IDF Exporter

Table of Contents

Introduction to the IDFV3 @XPOrter.o e e 2

Specifying component models for use by the exporter ... i 2

Creating a component outline file 4

Guidelines for creating OULIINeS o o e 6
PaCKAE e NMaAMIIN G . 6
GO NS e e 6
Geometry and Part NUMber @ntries o 7
Pin orientation and PoOSItiONINGt 7
TIPS ON AiMENSIONS ettt e e et 8

IDF Component OULHNE TOOIS e e e e e e 8
1 1 P 8
o =T 9
AXE 2T 10

1) 7AYo PP 11

Reference manual

Copyright

This document is Copyright © 2014-2015 by it’s contributors as listed below. You may distribute it and/or
modify it under the terms of either the GNU General Public License (http://www.gnu.org/licenses/gpl.html),
version 3 or later, or the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), version 3.0 or later.

All trademarks within this guide belong to their legitimate owners.
Contributors

Cirilo Bernardo

Feedback

Please direct any bug reports, suggestions or new versions to here:

® About KiCad document: https://gitlab.com/kicad/services/kicad-doc/issues
e About KiCad software: https://gitlab.com/kicad/code/kicad/issues

* About KiCad software i18n: https://gitlab.com/kicad/code/kicad-i18n/issues
Publication date and software version

Published on January 26, 2014.

http://www.gnu.org/licenses/gpl.html
http://creativecommons.org/licenses/by/3.0/
https://gitlab.com/kicad/services/kicad-doc/issues
https://gitlab.com/kicad/code/kicad/issues
https://gitlab.com/kicad/code/kicad-i18n/issues

Introduction to the IDFv3 exporter

The IDF exporter exports an IDFv3 (1] compliant board (.emn) and library (.emp) file for communicating
mechanical dimensions to a mechanical CAD package. The exporter currently exports the board outline and
cutouts, all pad and mounting thru-holes including slotted holes, and component outlines; this is the most
basic set of mechanical data required for interaction with mechanical designers. All other entities described
in the IDFv3 specification are currently not exported.

Specifying component models for use by the
exporter

The IDF exporter makes use of the 3D model file attribute which was originally used by the 3D viewer. Since
the 3D viewer, IDF, and possible future mechanical CAD exporters are generally interested in different types
of file format, it is possible to use the 3D model file attribute to specify models for multiple exporters.

From within the Footprint Editor or Pcbnew, edit the footprint parameters and click on the 3D settings tab
(see figure 1), click on Add 3D Shape, and select the filter "IDFv3 component files (*idf)" (see figure 2). Select
the desired outline file and enter any necessary values for the offset and rotation. Note that only the offset
values and the Z rotation value are used by the IDF exporter; all other values are ignored. The offsets must
be specified using the IDF board output units (mm or thou) and in the IDF coordinate system, that is a right-
hand coordinate system with +Z moving towards the viewer, +X is to the viewer’s right, and +Y is up. The
rotation must be in degrees and a positive rotation is a counter-clockwise rotation as described in the IDFv3
specification. Multiple outlines may be combined with appropriate offsets to represent simple assemblies
such as a DIP package in a socket. [BUG: in discussions it has been decided that the unit of the Z offset should
be inches, which is consistent with the units of the VRML model offset. It may also be useful not to ignore
the (X,Y) offset values. The behavior mentioned here will change at some point in the future.]

Once models have been specified for all desired components, from within pcbnew select the File menu then
Export and finally IDFv3 Export. A dialog box will pop up (see figure 3) which allows the output filename
and IDF output units (mm or mils) to be set. The exported IDF files can be viewed in the free mechanical CAD
software FreeCAD or converted to VRML using the idf2vrml tool and viewed with any suitable VRML
viewer.

http://www.freecadweb.org/

Footprint Properties

Properties | 3D settings ‘

3D Shape Names

Default Path (From KISYS3DMOD environment variable)
[fusrfsharefkicadfmndulesfpackageﬂd

3D Scale and Position

Shape Scale:

