shogun-devel-4.1.0-2.fc22$>[|!0l~8~>9?td  9 l p     ( 7 C ] c lbb %b .|b @b E&b Ib[<bq&b,b\(8I9I:IGѼbHDbIbX0Y<\\b] b^_{abrmdsesfslsts8bubvHwTbxbydpCshogun-devel4.1.02.fc22Development files for shogunThis package contains files needed for development with shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.Vbvirthost02-nfs.phx2.fedoraproject.orgRQ,Fedora ProjectFedora ProjectGPLv3+ and BSD and GPLv2+ and (GPLv2+ or LGPLv2+) and GPLv3 and LGPLv2+ and MIT and (Public Domain or GPLv3+)Fedora ProjectUnspecifiedhttp://shogun-toolbox.orglinuxx86_64/S- \   n ' C 7~=<, M  v Q2N ?9   7 Rt J 0 7< _ Mj   #K H ( ," q  ,4 Y < j  z z ` o_b,ZK !!y ` J < b% | h B^;&p. p |(> r 5 8K^ Qsr8 6I)) < 9bJ47;z s5G]X0`<u U*bp   fZ>!wH#7 (+v E # + \ 6 U , [L" 2H m QO = h d . m? 4^   I | P L  3 F  rb @q9 ! [ x  iZ  f k@NF 0- E  1{  ?xD  *zA.  { WR1"~f},!   0 :X Zf o~" .  U* b GNe-Q7uGs!E<u 2  *e l X?C e! &Q w'A*V- #v)#5g )F>L.n 76 2 DkW @'6!" 1O+#8&6 ~& `*M ZWcp/ ~- 5]+x Hsr]JW T;.2 $ Ubk n 0 ' D P ,/ tG 0%R j h,]t b ue Y q5 v =$j VJ D '0 O y*g )n<<'M2V#5K !'?iVAk_!! a )l F K ZFT  :H  YF dQ%,9  j2!; `a   [  Y ,b4 t * ~@ | "GJ/( Q WJF'p+k) - c 8~)"$~+4 ` " K ]" 4: e " !jx)m:@ku90!P!aU0 a|  u##N ? % P|;Y[jB K )#  |   { |g A D( ]l b{ zY*2J (~ ^+< q9"hC"o 0#J 1 ' u ^ X s {0DB7@AAA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤A큤AA큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤VƷVƳVƳVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVƳVrVrVrVrVƳVrVrVrVrVrVrVrVƳVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVƳVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVƳVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVʹ}Vʹ}Vʹ}VƳVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVƳVrVrVrVƳVrVrVƳVrVƳVrVrVrVʹyVƳVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVƳVƳVrVƳVrVrVƳVrVrVƳVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVƳVrVrVʹ}VƳVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVƳVƳVrVrVrVƳVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVƳVrVƳVrVrVrVrVrVrVrVrVƳVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVƳVƳVrVƳVƳVrVƳVrVrVrVƳVrVrVrVƳVrVrVƳVrVrVrVrVƳVrVrVƳVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVƳVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVƳVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƳVƳVrVrVrVƳVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƺVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVƷVƺVݱVpVpVpVpVpVpVpVpVƺVƺVƸVƺVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V V V V V V V V V V V V V V V V V V V V V V V V V VVݱVm54408f1c2421d8549ad976de46b50e7eb1be35cb5190fffb925fb3ac28e181f29b49cac88fd1e29f2d436f37c5384ac749062a256fe408695f0d09223c6d1324507662034cf9c54fe3d6a2ea5cab929b4963e1a3366b542057abf25ae339faae33ed9d30a54c15e31ba0f724376c7d9a549ce4c1ee54eaf9b88f2c6cdce6301e90c46ec38ed63b1d350fd0356f421756d0ffae0cd7a23f9854ad7edd942e342f511cf42a6f0e339e0261b5956ee0dbdf4d72d4ed4fc95e4d4df7db00fdd461572dd8debbbcd332b96b5c3877f393984cc95aa7b0a0dca0e6dd392134b8d4a6a9a31df6e05e2a486af27f249f044739a008743cae2302f3eca19dceca8ec3149bb89ae4d15da1e8e98a43b9f59b196aca8ec520214a6a9ff3d0e3e9ed22edae923a8f72cabde39b7b4fdd5a3449d2a25b7b8881f78db5efae9015ccb6742a0ddb149a304750528f2f8d3c1f581650e721018eea4d4ea2c998428c5df5cb3dca70be84e0ff1acd2588cca9c75109d2458a6ddf8b24c348b47304656f9fe46ab38e43a5c60b017e3dce4660ef3e2d7bed490cfa59829773c2a36a21184f370ad945b66ccccbeb69104d41d1ed9590fcb6240515332488731c2095ad9b60ab9a85c5de9c335f0bc2ff283299a2fd45ab3610e36a427ba6cc0a57c47c9af6dcd54795dafc0dc1774cf8846c81c3eab90e286216e648b4afa5c11b231975476df3e579f4ff745bfcc0022f24792c15b286f2dbea8758524e36b44de3da92f470f1ac4542fd0784289a1d877a99cc18322f27696364abe3f66c1c16704e30cad17496bf45eace7ebf9a6657c561a01746f4174be01b11bce5a7a2d8e049fd90aa72fed02b5d278c0569bb1aaa0fe18cd5d5092af00c260368d1c7428d50efab5204a28dc252126407f6e6ea66fb250287173ea5152f933595edcd3fe5cbdcddf80d1d7ede3d199a1779f9ffd1176a65aafa28ce3aa29210f8656bb68d09529a204427f9c4beed8f0d8ededb8995e621c6b77adcbdeb9175d6061c1edc4452ee86b7ce2ae1d82048bbdc715dd206a385e78e9fa9bbdef7459f5f9a5ea7e440647757e739d702021863d94bc7e09f4fc25499b9afead70ca9872b67a7c0e1a56b4fd35f596e19a5f7b0c83722b2bb0c4065f292924aa71648b053a97124cc81655965d2658bf0b051c2a7de67e5a04f40a2526f18b2289313ecd5ed31fcd31ef76f82e4eb80b27714391d26db44b3936035e42584db540b907336f193af91c429dd159b06d630c86e567aca8baf7d3d0fc4b7414f48ec5a09ab6c3315fcece598fe06320e16c011f579be39ba4cb8137feda33301b1d8441cac083739910299fe0d776bfa721ce70765f6d870ed620ddd2db1582e910236ff1add323c04a6f92c66cdc6064329d98b9ed0c146bd7d6da2df82dc03c0fc6beab11f3bac9f8dec4532aa54f1302a88f3e425eb876c87103fa18a3d5f14a4b677c560850884e674dd38848949493fdb52b7bd0a20ec0dbf54da89cdff0d9296037b254729ca58bc7be6d5b2fe34d841d66a15a942701d8a5c0df68450606767d3c5b2dd1a5fefba53516df105d1d1da16b555f06cbef6b0856637f80ef0ef9614a92d97232a350b8a0a81bb484adef8879d179d52b4716eeffd07d0432bc41be03daa1a419697b918383a4920d871bbcecaaf96939e9862ec9934dcb7551b526be87a8a5d7ff6f0dfefaeb1d72ee401d604a375d62296377cd518c8c9d7ceea8fc3f984745c933cc2547d9ed9f26bddd943da7acbbf8cec274ae54316dd22847457869c797164900a0739f42f68e329cbdfba28036534318a3bbdfc3ef55547cb766ea13db6aaafae12d0b8211e761592a69e046651970c933254d57b8ffeb974a30fbc5460b1c6e8974ef25ae3b3bb9d3c76ffe9a505d29898cf98af08d3a907deffd65f15c7f5cc41f80c3913187cf52889f5251a04f69ec83289e6a8d6aac836497f4cd4ec3c5802076b4cc7b7c14662f78587dcc8b6388c57ba7f598e9cc1ea2adf12a259cf1e58cd06e06f85b78a9b0c16e55bc50e86bd8addec4fd9f690c4b8313305b5198c5d52e1ae11c19def85c17a546fa54fe8d641a44e24d3f893f848798479475b6bcebd6e585eec780f36af8fa8912b710329a4f5f740e9f2a2171c3fa512be758d00b23a93c44935ff9d42a20a4e035e62b8c732d908f702f5e37df8e42c60725f5b29d3969871ed52f02f8a3fa0ef3248bfd17fc5b69ab6577308655e5bb546a7bb3b9ab3ebbe876c8facce8cf78928800b0b2c0414bbe467054a27070a6427a6ac7a46c02b7e6fa27696185b88530949bb4e80dafa0e6fde1f1055f7c1d47629f3f4e2a57ec50daa769b60f96e37a710defd676f6ef327107b4851d69a7a2d273dabf4cf0bff3e55832f93b245ae42d4c7d97ba089e457bc53253716142615080eb04e8641132e6177fe92b5bb83cf6a65d37792aee71de5961b3694e4591a68eddb8f48e033e54675611aa9ce951941b68fd3b67799e8b5f2b5d599bcd4f75eedb2b9095bbcd5d7170d60efbae26a5446df6b64a16f9e02c582add0ea330f141c8529a8e0f5d05f5374bd800e2a333483c4cc7b9915e9116558e0b92e0627f71f1c343e52620451980301d35dc137ef81e61c360b52697823834035126adf9fa4ca290ca13a0edda07676141642836521869414434cffb92498dbf55107f129734e200cb01ef56bf3e8a52cdcf1756522276acbe988f4519178c04cf06341de91a97a09a84532d28194b9505acbbdc30cef5d48144a6ee978c406bf133704f8c46937961b692804396b5e9d894ec60f93e1f1a7b9b23db2582cc2a952262806380af0cb56c0762ddcba7f3bb1fbd251f12842d627a29349422af9b18284f3bcef49f31bed1bd0b86d12caf9a9d3f688a54c92a9d62ab42e31ee870a909fa27ea26804946bbd6491dd1c76202a99d78663d6963b3a3499fd05f90df78b9120b1695558802e4833cf03c36498c5b599773e1c983ad76820c29b3c6d39985220952eb4f9b32b6d8e860c805354ba92d14c36056b56a35d094d6280bb7396c66a3cd3774c4a1a017b05131bf62519b700d1df66590beda457fe8a99a268dfdc45e577cda31820be1fb072bbcffe8af76d4052ab6027cb800babd6ce8550c8981d62913acc7ac4f092476c5a056386646f54311511cb2a33ac8a965cde74ae448e31df4a2f00e7b689c7498d0a53e418c3363e1254959e8aeffc8beb0dc4cb32b81be9c0a9075af87a79fc707ad99d2f1478a2a321477a452856ab4be8c8ab9847b258909e3b90b49edce9950c0f7a3d8f7c69fb7dc465f6e1691e199512680753472fcc871efc3d9d876dcc2d78690e56d6e67da7758f5d8980ff855a4b5509f839a21474f198c660eb19854ce1865ca4fc805d0a30eeab94dc931820d9097d065c642bbfcdaa436c9d627585d706b19be84b3fc8e5d45b9fb7224a6af25e04cd244930b5f4d78731a33f39bd60796c1b2eb01173adfe52fab1061a8df2a2cf0360e2d5e46b51809850a213c7c9d8edb7fe33c8544c869a809f832f67018ee198f3c47c2aa6b80ff1aa862ba1616159a9e5f8114c1b332514c7bbd3ad7bbc73623c979873c5c6be8a38ab39ebe175d7d28e331c69273d4cfd71309d07e70cde3d98ba15043d258cf59e647eac56f8c0c834f7918615c2af2f3c107a5acdaf56b9cb432db4089946f0fb1e34075b32c8b5dc8ec25bf865d25d27c991d598a39ea489fa35f8fa8152c9015b9a7c17930a7c8f7a756de11a05482af35eff2095636ddb8a88f208c0e09c717d59cbb2619dd935cfa670ac826202a3ccb592f18b4650f83a8c431f3b97ac034c7b4caf8b2d347a6ba1b0c52ee21750ca60d38f967c1f736742b0bd120f3a7102ebffb57de4664aa3d226c8dbdfa3da87b24370fe9d9735559d27296a398543378a1d228171534192b3b3542b93dd68c301a84ba9f6f3a725a63c1804478e48581dad3aff514ff283c034e43277630953d65c316a417a209b5d9a668272f0c090900fcdcd75d6818d662101cb0c93cb7d6e0fc46b7d4641104f914b6b006f3d2679f8754e94cad7edac62c8e7166a190f00040c08081842f299415dd2878d252892c3a8230f87711bc4da68d0a6ccb953ae68a7be1b5c86d5bae5f94fe2382c300e3e1ee53d35152a74e42456b4e4946bf0d01ee167cad2d62fb80f10623a1c95c29735c793a1364fc1a650a741f1ff2eeccbd62278801cedc33ffecb25360c0f8be97c86eea2b5859f1a83c24ab362da5e2f4bd189a16ac356d1aa414b4279c6b1887a925786057bf4169de90b25c29