xb* *xe* *eps*](#16)
[__::math::calculus::root\_bisection__ *f* *xb* *xe* *eps*](#17)
[__::math::calculus::root\_secant__ *f* *xb* *xe* *eps*](#18)
[__::math::calculus::root\_brent__ *f* *xb* *xe* *eps*](#19)
[__::math::calculus::root\_chandrupatla__ *f* *xb* *xe* *eps*](#20)
# DESCRIPTION
This package implements several simple mathematical algorithms:
- The integration of a function over an interval
- The numerical integration of a system of ordinary differential equations\.
- Estimating the root\(s\) of an equation of one variable\.
The package is fully implemented in Tcl\. No particular attention has been paid
to the accuracy of the calculations\. Instead, well\-known algorithms have been
used in a straightforward manner\.
This document describes the procedures and explains their usage\.
# PROCEDURES
This package defines the following public procedures:
- __::math::calculus::integral__ *begin* *end* *nosteps* *func*
Determine the integral of the given function using the Simpson rule\. The
interval for the integration is \[*begin*, *end*\]\. The remaining
arguments are:
* *nosteps*
Number of steps in which the interval is divided\.
* *func*
Function to be integrated\. It should take one single argument\.
- __::math::calculus::integralExpr__ *begin* *end* *nosteps* *expression*
Similar to the previous proc, this one determines the integral of the given
*expression* using the Simpson rule\. The interval for the integration is
\[*begin*, *end*\]\. The remaining arguments are:
* *nosteps*
Number of steps in which the interval is divided\.
* *expression*
Expression to be integrated\. It should use the variable "x" as the only
variable \(the "integrate"\)
- __::math::calculus::integral2D__ *xinterval* *yinterval* *func*
- __::math::calculus::integral2D\_accurate__ *xinterval* *yinterval* *func*
The commands __integral2D__ and __integral2D\_accurate__ calculate
the integral of a function of two variables over the rectangle given by the
first two arguments, each a list of three items, the start and stop interval
for the variable and the number of steps\.
The command __integral2D__ evaluates the function at the centre of each
rectangle, whereas the command __integral2D\_accurate__ uses a four\-point
quadrature formula\. This results in an exact integration of polynomials of
third degree or less\.
The function must take two arguments and return the function value\.
- __::math::calculus::integral3D__ *xinterval* *yinterval* *zinterval* *func*
- __::math::calculus::integral3D\_accurate__ *xinterval* *yinterval* *zinterval* *func*
The commands __integral3D__ and __integral3D\_accurate__ are the
three\-dimensional equivalent of __integral2D__ and
__integral3D\_accurate__\. The function *func* takes three arguments and
is integrated over the block in 3D space given by three intervals\.
- __::math::calculus::qk15__ *xstart* *xend* *func* *nosteps*
Determine the integral of the given function using the Gauss\-Kronrod 15
points quadrature rule\. The returned value is the estimate of the integral
over the interval \[*xstart*, *xend*\]\. The remaining arguments are:
* *func*
Function to be integrated\. It should take one single argument\.
* ?nosteps?
Number of steps in which the interval is divided\. Defaults to 1\.
- __::math::calculus::qk15\_detailed__ *xstart* *xend* *func* *nosteps*
Determine the integral of the given function using the Gauss\-Kronrod 15
points quadrature rule\. The interval for the integration is \[*xstart*,
*xend*\]\. The procedure returns a list of four values:
* The estimate of the integral over the specified interval \(I\)\.
* An estimate of the absolute error in I\.
* The estimate of the integral of the absolute value of the function over
the interval\.
* The estimate of the integral of the absolute value of the function minus
its mean over the interval\.
The remaining arguments are:
* *func*
Function to be integrated\. It should take one single argument\.
* ?nosteps?
Number of steps in which the interval is divided\. Defaults to 1\.