X:11.000000]
Y- |1.000000]
Z: 1,000000]

Shape Offset (inch): [Add 3D Shape]

X:0.000000
[l | Remove 3D Shape |
y:
0.000000
| EditFilename |
Z: 0.000000 |

Shape Rotation (degrees):

X:|0.000000]
Y- 0.000000]
Z: |0.000000 |

Figure 1. Footprint properties, 3D settings

| ||| usr | share | kicad modules | packages3d|

Places Name s Sjze Modified
Q, search |l Buttons_Switches_ThroughHole.3dshapes 09/10/15
& Recently Used lwl Buzzers_Beepers.3dshapes 09/10/15
|l packages3d Il Capacitors_SMD.3dshapes 09/10/15
@ kicaduser I Capacitors_Tantalum_SMD.3dshapes 09/10/15
@l Desktop [Capacitors_ThroughHole.3dshapes 09/10/15
3 File system lwi Choke_SMD.3dshapes 09/10/15
M Floppy Disk lwl Choke_Toroid_ThroughHole.3dshapes 09/10/15
i Documents lwl Connect.3dshapes 09/10/15
@ Music |l Connectors_Molex.3dshapes 09/10/15
[Pictures |l Crystals.3dshapes 09/10/15
@ Videos & Diodes_SMD.3dshapes 09/10/15
& Downloads |l Diodes_ThroughHole.3dshapes 09/10/15

vrml and x3d Files (*.wrl *.x3d)

|ttt o e et e
IDFv3 component files (*.idf)

iy -

Figure 2. IDF component outline selection

: Export IDFv3

File name:
[,f’hnmejkicadu5Er,fdemnsjinterf_ufinterf_u.emn l Browse
Grid Reference Point: Qutput Units:
[] Adjust automatically N
) Mils
Units: [mm 2
X Position: |0
¥ Position: |0

& cancel o/ OK

Figure 3. IDF output settings

Creating a component outline file

The component outline file (*idf) consists of a single .ELECTRICAL or .MECHANICAL section as described in
the specification document. The section may be preceded by any number of comment lines; the comment

lines are copied by the exporter into the library file and can be used to track metadata such as references to
the documents used to determine the component’s outline and dimensions.

The component outline section contains fields which are strings, integers, or floating point numbers. A string
is a combination of characters which may include spaces; if a string contains spaces then it must be quoted.
Quotation marks must not appear within a string. Floating point numbers may be represented using decimal
or exponential notations but decimal notation is preferred for human readability. The decimal point must be
a dot and not a comma. The IDF file must consist only of 7-bit ASCII characters; use of 8-bit characters will
result in undefined behavior.

An IDF file consists of SECTIONS which consist of RECORDS which consist of FIELDS. For the IDF outline files
only one type of section may exist and must be one of .ELECTRICAL or .MECHANICAL. A record is a single
line of text and may contain one or more fields. Fields are sequences of characters separated by one or more
spaces which do not appear between quotation marks. All fields of a record must appear on a single line;
records may not span lines.

The section heading ((ELECTRICAL or .MECHANICAL) is considered the first record (Record 1) of the section.
Record 1 must be followed by Record 2 which has four fields:

1. Geometry Name: a string which in combination with the Part Number must form a unique identifier for
the component outline. For standardized packages, the package name is a good value for the geometry
name, for example "SOT-23". For unique packages the manufacturer’s part number is a good choice for
the geometry name.

2. Part Number: although obviously intended for the part number, for example BS107, it is better to use
this string to help describe the package. For example if the geometry name is "T0O-92", the part number
entry may be used to describe the layout of the pads or the orientation of this particular TO-92 outline
file.

3. IDF Unit: this must be one of MM or THOU and it applies only to the units describing this single
component outline.

4. Height: this is a floating point number representing the nominal height of the component using units
specified in Field 3.