c55c5a346a705e1b42947f81c4877efdd611666624bdb70bb11955624888ebbf92326916b469c45d879971252f2caaedc7b978a113845e31ab70cc93b58a7614bd68159eb34266dc64193e702def6a1e697e6a62ddcea2c975661175e91db89a0b9d400dc95354dbeb4e9180b6ed2a967a1bd4f58d4f3efa0e6e16c3670a7a99e212179a704f8137b098fd11901b2b8cd5a8a786809edf25d6b1430da2074329fc55bfe02e2408e97de1b18bbe72b5aecd5e616afb043d476618a40495308696cf2eb82004ce1dd00ffd50207b70a302e95f47cd6df91c2df978717f5c8974d554b9fa94a1ed13ae6817b8d0e7aa15f97f161636f03b90e127d94952f111b40b5d94301305784be91a846a2e7f29e48d445a084daff791630d6831b14cd42735540db7aca6a1ec2bad5513c0a20530f97d635807c1248215a060e264b329a6650f8369e6c36a58eb81b022f4b70fb6b3622a93b526aef380b37ac6849c8ad4b970466b82112e49b1a3171cc1fd377afc71eef33bb15e69aaa5acd4613330ee0a92a7ef869cf1610b53499255344cf6e0cf8fa3dad4810ac42f6ab0fa984ff606018ed6a11a4a3f10a0112cd1028fd48c26d2e4aa5416408adb71ff225e2e0bf91352f677233aa8dea966378ddffe7b3f68212f64ca6695d02579e43367d890f1df542e73a6d505eed77e1f3f23eea25a0f29e1714a4776f6d14e1e15f2b9072e97fabbaf52ed2a88be6156f9f82157f51d75b2fb256580a01d5cb732b8d6555795e75e1a775c348706e86d8c81abfa80b14f12ab49bce606e15cb9a4d428b6688804249d257ea605e49ce8a20b9399a51269dfdef26b30811ef8c92ba165ecf534236faaded905e830254455ce412013ff2645b06bc99c79dedca6893cad6cf937cdc8dabf33c0a52e2d78f6b85ca037309c6c8583de7d1d2b6dc72348a7c74fe0399c2f880053c926298f92dc03681b6ec0502dabf2bd56e727598b2f5a4f35e9603e57e8f52c305dde8dd61433c4799d21153a0da2e68c1e58357f1845e4672838b2cd0d2cf7493d7e169d0ac73ddb09c41b81ae2f46c027fadd7e738fe2c0d9810cb71ec2e1f5dc50a15c5f7f7aa811dd7a2979796c63a6c0de161a810879df603955847b57bfdd9ae318b24b4012feb6915c5c3924be0c1cdc793b491ce1c20f17439637059c8a9a406ad65decf05fa26e594aae36161f79be175c47e6d6f2eb640f3a16af50ad57c51d0690e6251f618a6632a4695c88bd43ffbbfee44f289962aacd046af2cdb8b56bcd6b668c04515aa6f2be44f1efd6650d3829d0ea19aa52e883ce1ec6007d18e52d71efe095de6cdc19701ea5ea05b3b8af660e5fe396e0f66c94a81b37aad23f78a700b1bfe4e2ec6be36acf2271b09e47eff1fcf95c26cd5c26e10d4c291e62404e621650211fb8b482c51818f43cfa2d3394dada20e5240e571e8f9f238f2b5d90eeedc13aeb852a52adf5e357391afe97c0f7ea47b8c89d6985ce106ee0c71e78b18d63b8c26330c087d7696b58cc03854567183bee0d4547d30cd44879c6383801f46d775311ea89ddf6f508b52720e0b0719dd2905ecf9a438a8a5349c3ae0ee855f6179e5ccfd1b21b7337c6bf18a7f5b3197516ae314261eb524d7ba8a733d7aa271c339809bcb66b2df5b8e283566a5c98e140b6f45dd13415e6e6baac9b3a9b1047ff067330532a1c08ddf0a13bb8767583bfb56f064163e070871e01d9e5dd12d3e2aa0dbbbe148efc872f5d318928f533516e5700b6d02c41b82511214fd1b9c5f09f3f17af61bf5d6b5e70a4471b7a90a38339e86bff90b19f346815d20e3a386552cd54bf49ad4081bce1f8393054d4b6f075dae71b93acc5706860e4df67a8250acc5e82e994234d14cb340cd55fe7d7740e0d7e8023234db5708ea4a090a6e6541ad974135c7986f493c7d5e7f065f020154c8bf1074456c0525510051384d79514164d83bec32afaafec22375fe195bdb1e5a678bd9b736075f0ebc4cc8c633a6df2c197af0ee12babc899add7050424a12027a1decc34c4cdaf83aaca4406d3b7ff3732591b174c4083fc23b57739ac4b028a696974dee4c843bcbadcb345288e84c14bab6a24c3a64fa65e7c954cc055cdcdf4b5285945b585afb605bf8c4004be1dcca4ec547f2665b0e64762bedccad5dea5737ad57c08ffc420640ae63a2094004953915ab1419ebf78c48bbc7b5d65388917a0ed377fdd00a050d6dedf3f0c8713a2d040cb2bf7259b011531efaafbbf31c6acd46e3c23ed827ec9243860ee40e356546eadceddfde26b7598426aff6c7be7a6315914e07a61d7fb854202094669059cc63313a161ebb180f6b90e2e05449c9a5d7323bc62979f0702406eff4bcd23727d0c2c9cd512a46cfb0d5c4237927702f8b601f379837e1dd59f6c62741dc1dc1c4979c3d059b9207f0d76b40512a1da9f2fee30da734164c54b1fda9fd3beb2b732adab1a06a783b56737635122e6448557b552dd2210b6c1cd4034ad22b56c5a3c47d53a6d21debf90f987df3e9f1869691f70328f57142f9a26713ebb750f8c83654c3de5032e7f7cfd6ad93e90beec126a4715d312c30098a3971b546f052ba6ed0c16762383576a07d748d3dfcc5390f2941affcb08f581ca544c75dbb35f007562891b2b27ca9b702c63340d9e45050ac6090b46ce8628cff66480c2eca96c9a09a11730b2890c8ec0d7170a77f145361fc7eaccf38e07d456ecc969e11b429077f50b5fddd97b0392e84f78c74ce12c8319e2ee51b9cb851cb5b22231f1deaad207a85eb72e6f0dfb2924e70fe6b0b372a714f5c8b99eec785b7c0c74daeb4936e9051362bbacd472c2acb2683a7cab02275640eb72aa7dfcfc3eaa4bc5d7165a835b76a00ee4ffb6d55af967e4ad9cfb57f707196303b030e52fad9d1c17c3e43ad78e330ca8596442e2ec6c9b26dd7592e04e924b513dcae2e475f0b5cf0037488428220e7bbb57911e6124850ec91e77ae36812b45823087b1808471928e1fdc86593033516fc7a4896285c35193cf57094fc75bd05ecacc