- __::math::calculus::eulerStep__ *t* *tstep* *xvec* *func*
Set a single step in the numerical integration of a system of differential
equations\. The method used is Euler's\.
* *t*
Value of the independent variable \(typically time\) at the beginning of
the step\.
* *tstep*
Step size for the independent variable\.
* *xvec*
List \(vector\) of dependent values
* *func*
Function of t and the dependent values, returning a list of the
derivatives of the dependent values\. \(The lengths of xvec and the return
value of "func" must match\)\.
- __::math::calculus::heunStep__ *t* *tstep* *xvec* *func*
Set a single step in the numerical integration of a system of differential
equations\. The method used is Heun's\.
* *t*
Value of the independent variable \(typically time\) at the beginning of
the step\.
* *tstep*
Step size for the independent variable\.
* *xvec*
List \(vector\) of dependent values
* *func*
Function of t and the dependent values, returning a list of the
derivatives of the dependent values\. \(The lengths of xvec and the return
value of "func" must match\)\.
- __::math::calculus::rungeKuttaStep__ *t* *tstep* *xvec* *func*
Set a single step in the numerical integration of a system of differential
equations\. The method used is Runge\-Kutta 4th order\.
* *t*
Value of the independent variable \(typically time\) at the beginning of
the step\.
* *tstep*
Step size for the independent variable\.
* *xvec*
List \(vector\) of dependent values
* *func*
Function of t and the dependent values, returning a list of the
derivatives of the dependent values\. \(The lengths of xvec and the return
value of "func" must match\)\.
- __::math::calculus::boundaryValueSecondOrder__ *coeff\_func* *force\_func* *leftbnd* *rightbnd* *nostep*
Solve a second order linear differential equation with boundary values at
two sides\. The equation has to be of the form \(the "conservative" form\):
d dy d
-- A(x)-- + -- B(x)y + C(x)y = D(x)
dx dx dx
Ordinarily, such an equation would be written as:
d2y dy
a(x)--- + b(x)-- + c(x) y = D(x)
dx2 dx
The first form is easier to discretise \(by integrating over a finite volume\)
than the second form\. The relation between the two forms is fairly
straightforward:
A(x) = a(x)
B(x) = b(x) - a'(x)
C(x) = c(x) - B'(x) = c(x) - b'(x) + a''(x)
Because of the differentiation, however, it is much easier to ask the user
to provide the functions A, B and C directly\.
* *coeff\_func*
Procedure returning the three coefficients \(A, B, C\) of the equation,
taking as its one argument the x\-coordinate\.
* *force\_func*
Procedure returning the right\-hand side \(D\) as a function of the
x\-coordinate\.
* *leftbnd*
A list of two values: the x\-coordinate of the left boundary and the
value at that boundary\.
* *rightbnd*
A list of two values: the x\-coordinate of the right boundary and the
value at that boundary\.
* *nostep*
Number of steps by which to discretise the interval\. The procedure
returns a list of x\-coordinates and the approximated values of the
solution\.
- __::math::calculus::solveTriDiagonal__ *acoeff* *bcoeff* *ccoeff* *dvalue*
Solve a system of linear equations Ax = b with A a tridiagonal matrix\.
Returns the solution as a list\.
* *acoeff*
List of values on the lower diagonal
* *bcoeff*
List of values on the main diagonal
* *ccoeff*
List of values on the upper diagonal
* *dvalue*
List of values on the righthand\-side
- __::math::calculus::newtonRaphson__ *func* *deriv* *initval*
Determine the root of an equation given by
func(x) = 0
using the method of Newton\-Raphson\. The procedure takes the following
arguments:
* *func*
Procedure that returns the value the function at x
* *deriv*
Procedure that returns the derivative of the function at x
* *initval*
Initial value for x
- __::math::calculus::newtonRaphsonParameters__ *maxiter* *tolerance*
Set the numerical parameters for the Newton\-Raphson method:
* *maxiter*
Maximum number of iteration steps \(defaults to 20\)
* *tolerance*
Relative precision \(defaults to 0\.001\)
- __::math::calculus::regula\_falsi__ *f* *xb* *xe* *eps*
Return an estimate of the zero or one of the zeros of the function contained
in the interval \[xb,xe\]\. The error in this estimate is of the order of
eps\*abs\(xe\-xb\), the actual error may be slightly larger\.