Record 2 must be followed by a number of Record 3 entries which specify the outline of the component.
Record 3 consists of four fields:

1. Loop Index: 0 (outline points are specified in counter-clockwise order) or 1 (outline points are specified
in clockwise order)

2. X coordinate: a floating point number
3. Y coordinate: a floating point number

4. Included Angle: a floating point number. If the value is 0 then a straight line segment is drawn from the
previous point to this point. If the value is 360 then the previous point specifies the center of a circle and
this point specifies a point on the circle; never specify a circle using a value of -360 as at least one major
mechanical CAD package does not behave well in that situation. If the value is negative then a clockwise
arc is drawn from the previous point to this point and if the value is positive then a counter-clockwise
arc is drawn.

Only one closed loop is permitted and it is not possible to specify a cutout. The last point specified must be
the same as the first point unless the outline is a circle.

Example IDF File 1:

a simple cylinder - this could represent an electrolytic capacitor
.ELECTRICAL

"cylinder" "5mm OD, 5mm height" MM 5

0000

0 2.5 0 360
.END_ELECTRICAL

Example IDF File 2:

an upside-down T
a comment added for the sake of adding comments
.ELECTRICAL

"Capital T" "5x8x10mm, upside down" MM 10
-0.580
-0.5 0.50
-2.50.50
2.5 -0.5 180
0.50
80

O O NN I
(20, O, T, |

0.5 1
0.5 0
80

O OO O O o o o o

-0.5 8 180
.END_ELECTRICAL

Guidelines for creating outlines

When creating outlines, and especially when sharing the work with others, consistency in the design and
naming of files helps people locate files quicker and place the components with minimal hassles.

Package naming

Try to make some information about the outline available in the filename to give the user a general idea of
what the outline is. For example axial leaded cylindrical packages may represent some types of capacitors as
well as some types of resistors, so it makes sense to identify an outline as a horizontal or vertical axial
leaded device and to add some extra information on the relevant dimensions: diameter, length, and pitch
are the most important. If a device has a unique outline, the manufacturer’s part number and a prefix to
indicate the class of device are adequate.

Comments

Use comments in the IDF file to give users more information about the outline, for example a reference to
the source used for dimensional information.

Geometry and Part Number entries

Think carefully about the values to give to the Geometry and Part Number entries. Taken together, these
strings act as a unique identifier for the MCAD system. The values of the strings will ideally have some
meaning to a user, but this is not necessary: the values are primarily intended for the MCAD system to use as
a unique ID. Ideally the values chosen will be unique within any large collection of outlines; choosing values
well will result in fewer clashes especially in complex boards.

Pin orientation and positioning

For through-hole components there are no widely accepted schemes for determining the pin orientation and
component center in 3D models. For consistency, if there are only 2 pins they must be in a horizontal
arrangement (see figure 4) along the X axis and for 3 pins try to keep 2 in a horizontal arrangement on the X
axis. Polarized devices such as electrolytic or tantalum capacitors must have the positive lead on Pin 1 and
diodes must have the cathode on Pin 1; this is to maintain compatibility of the schematic symbols with the
orientation defined for SMT devices; however, note that many existing KiCad schematics and footprints
place the anode at Pin 1.

In the latest revision of the KiCad footprints on github the anode is now Pin 2 for THT as
well as SMT components.

NOTE
For DIP devices the center of the outline must be at the center of the rectangle described by the pin locations
and Pin 1 is preferably at the top left corner; this will maintain some consistency with the standardized
orientation of SMT components; however, such a model will be rotated -90 degrees relative to most existing
KiCad component footprints and VRML models. For items such as a horizontal radial leaded capacitor or a
horizontal TO-220 package, prefer to place the leads in a row on the X axis and with the body of the device
extending upwards (see figure 4). Non-polarized vertical axial leaded components must have the wire on
the right hand side; polarized vertical axial leaded components may have the wire on either side, depending
on whether Pin 1 is on the lower end (wire on right) or on the upper end (wire on left).