87c3343cffd36fb1f959b65d395640f518005f4677acca371a4b54903a96a8d56859b9905be16dbf98663735f55beabec9bd56b1f6b266ee64080d7c483ea985f8e57e2314b20f7180bc717be778d2ae12b01f13a42c7ee924dacad5a160c9224f305adb154157bb3efde4fbde4c83296fb84a3e244b5abf9bee9ac858ce813e337280fd1ae0e3592af7a69d09d0de91a57af0fe0c3aae81f0dddd9ddc9f2ca9fa4ddec55ee8482039bdfd25955350c65db5003e9bf50a9a17172cddddb0575b21894c79468283c3dfa687790133370b825ce7019983485f980cbe89b78cd2d60a2416dc6c5985624ac43db44d12eb515e7e6e428bdb7436d9c8702d312d377ec05e40226dd38c82569f0c7eb2c018be2379feb33d05111300cc6598326134c5ee0b83987e35970e08cda16087db0cca1dc1efe2f64887499773819fe11f85b74baa8eacc835a998ca1931965a6b222003927b78df991ecad6b5845e10e953314a1359cc06bf2b8758d66fddc448d2b3bf5b9600ecf2ccc65ae80982f6a8fb67c12855473d74b8e1add34ca40fafc9f6355a98bb7415620a734e917d28483ac8989d83728973d5515a8c8bcee394cb6eab1d977a597d36111742ef7fe934b8d220ca9bcc94fb04700251c8dda11a9ddc13dcbf1eb5d57ea1ac834b14181a46f29b7a95095083e42d7497591a8e2d76b58c3b5c27f54acc315a6f1fd7d1064ff1eaff2f48baccbe0f4a136a9de62a92c34a176e96a048c8f7730a5f4742f1ae9ebdfc04209bdbbdc9308c6e62ce010a30e2c41e02eab0fdd532fd90b4eff29d0d63f3afcc6ac1208216a2fff536f7dc7f449eea36f6978bf6e609abe199595cefe8094f6458a088d6f01f0328c786fa3ccbc419c7f4c934da6369855c4032177cad6ed72ded3ce5239a6c03947c35fa7c413b0750ed2619c0d13cf5747a4377747ffcc39b222f7689edc0f792705cd5c8c81ebee43ccafa3ff664cfdf762d94594a1180e7acdeecd845a3839a7a3e7aaf991ede014021b23e7be81b405521392c3625e817c2d4c6fff525e0a1d18331c0de01ff04271b2e1a60ac51a2167061e33c6b75c2f4cff7962f535bc68266f91a7a1c3417e46dac38d5e57d576befd382cf8846976994ef43420d6aba7e7b23bdedb2c311d62844f082531fdcef280583349c2854fd4f450bd8259839c423f1f5797cff091425a29e35827c77bc2c52c3c01db6e1ce26ecd91826adfd9cacb74183d2ea1415991a814428330012a8e12e675a5da830fe1d215c3388fd5c0aaf8d2144a46ae865d328785f9d48368aa25d6256bbebeb1cbe1bacb127f0bc843f0369ef1ca6cb4d3c427866d3bed99a873932c750b052f3ea6c82c79d720a7d586e65990d6c159e4f69e0391455b0e38d09c46bb13a95dacd8a8df19bdb6cc92c8a334de0bcbb4e45a96424765efaae564cd8800b9c66d60458c9ad87fbec34e04b05b54c7b74b062a965afac559da54b1be9255af896a11cde89b48859a543967a6d445b472da38756487a1457f526f5915deaa8d2b92d45f7d6bf44fc7e0a15699787b5bbe202f720345ebd6f8e3ae67777700ac69cba3f7414b8417c4adf9b8b426fdcf25917e807b6675496d81a4339ae2babdb55b56a36da20365d0287fef5b87cdcd6477984c1521311b1eda460733b67eed13ad98690c0acba3e5a32da94a5019dabc3ccca69874b2e74dc3fe2b05dbc8d78a00c6e87710f95e461b4a20d4245ddd3823dfcad51906b063184ad71ef0a573d1e4ff36e21edd14735aac530eb0cd9ad66526ef554d164a8b042b78f65d9a7d0bf8fa7b85f6f521a2f4bccceb788c2ac25afaff4d39547819f8469d4de002acdf8046e6b957c218e95affeded1765632a95ad761029177746529abd8bd4d9dcd7120d2302b5a3b384d485fe15f175cba36221a24068cd29ac6fe0c033fe7855125d7fed2c3fa68da587e4255463340a3e5ad3a6770a26610646297ab7cc5dfbea29b71df6e9732fb814439ef69458d1adc19d27ad4a66dbbcbf40eeb731a0b7fd6c460f5f6d9df7c6bd2e5f0b5da512912e71c62592d9ee035e04ad70374876c4970686c97dd81f0debcac165a50dd383baefa2931122a7042e92151cc36f8fc2fa22a9e4bff352f1877b7b1c611202770b96765a009718ed52ec6074b959d4860a87d4a19f58691063250c7bd0fe1cac93ec3714afbdd4ad8976ed87af1eb16e890afaf17f499886e64b3e92dc944aaf83300dedfbbb6d6267198d9699f49da4d340c90072c815e20de640dcef21ee49c1b8cbf9b9ba9a861b3bfd34ca6d149e1412cab4499d32d7c7be27b72394afe03070fd0129cb495990b2ab6fb070ad4755d298f099a5938a60da4f4d7c86bf7a3b6f821dfc6cf84aa6f9c441c0836485700dca3347fddae93f897de2399af1e35f141c93ec4dd73ae9cc521a3ee2998e2809ddb81feda4a1046b7899e914e13d4ead8ffc2d06a1a808909629a5ca20ba3be060d55635c8c5dcc0c6d09d75aa03780b8d5340e560d46f16f229b942a51d11fbcf2825a30db4a9d1a93f6670f195d8aa9b434df8885c196d5471d1802e15a5d079664293bde9b80f76ffd551808f2e1cb49343afe1db285f63a08d1ddb57aa5853370b8dcbfc5679e294a38e6d0d8ba5038c45655b37932942baeff91fa9fa19d2e6e6f41f38697982d7091676828ce1c462bb7d1903c6686f50de6f63698a77638ba34b7489d9676552d540d2d24784b4a6d712aea50c9bbbfad3deee2d3474987d1551487a31434557480d3ed7ceb357a6ce3338a8e0ca328fb970039fadaed734e5b1b0963fe6ab60036f1dc482f2ad773e95db397579d029c20bbae0f96acaab4e0dfdcf87a6669b27176e3e57aca92068ca1e2c78df13e8c2e2c945c7402990503c4a0ab7757e4043056e5e2f0702b4998b6e72e0450ae8709d3c5a2b96f6e83e39fbcf46c5b47c17394ae71737d835655710861875bf6adee369b1ab945e138afd4dae00288669063f08d07e34a31ac4f9b0a82c09f3953a3c5557afee07f2cff49a148e63148f7bb0f6561f98c