The method used is the so\-called *regula falsi* or *false position*
method\. It is a straightforward implementation\. The method is robust, but
requires that the interval brackets a zero or at least an uneven number of
zeros, so that the value of the function at the start has a different sign
than the value at the end\.
In contrast to Newton\-Raphson there is no need for the computation of the
function's derivative\.
* command *f*
Name of the command that evaluates the function for which the zero is to
be returned
* float *xb*
Start of the interval in which the zero is supposed to lie
* float *xe*
End of the interval
* float *eps*
Relative allowed error \(defaults to 1\.0e\-4\)
- __::math::calculus::root\_bisection__ *f* *xb* *xe* *eps*
Return an estimate of the zero or one of the zeros of the function contained
in the interval \[xb,xe\]\. The error in this estimate is of the order of
eps\*abs\(xe\-xb\), the actual error may be slightly larger\.
The method used is the so\-called *bisection*\. For properties: see the
*regula falsi* procedure\.
* command *f*
Name of the command that evaluates the function for which the zero is to
be returned
* float *xb*
Start of the interval in which the zero is supposed to lie
* float *xe*
End of the interval
* float *eps*
Relative allowed error \(defaults to 1\.0e\-7\)
- __::math::calculus::root\_secant__ *f* *xb* *xe* *eps*
Return an estimate of the zero or one of the zeros of the function contained
in the interval \[xb,xe\]\. The error in this estimate is of the order of
eps\*abs\(xe\-xb\), the actual error may be slightly larger\.
The method used is the so\-called *secant* method\. For properties: see the
*regula falsi* procedure\. Note that this method is not guaranteed to
produce a zero, but it is fast\.
* command *f*
Name of the command that evaluates the function for which the zero is to
be returned
* float *xb*
Start of the interval in which the zero is supposed to lie
* float *xe*
End of the interval
* float *eps*
Relative allowed error \(defaults to 1\.0e\-7\)
- __::math::calculus::root\_brent__ *f* *xb* *xe* *eps*
Return an estimate of the zero or one of the zeros of the function contained
in the interval \[xb,xe\]\. The error in this estimate is of the order of
eps\*abs\(xe\-xb\), the actual error may be slightly larger\.
The method used is the so\-called *Brent* method\. For properties: see the
*regula falsi* procedure\.
* command *f*
Name of the command that evaluates the function for which the zero is to
be returned
* float *xb*
Start of the interval in which the zero is supposed to lie
* float *xe*
End of the interval
* float *eps*
Relative allowed error \(defaults to 1\.0e\-7\)
- __::math::calculus::root\_chandrupatla__ *f* *xb* *xe* *eps*
Return an estimate of the zero or one of the zeros of the function contained
in the interval \[xb,xe\]\. The error in this estimate is of the order of
eps\*abs\(xe\-xb\), the actual error may be slightly larger\.
The method used is the so\-called *Chandrupatla* method\. It is a variant of
the Brent method and is reputed to be faster\. See
[https://www\.embeddedrelated\.com/showarticle/855\.php](https://www\.embeddedrelated\.com/showarticle/855\.php)
for a discussion\.
* command *f*
Name of the command that evaluates the function for which the zero is to
be returned
* float *xb*
Start of the interval in which the zero is supposed to lie
* float *xe*
End of the interval
* float *eps*
Relative allowed error \(defaults to 1\.0e\-7\)
*Notes:*
Several of the above procedures take the *names* of procedures as arguments\.