In the current revision of the KiCad footprint modules the THT components are being
organized with pins along the Y axis rather than the X axis and Pin 1 of the device is at the
origin rather than at the center of the package. Orient and position the component outline
to suit your specific footprints; this will avoid the need to specify a non-zero rotation for
the IDF component outlines. Since the IDF exporter currently ignores the (X,Y) offset
values it is vital that you use the correct origin in the IDF component outline.

NOTE

For SMT components the orientation, package center, and outline are defined by various standards. Use the
standard appropriate to your work. Also keep in mind that many devices do not conform to any standard; in
such cases the offending device is probably best identified by using the manufacturer’s part number in the
outline file name. In general, an SMT outline is a rectangle encompassing the component package and
including the leads; the package is oriented such that Pin 1 is as close as possible to the top left corner and
the top left corner is usually chamfered for visual reference.

Figure 4. Sample outlines generated by the programs idfcyl and idfrect and rendered by SolidWorks.

From left to right are (a) vertical radial leaded cylinder, (b) vertical axial leaded cylinder with wire on left,
(0) vertical axial leaded cylinder with wire on right, (d) horizontal axial leaded cylinder, (e) horizontal radial
leaded cylinder, (f) square outline, plain, (g) square outline with chamfer, (h) square outline with axial lead
on right. The top outlines were specified in units of millimeters while the bottom outlines were specified in
units of inches.

Tips on dimensions

The purpose served by the extruded outlines is to give the mechanical designer some idea of the location
and physical space occupied by each component. In a typical scenario the mechanical designer will replace
some of the crude outlines with more detailed mechanical models, for example when checking to ensure
that a right-angle mounted LED will fit into a hole on a panel. In most situations the accuracy of an outline
doesn’t matter, but it is good practice to create outlines which convey the best mechanical information
possible. In a few instances a user may wish to fit the component into a case with very little excess space, for
example in a portable music player. In such a situation, if most extruded outlines are a good enough
representation of components then the mechanical designer may only have to replace very few models
while designing the case. If the outlines are not a reliable reflection of reality then the mechanical designer
will waste a lot of time replacing models to ensure a good fit. After all, if you put garbage in you can expect
garbage to come out. If you put in good information, you can be confident of good results.

IDF Component Outline Tools

A number of command-line tools are available to help generate IDF component outlines. The tools are:

1. idfcyl: creates an outline of a cylinder in vertical or horizontal orientation and with axial or radial leads

2. idfrect: creates an outline of a rectangle which may have either an axial lead or a chamfer in the top left
corner

3. dxf2idf: converts a drawing in DXF format into an IDF component outline

idfcyl

When idfcyl is invoked with no arguments it prints out a usage note and a summary of its inputs:

idfcyl: This program generates an outline for a cylindrical component.
The cylinder may be horizontal or vertical.
A horizontal cylinder may have wires at one or both ends.
A vertical cylinder may have at most one wire which may be
placed on the left or right side.

Input:
Unit: mm, in (millimeters or inches)
Orientation: V (vertical)
Lead type: X, R (axial, radial)
Diameter of body
Length of body
Board offset
& Wire diameter
& Pitch
*% Wire side: L, R (left, right)
**%* Lead length
File name (must end in *.idf)

NOTES:
& only required for horizontal orientation or
vertical orientation with axial leads

** only required for vertical orientation with axial leads

**%* only required for horizontal orientation with radial leads

The notes can be suppressed by entering any arbitrary argument on the command line. A user can manually
enter information at the command line or create scripts to generate outlines. The following script creates a
single cylinder axial leaded outline with the lead on the right hand side:

#!/bin/bash

Generate a cylindrical IDF outline for test purposes

vertical 5mm cylinder, nominal length 8mm + 3mm board offset,
axial wire on right, 0.8mm wire dia., 3.5mm pitch

idfcyl - 1 > /dev/null << _EOF

mm

(o]

O W o W oot XL
ul

cylvmm_1R_D5_L8_Z3_WD0.8_P3.5.1idf
_EOF

idfrect

When idfrect is invoked with no arguments it prints out a usage note and a summary of its inputs:

idfrect: This program generates an outline for a rectangular component.
The component may have a single lead (axial) or a chamfer on the
upper left corner.
Input:
Unit: mm, in (millimeters or inches)
Width:
Length:
Height:
Chamfer: length of the 45 deg. chamfer
* Leaded: Y,N (lead is always to the right)
** Wire diameter
** Pitch
File name (must end in *.idf)