25b1c9f017f77286feca7632895c867939968e0287a568f922400ba607fafca60ca886b73dfea66004d0c70858c296153d851233832a1ad0d83caa75d80fc1ef59f7f0c276d171f9d35ee4b15355b2f2babf6520c9bb54b8e6b6203e11925ae3523a10fb52336b63997055b7be0ede5192c70993b2db8fbd68e554f3976f3f7ac912b4963ae76803e6c94bb7f2a12791c48083128d711e8b981b25136a78458d3f8cb0e0a56c880262c96bba84f9a7819d93c03a8317caca8d3e93f4795376e086b2a501c8a03fef74519d62c2515842206b427b3654374731454328389bccef6b486205b11b17a96be5c5fbd9b0671f3e344801c66cd126c4b84681dc37e1d413fba710d59ca1fac21f3f1ad9d7efadc837c41583170615bbea5c4b2ded662a148f8e115ee5e75575118a157f9564e9f806d3f7bb6fd05b1aa5dd56d9a9d6840c0dd5d705039734240affade07f3c6ea1133ec04ef9e72f47a195438433b2c0f414ff923fa381c8a89caa2297c6969acfbf6a689c01d40bb5052c22a08a2c039cfcfd7082ed107abc420c27b8ee57088b4b24914f28e552ee545eef6066875ee0437bf4590a0e5dfcab59e7c8f30c67a1cda59b208fafb73ec0c7845db4065d1d617bf113b8535b2e962e782e3793e7cf677a0156bd923ddf6f20ecb4a61f5411f98746e1a676e95d78c8cee458faf49c82291267d0fcdd2b9ac7e12dd248b95e84ea29d13ce06c85a3f6c8a631f41165071b968e7da1acd6a97c6dcdd1285c90c418ccd3f4b01846e15333f6f617ea9e5eff23719c6351ab576b1d7424e739ce50b1c1d53adfef3be256eada78d6f29906c775218582f482d04773b3d3e7068dc8126bf138fe9e8a2804c01f0d63ac1a3aa7c6629a1983d65750697db80d162c24eb0412cee1304166fa28a7e763b4484f62c6a633532fbab68248ea37bf390eab471f8faf5b28adc7a70dd960acf87d4f8d85ad60d71c7f30393eb4fcbca3cdf223d867409f1eb0598eaa71f0f14d899dae93080fb487b1df355fb3eefe8a97f5963b2fdb4bd037f153e247aab11f85237284ee4dc1774c8c1e89db9e5e3a0a790fcf34fbd317808a5e9f24f0782fecb5905d36ba92e4d9478b6bd47bc0f1af496545f0a27eb0d888f90b863bc932839aee1ad5cc878bed1ddc594e6d767017899ef30ea4bbb7b8218281bfe241e6d5a24d9c64ff73d4348003098ae4505afdaa911122e79594696f5e36f7271e4abda0b2a3b921b46b6211732ad856949d1a324408de1c10d9c3452e1af4418d8fc320a959a5b874d3918f4b5f68c4e4d3847acc804d841119fcec19dd969f4248480d2325d465038579f60acba4d952ebe51d8c08688dd362dc7cacccca3a51b8fdb140d0d010faad6d81be02b21c61a97f0b5eb645288598d8dbc7300e0097d7805a29cdcefec616438b9b070af1c0924627bdb2d3b18f811ce7b0f8daca0abafd7c15b74073a5fd7a0043ba812a8458e66133267fce816d82d355f7d7065ffc66bb45c9f708a0c75ab631ff5118771ad258299d2e36d7d62780c426fe2c4d3477d28cbf25c59b4a106f021128bd6b17c959a044c643bcb065d14b723f0fa17fffbb32aaf6283e77f66b2dac07853a9f5a060b7325bb99dd949dd88240333757febdb8ac07fc16d90f7d606626c04a3bfd5dbc58fc1e56d26b1c60f7f3a8d3bc16d7844a9621d7bf8d67802627c14182a5804ee0f44322e8d7cda2ce4042b9cf29bc9bef631f2a56bb100ab4f0cbde3d87c22d8c25260dae5752cab0ffe6fde2e024d00c77d96a1a6e1787c6c41aa56cd6166e5cafa4c418b51a91ce7f43d93f847064cb268d34741bd55973a7e6539db4f69cd77874aa1989adb8f673255e3fe4b69657f9e4454e066842e35e8081b012ff45bbc49d5be235689ba3f6ec9477e9bb4becacb0b8703c86e7c5789887512e63bccf44cd8d85b93c37b1b6e696d069072abba592dc247cdf9e30e9d4fd624f7e195897f31545af986498de4831dc71f1daf8279b37aef19462f46fca43a01cb1a363bb311e204a55cb047769a1ae707ed90a492dfb8d16567a3619f40cc8de8c4e64acb9b65b1a1b822bdc34b05db3031f488bb98f58388df31449cf31c6220b2976ef0b600eae6b9d67e2f6c8abe252a86bc4bf48cf0d46355d02f12d4baa3078ba2fc11d36c8fdd6f27baed112f5bd17b745da6b8ff67b13d126d86ce75dd56afd33719139884028390c1d2fa9549b6db28bb35b7914ca9c2b59d15c7352280d247f6638debfe332158b52543a18d93d2445f3de9fd6f4bf05a42f7b97731f84f5c18dc4e4b2162f06c12989dbc9cacdc4c4a33fe0545413e13098719a79ca6a15153b43e01a14da787c619d7af883923a3ecc54cf0ac770bae0f06a2b449540372b2c26aede68b08b41affd243932a532f64aad48be4a9a3264cf2fd20de4a97352e7ab32b933e5f508b4423f2da2147dbf93f193b69f69614cdcea0099f4b1cc4232f5250ab5ef9d1e90bcd2ffe26685d532b40450a47d7b7b30a38bb2dbf01b50ad23f98f15faf98a781fca24c9a8970dc5909c5e1ce1b4b7248920e07ba7a5f212395fb219fbdf9f43d78eceee310aa0d10b0589afb7373f2638b39239feaccec90243ba5b06319d01a2da195d576ce2e01fbe64cfc1a12b8780bc1021627df0e4730a1f67f82e6e56ba7426b42265ee8ac84957b681ab46d28dce8251c0c53f932d144f6f779123671728d8b2ae420196d50f7b1c394d1cb236baca3d72f1ee3188f618ef64768976ad9bdaf370effb1c5550280cccef34f74d1fc746af4853636a5ddfc4078171d36c7862176dfd327dda889d2f8f8d910606c831c6262140c6004e15847db3181bc1bf4ad81085eaa6441b1947b0995b41ccb72833afc8c3cf3b39d451c916fa096d13375d9fd8ae146eeced4d7e7ed267069160e4ac5812c89a9519791c5ecc3d6f8e0362acd8ed66d286de33b25a14ccd8f00fa5f7ab7abc86979420fe6ae054c6bbbc10bcf8ec1a89d37f2c7ed7636e2aac09e1bb9d8ddd82b836804ca783c326227295cf8f6baaa63