To avoid problems with the *visibility* of these procedures, the
fully\-qualified name of these procedures is determined inside the calculus
routines\. For the user this has only one consequence: the named procedure must
be visible in the calling procedure\. For instance:
namespace eval ::mySpace {
namespace export calcfunc
proc calcfunc { x } { return $x }
}
#
# Use a fully-qualified name
#
namespace eval ::myCalc {
proc detIntegral { begin end } {
return [integral $begin $end 100 ::mySpace::calcfunc]
}
}
#
# Import the name
#
namespace eval ::myCalc {
namespace import ::mySpace::calcfunc
proc detIntegral { begin end } {
return [integral $begin $end 100 calcfunc]
}
}
Enhancements for the second\-order boundary value problem:
- Other types of boundary conditions \(zero gradient, zero flux\)
- Other schematisation of the first\-order term \(now central differences are
used, but upstream differences might be useful too\)\.
- The various root finding methods differ in robustness, ease of use and
convergence rates\. While the Newton\-Raphson method is quite fast \(quadratic
convergence\), it is not guaranteed to produce an answer\. The methods that
bracket the root, require two starting points, but except for the secant
method are guaranteed to deliver a good estimate\.
# EXAMPLES
Let us take a few simple examples:
Integrate x over the interval \[0,100\] \(20 steps\):
proc linear_func { x } { return $x }
puts "Integral: [::math::calculus::integral 0 100 20 linear_func]"
For simple functions, the alternative could be:
puts "Integral: [::math::calculus::integralExpr 0 100 20 {$x}]"
Do not forget the braces\!
The differential equation for a dampened oscillator:
x'' + rx' + wx = 0
can be split into a system of first\-order equations:
x' = y
y' = -ry - wx
Then this system can be solved with code like this:
proc dampened_oscillator { t xvec } {
set x [lindex $xvec 0]
set x1 [lindex $xvec 1]
return [list $x1 [expr {-$x1-$x}]]
}
set xvec { 1.0 0.0 }
set t 0.0
set tstep 0.1
for { set i 0 } { $i < 20 } { incr i } {
set result [::math::calculus::eulerStep $t $tstep $xvec dampened_oscillator]
puts "Result ($t): $result"
set t [expr {$t+$tstep}]
set xvec $result
}
Suppose we have the boundary value problem:
Dy'' + ky = 0
x = 0: y = 1
x = L: y = 0
This boundary value problem could originate from the diffusion of a decaying
substance\.
It can be solved with the following fragment:
proc coeffs { x } { return [list $::Diff 0.0 $::decay] }
proc force { x } { return 0.0 }
set Diff 1.0e-2
set decay 0.0001
set length 100.0
set y [::math::calculus::boundaryValueSecondOrder \
coeffs force {0.0 1.0} [list $length 0.0] 100]
# Bugs, Ideas, Feedback
This document, and the package it describes, will undoubtedly contain bugs and
other problems\. Please report such in the category *math :: calculus* of the
[Tcllib Trackers](http://core\.tcl\.tk/tcllib/reportlist)\. Please also report
any ideas for enhancements you may have for either package and/or documentation\.
When proposing code changes, please provide *unified diffs*, i\.e the output of
__diff \-u__\.
Note further that *attachments* are strongly preferred over inlined patches\.
Attachments can be made by going to the __Edit__ form of the ticket
immediately after its creation, and then using the left\-most button in the
secondary navigation bar\.
# SEE ALSO
romberg
# KEYWORDS
[calculus](\.\./\.\./\.\./\.\./index\.md\#calculus), [differential
equations](\.\./\.\./\.\./\.\./index\.md\#differential\_equations),
[integration](\.\./\.\./\.\./\.\./index\.md\#integration),
[math](\.\./\.\./\.\./\.\./index\.md\#math), [roots](\.\./\.\./\.\./\.\./index\.md\#roots)
# CATEGORY
Mathematics
# COPYRIGHT
Copyright © 2002,2003,2004 Arjen Markus