NOTES:
* only required if chamfer = 0

** only required for leaded components

The notes can be suppressed by entering any arbitrary argument on the command line. A user can manually
enter information at the command line or create scripts to generate outlines. The following script creates a
chamfered rectangle and an axial leaded outline:

#!1/bin/bash

Generate various rectangular IDF outlines for test purposes
10x10, 1mm chamfer, 2mm height
idfrect - 1 > /dev/null << _EOF
mm

10

10

2

1

rectMM_10x10x2_C0.5.idf

_EOF

10x10x12, 0.8mm lead on 6mm pitch
idfrect - 1 > /dev/null << _EOF
mm

10

10

12

0

Y

0.8

6

rectLMM_10x10x12_D0.8_P6.0.1idf
_EOF

dxf2idf

The DXF file used to specify the component outline can be prepared with the free software LibreCAD for
best compatibility. When dxf2idf is invoked with no arguments it prints out a usage note and a summary of
its inputs:

10

http://librecad.org/

dxf2idf: this program takes line, arc, and circle segments
from a DXF file and creates an IDF component outline file.

Input:
DXF filename: the input file, must end in '.dxf'
Units: mm, in (millimeters or inches)
Geometry Name: string, as per IDF version 3.0 specification
Part Name: as per IDF version 3.0 specification of Part Number
Height: extruded height of the outline
Comments: all non-empty lines are comments to be added to
the IDF file. An empty line signifies the end of
the comment block.
File name: output filename, must end in '.idf"'

The notes can be suppressed by entering any arbitrary argument on the command line. A user can manually
enter information at the command line or create scripts to generate outlines. The following script creates a
5mm high outline from a DXF file 'test.dxf":

#!/bin/bash

Generate an IDF outlines from a DXF file

dxf2idf - 1 > /dev/null << _EOF

test.dxf

mm

DXF TEST GEOMETRY

DXF TEST PART

5

This is an IDF test file produced from the outline 'test.dxf'
This is a second IDF comment to demonstrate multiple comments

test_dxf2idf.idf
_EOF

1df2vrml

The idf2vrml tool reads a set of one IDF Board (.emn) and one IDF Component file (.emp) and produces a
VRML file which can be viewed with a VRML viewer. This feature is useful for visualization of the board
assembly in cases where the user does not have access to MCAD software. Invoking idf2vrml without any
arguments will result in the display of a usage message:

11

>./idf2vrml
Usage: idf2vrml -f input_file.emn -s scale_factor {-k} {-d} {-z} {-m}
flags:
-k: produce KiCad-friendly VRML output; default is compact VRML
-d: suppress substitution of default outlines
-z: suppress rendering of zero-height outlines
-m: print object mapping to stdout for debugging purposes
example to produce a model for use by KiCad: idf2vrml -f input.emn -s 0.3937008 -k
>

[BUG: The idf2vrml tool currently does not correctly render OTHER_OUTLINE entities in an emn file if that
entity is specifies on the back layer of the PCB; however you will not notice this bug using files exported by
KiCad since there is no mechanism to specify such an entity. Essentially this bug is only an issue in rare
instances where you might render a third party emn file which does employ the entity on the back side of a
board.]

1. http://mwww.simplifiedsolutionsinc.com/images/idf_v30_spec.pdf

12

http://www.simplifiedsolutionsinc.com/images/idf_v30_spec.pdf

	Introduction to the IDFv3 exporter
	Specifying component models for use by the exporter
	Creating a component outline file
	Guidelines for creating outlines
	Package naming
	Comments
	Geometry and Part Number entries
	Pin orientation and positioning
	Tips on dimensions

	IDF Component Outline Tools
	idfcyl
	idfrect
	dxf2idf

	idf2vrml