e9281c7576abd07f00b7896953f011d9524ec291b0973064651b0d503244f5c23bb4cc0c5be7d691a33f9874dd31b1acbd7b5124893e5af8073c81b7a943aae41b0d855bd43877d6f87793edc9a625023de9c616a4b413365caca095cd145f4f0ace6adf4adcababf93176bcb62dad8a0b1b50b975798b808e978ada0144dd01fa1a7f0163a6f5edc13c37d51fa8609f4920bf0f3e3f070086244132275badc21a28e4db47b379d03a28813eb8298b0d6314a0c828a7bc2d9e748e3ae65482dbcb4edecebd04dc5b5b84e5a4e54281f5517446a5d053c02a6506a7ced81aad45b68bc62ebadbf78af77830672856d098549f30172501a58c598fb81b91ad249f201fd5240e8c3139863bb83e329297b3560e778565a2bb294798a1818d06ce881b076cc67e5a2a59792b6c7302dd4a0a25612f311ccc06e356979a27c0c2580b5187ac9e0dc20b3e904ec8ff3952550b83761b6d95948f3765ef0fe1160a67bab43bf13071b5fda2333d7f30f42122f9186bbad9542c12271fd027d581d3fb3c2631787f978a260a4abcec67319bd767c93601f5060a456138cd07b8e6dc166099df377b8a34caab068c8564dd3a2a97ebb15965396a0c483b5d188bde55d78f6007081bf42920699714389e35b36f51bbcb1db8914274446c9f43ba4e719ca6159abef09598a92d1ea52fe31b13f665bbe6af8333f7f4c8edd46957258ab90a2be494bc3e8d2b6e901cc589456684b9a9d3700284ef2c7bec17499c8e7b5e1fe5a27e71e14ddb836e6896b8048cdb9b457e01c4ce2eaf47d09100805905d998a45d403b1492994aa8ab55c719e1cdb296a2d63ec852dee73eb29f67f8ee30fe8d3f3561695da95ab1b122ce60951ec63ea39d882ef211610af0b301540417fab69ecbb82228d44c08df6b1934f3b6028e0ed3d7a5ac4b845921b127269731ffe5a28cbe16fd88a8d5819dc091ff22863fd0f96160d8d72df9babac85e6f9f4ebc7e5469e942ef814183802f268d6f9bf78e8fef1a288c899129bc99efbbe3f0f7c1c5fb0bc6b6656fa7e7e7f883a66ecf4de4f949067fd0ca75dfaa6bd1caff9bbf883a9012e75f7be19160343787bab3dc6ca216811fe7cfbfcfc1d873e0dbdc23b5b89b7d67395eadb864da96851501583640fccf022e496c6827a2dd708bc62011e835e1d4b397d0bccfbf58c32fd5d78cd93bab5fb86433b78c87a875efb9bd153f1230b353fb0981b30546cbe8c7f087b31208e841ed76f091eefff226327605cd74f6c1839e9f4fe192524cb4ad20de1104e00620059de0d688a0409a61fdfa19684e1bcec436c619c3b3c844646d5fab0819c29c9370118007083fae606d83f8f7c56eb625530ee5da7e83d4af6dadb83237f4b4f2ad25968bb2f29c9125ef90bbd54148093a2b0d9870a17ad9434ef1b57371ec0c0baea75371f4164cbebfe1536b46b136826935e7f7f64ff2212142d35dcf5c24e4d6df2702ac0de8c4b328eed363cee020efc61e5397476679d64313789f31216d06f74316ce0526ad6c018561f7d8ade126305e863f31c14d83e2f98b9ee841f13a82a51b398990c84b374b68c04a355b82d3cf845978cb84e5670389b81a5013ceaf2c8b404b2aa8db4eadb219caf0c8eaa9c6bbc8bf08404f84dc7c5db746cabeef7ca2f4e5a6ffa362fa54ba670194ddb255aff89420d06131b080d873447e59d99d48f68cf61940b2e37e7b454c1905784b6cdbeb689a1acfa71f8a9325fcb1b192b5920f1daab2d35925744036dc054ddafce5c937a6ffeb74f9becab7a592b7749dfaa8a138ef584ccac42bf67e69fa15d9c90c33269eb5e52bfd58768089f480802133a0f7a82fe50b69f2e56142273825b7b84243013f811fc31e0896df93ac1b0085f19ba3d1457f1c5044c7bf67cb78530a30e44d4c06cd4a664dba31997ab8d4ef5e59905a836bb4cc2366296f4b5675af36a008a85d4b19a6a3ad77577f7c78652f5cd1680f9ce9276b1796bae9a158f125298c46eda497b1c053794dc254ac8c10ab5b00a01c53a13bcdfa8b7fe82813af989e74b2c38866230ff33ff63518c94b13cca7ceaf4fcdc6d614415eccb94361be4c406feb0f25ee7437a57b1efd98311a3c1843eeb13bb4f01be672ba8ea7e6c44196096098d1e6aacc1599aee7ecd6c9be81cb56dfa285dd5ef34f0f1ea84f1962902e8969397b2e3309a36192f1af8b0431f0c018fe5f5f537b5fe459a1398080a8fea4ffdcc3382431f6ec6e548380723db5d8bf77939a321db38bb01b74b6e055369c1f9d9ce49edf343a696b964e680c0c94ab76566d9b09b51ef3a93caea471aa55335cfcb56fd48c21eff000fecefcceb89b00bbd63f40f0984ef428631daed446030685186bf2078903b935714e0b444d3d99676a2ca3e8af114a7391416e085f05fc24667502c13b07b67e8292d2a2a3ba8d570e086850ef758a804ed2aea700b0ac9f0efc92865c674b2c9e6d02ef9243b134d8c5af97942b864e312f14262f099416122ae8c354943913be37f7b952ced1d6201a8959a83e918389a0f948b47afc702b030c7893e6a09359e599d4ad972e156667f14ae6e7c59990e082d82b105faa17db98b761ad3eabe9a50b1fbcee5775fd86bfeb4af3c013af24f05f9d8f047c7e95b5d0cb295760d8e859454277c6e6b6514483ad7a984cb5f478803acaf128c3a9d44320a9778eaab39f9a2e2594b32d375ffcba009989f584920b26c6904e012b04417f252dd94139b32b6b72d614ce66bd5668dbf95977c9000f2da7759c6bf57fd8afeebf58492ef06889c81e28bb6ce39b0cddeb70a8b79eda84f82b42c1b12068badda25be7302eb86cc7e079017684ac25b285beec0253a72730767ca6b5f500de2ee7909b5a850fc6d01beb14d228297f57e74bf6e462d72c9d33bd6974da3cdd5b7c01129b46f362a3302329f73687b324dbc3a319d35505d74d91e621e01cf00da9932ae8008723b0e1386c2d955c227a638e5bfa07b8c80b8a91bea1bc46a1341dfe687074b9bc4e313e2fc6860a7aa5a82c800b99b1f56c358c849642a0ea4035883a5f8b205ee28e28ade73854cc36f70d83ddabcae57a2d5a89d6b7593617f2eb7598a380dcd23cc272519d5220854dd45fb70f17f80987753174ccfd3633efdf77a11af6c3ece983c8bf96f5dbae315bf3975174ee080e2f03bde62b69f095627d168a787744d1f505b4bcc020453bf1dc1c1068ee3e139c0b4df885c727db3807a1ea13310da4f4b0c56e3153a330d882bfd4dcfb6773b35d63c4fceb8a3b8ade3f4bcb0317ae6a94c8054f5c3e2d2afa7abe1a8160cc9a3e1f64df1ed2261f14f113a954d0999c23ce936702217d1402c522aa1805ab6c32721a3ac6bee69a99062f593659a2756e521ecefdfc1d6e87a47ba16f0a7a6d0d9c92533fc64f32ea7baf18761e1641f969a4ae028d92a4d5f96628ae25db7cd6da24fc2ea15c5bfc13f9cc76bb65f47f222d8e04e61aa871c450ddc556602925dfb9ce3df27258c319f3cbcfed407e20d1d30a31dcf8c3005861c1bbdbd6ca33abbbd33690986af832d43fb55bacd34580a980be1fe3b501208064037bdbbc546fe7d919c90b48f9830f032669f9841b9d45a84334f4a86ff2a6c5b4674236fda0a47e1f46b859cbc78d85287f259a0b75b8da925c006806842f0bd12dd77dbc5546f7154bb82e8f84ac178a6a0e97b04501d650acf2316576e953866bcaa7ff57b7fa33745f763516a12c16fdd2311d8bb374e51e9c79b4510543481550081045560f7bcf923cb6c8ccefc40a9fa3c275111086c4a7760e10cf67fd45f1cfc8a737d894d8b1474abadf5d72eed576e9cd6fa1470f47482ac5a4fb89ef87d20b9c7dc94327befbb20fb3af0864859a317db4f02ec3615a444482d2e26617b735a2d7a9ca523fe3d080e5906909d8719362ccf5edf5e1827939c362b6d70326b87917752f89e10ab207ed0901bef441f9e8e7af206e33798af0b7b6c51610ad542274fca84bec3384b919b9c3605972fab604618d5fe2cca348622df6f7e91077225f87ed4e554b269a3e018093fb04274be4fd1a31f91f996f93085f1a0286c60ba15d83176367e614adc9e1be388db45f6e30203e7c8caf534257e4cf5567b58088f67f97ef6394f5ab8397bb86783531619552b399cb46b1d123246077d695f7f22b0ddd94e2cb3f642f3186d7791ef20b287fd28195c700c359bc98699e6d7256a914f6232ba1a3ee204b50338e04a7c9a614d23d008d43edf39e35f81a5ba6e2aee0d6d161cb127d3a8ba1491bd7245bbbb4c6d1c57bb7ecc657790f0d27a7d320f48b44f43d1c745bf8153b92de3ae477d5450ea1a8d807b6b8791f85169c07dc06801a755ebd3122b86bae340e9bd7b417218ce812bbaa5ac5d90c2a44372d49a3d130c2896f7fbe7943a3694692974bbc6edaaba1b46219f35e5b854986cbf83cd03d9afc72d49ce435c36a7e80d03a02ccf09921699e0a214dc67ee03084042291e9a3b8137ebdb6cca324639c58eadc33264945ab673ab7d6b0b64a21b11e812575ea29545ca124eed3d230ebbb1421bf8b9932d3296b8fb27c689bae0c9ad0527c48233ffd74b23ae3f6445582183ee45b97c0c525a4dcf538c37f5de217aab5c75c3ff6b3638e937daa40bd591f083ffbae4c68fa893599eec94f9eadc8ffd88bcd35309e96200501d73c83ee033cf61a99621067a4578c2a1579573079e837822f79b9f9cdf3459ff002e8ac382d7719e715a45703ff4ea356bbafd12d0c51f58f551eb32314ee4692b389fb8bd28280d58f6bba1bdd48afbae0989423a019389e3f2c449fd42ed3b291621ea8893ac0042ec48d4972d85a8b5aa74f2f63e182c7ae5a8f8f5ef0cb6ffed06e6d41202ded956764aa3d3d78a5d401c1cfae55788aab7de53eab37e96d617998a9d18d2d5bad7a966014edf6e84a5f43b49de61ff98c53ccf60706832beb4a14b6a9ae41b318bf3232f9f91735a1ca3ac6ae1b23bc6fdde012efba2632fd5d3bb9e647a8f3021f8f5da1d4cdafc49e131df3c2346933e989fcfce94b8d4073c27189201921013bfba798056acf1c5845b691ab84a0fcecdcb38556b4f0aa19b3778ce60a9d32abbd95e47ef4730f91782ee9e8bafaed7681bd6e927a514ad342467539f9562c0a804133aad2ec2ba2d9357301c6821b0dfc515666f881e29fcb17f421b2629d6ebb025f32048fd90416762b134ce293cdd66695cc9d42736d8c849de67865ca953b639690ce8762b908f659ace2efdf97259ff93c461a7d56d79a9aaac2220e787f1121ec4627def1e34e85ec5c824902f0b984ea06ac9040d333e8679e1360fb71f69df3df7388c5cb8fea209b6e359479d11b7b25bb2fab2daf34c52b19ce03b92dbdb4e200056e96af5db9ce9da5aa783f465269cc3b21954f4457cdf9108ba5a9624c0e4282838092e03d344d1382b99bfa46962b9659f7b967ab18523e81fc7d09c92dfd7e133dbca207dbccbd33455596769d000fbac296229b6085031e5a6edfed371181a51ce67198ad67118967a06d0a89b03f2cd14397b8a9b5d2cbce7d16934264339421c922229203a2385dd198e81b0b9ac92efadd9316b24f4059d9bac9686a59d0e42bf89f786a46ec2769aae5081bf24a9c3d1822e04faa7a7c438016ae28b69eae5440a6a2bfc99a1af72f20344723cc75bb15427c46455e37390b71749785cb03239e9f1b1ca1b4655abc554b743422fac08d174c2b36400dd37323fb4a7e286beea86314bc013b1851548a0ad90e8df52d08816005adbe2df4eb805fd0742374a590be0c78693fed9a4327267242f1de2a5bb788dd7e2fa641c2a893e2680908572199d80cf300322bb38ebed194b0caac307c5944b05c5d24fbb10bf69871b8c456d68c9338b3af1f10627b79a1162a4a8b192a7326d773420063bfb2a88db27266f2231df0ed5d459306cb8076c808966d268106564104383193edf94ca9c6210809d694f0d92e0331f85a7849fba02e1faa3716aa591dedca45e500a66b8cbda7eb0b3a73c1342cf4cda48a7bd4f07f657f2ab5575c73362d006207fb802fcc8e09ddb0b36c10467e8afb853dbda60f1766c0e66a27cf886e048bb95fc5ba79387e20619d7c854b15859e3301d47473a9e5b1eaede2622b547c1442b1f6c47760c95964c2eed47396b6f9b551b6f967ab303c8693b4d41f68e323e51ef0344b1e178263ae4ebe9a2b96efbc524d99c51f70f16f6ad0360ffba74984ad114e7ab78acba8e0c2d0b57b0401ebbf17547e410a58a544ce839f391d5fe464dd58235176f925805e6caf678be8937d4ba308d55c50772dc2c6d879f52ecdc40de25b7334522f4bf080e62753e501861dce7a3de7b76282bf1ab0e7e37eb8ce53b68fc690e6d1b9839bc54a1861d810c1b4e2d61dc705285c9ec7fc08f1e628997c6e6b7eb1095da20e9c33f0decebc95696c513bfd05d8e1b199e5ec03be8c85aa0784f506ded5d86e3006eb50a89dd63f4ec05320752e43fdd6ab144ec5d7b2cfd798732e71499d8d37bfe61c4c50c216815d83197392c24e0b773ddfed3cc3d2b22f7f512ac1d02c8e867a4d1d1c933e749e2902d15d1ad012a470c8fd090fa24daa9228fe9edcb0c732e6331de14becaf9bb7e8faa4d03eb3c379610adad111b836dbb1d489f8b81fa0a2fe2a088dbf4bcc41e0d112c10f52c965508a9a97bff237b2767b7b542da797a686a18ea01467ecf7f3c27bfaec57558e01779ef11baeb711968b264cded989bc4534428fa2f104487be12eac6378115bb0d7fabbe3dba5f1b6d41980a9b2b13b74d108fa715dff4897e03e7ff45c74aa6fc7a6d08748259fa35acb9528af1393a2c95e272804140617c06992c2a1595fda9e14801a124ef7bd71d818455aadce512ab2b7ab62728caacb3525e9e34914ee366d62ec0fea33e0f08557ee69421de3307ecafb1f115c3b9dd63693125b95db9ce1ac6fb426166670eee95cdf8a9bbd4fd72303018fe32d599508e046000701df2ab1f91e7c84e22af627002a27e48696eeb4e89a3947166966def1dc0e4972d176eef63ba2811941f9dae992b41eaab04fad33e658b20a28ca98af36f559bdb7f2ec1c9f33cfc77bdc034ffb5894621b318beceea55cb5767c101c4e5806bfddc06f4bc99b759bd39a91380ddd5e6c37832f14fc4e80747ea6a8d2da4fc2788f5a3e7e3176bbc595682aae543005b13a62882365768b8f05f5799994671e2d8ef7f0517bd5ea110646b1a966d1fe9f5eebecd229950e466cde38ff0b6f42a7244cab620a4c715299ee3781914b20e85d8a593fe52c4c258a3434104a3ab8c2e607a5ba06c308ed2f810e68b9ca6f5d58d852b2424a7288a7dbae7d80d80bff234980586411e07394d5ea66420336f2090c51e43addd05afe2e11f2ad22e12cf3c12ea8ba8e054d40532712275d29e8e0574f7669c942599020d0b8e2cd52ce1f8ef8c8b17422dcb02dfea3e4ea337430be9c481b3d01c7b39fde8cdf57158a63330af44382a0379d3417c067d2e121196d7337e16c30abbc14f7921d22f0b1b19e6467b6a072e93ee4ef883232388dd5dc0b8b6281a61017c4004a9c009ba229f3df226f3730da926fd6f868bc057e9f412708aa18bdbdad73f8c3563c1e7f3094e21462934941ad776933ee002668e6c21c01d4364585666c065c0f6b50626c0b3cfc791b6d7ed04d4c8d23b29f1599f122948aab6704ff2a7ac6b1dc222cc7fb31dbb7389eaed19d551785872522c24dfc2311e5a6c3800486bfb183e9e75da5490e811a745cc675cdcffb8ad647e513ed99db17f6e170c83d55f1585fc5aec6fe0422aea783f982b8b25eca3a9660efe221239f93796e23531ae7bf08b034d59e3ee84ba50f4b18f146d2d0c3d2f96079f9d152fa127ebd4924fec4dee192e8127e17117e304238f58af99c4ea73deeca4d33eba26e38f5cdc7b72abed8c7f1cc8805e71b2a6e18dacd083ec70e25c00e2bf8a71f2ffc55b89316b74a38d12b11e38f59c803c13890cbf373831cd726ec0f36260dfcf82db6eeab41e97d71f88796bf4a44b03b44448b63d75dd4eecefec67d23f3de6c8f31aa6ca49abcd1c5dde4ebcda0ac4584814f0ba4175cf95168d731bdd8942f719d30255d2cdcd347d7c4fee5565c1bef2517f9f1a2cb7a3793bc971c65cbd25a299d22ec71efa6ef82a6a4264b4d15982da49d85390ab42fb469ea9e105d66dd40a68c9248a6fe4781ed0781d525d790443dbbde170d336400ef4a2ecea5b8652083f9240162d831376e8ffe53aacbb231ffff9ed1ab7970f71f6ca8f44c412fc05182e453ed217de640adbf0f34f9ca3538c9d3da879eacd4360f2e5d37c3845c29620987c356cedb26f5a16cfe260bf1b06b800fd8214b02afc302f6860cc45bf78d6e26bf3f43b24c6a0ba57b980b1a67311d27a98274e74ca68d1aa15ad35395cc080d1fefb5ee4285831a19a5bd3f7d909f7c902ad3c45b2665a78ef4b51b005471a0d30b852c3b3192af904035649916534966f30a221069404f06ab33ffe7398cd8c98b9ad98db8cf2875dea8cd0b625aaa2c8b0ae9545f0e1a66569c8b5166bf70de22f0e61468348a4da42985ac8355687c8da37c70a1f7c65a5f38d86fad3745734106e69f504a1de6f2efca2c5a3adceff5b96f731aa544d951e0a19114c3c15565b74806123f44623ed4f63c3fcd81bfad0391cb7a0c2fba18474f7612cd652b0663770e46fe1a6494d34a6ea18a9ce91b5ea1661ef99b01a66b495623ca151b1af399fca5ea5a5d36040a8977b763070b040ad53d3d621843278527b788103d06b56061fe43ca41bac8b5b3af0f54d2073dff915bebababb5b2a551ff898ea3efb192ae2bed3449d937717b03d4773dc22f9234875e5a589eb811c303abfb767795e1b7b201b8395b334f51444e974ce4f01fa3c4c31c19b22a35f8535b7f6e8c66f1fb0305b1f5c5987b2225b10935ff3afe7c807ad5971d6ad81c0d96e89f410124758a49e56824dfff381bc1cd3a70b83b44c21b5c1668bb5190e5675327173be7d76b83c67539429a6c7dd52914195f1f28e0d4a73e8160e52be7aad0c6efda4514b29a8cfe798f6d50fa6449e4647b07e59e9b7558d1f03e3c613c6bb4f1b1f12500dd6e55188cf0eea1a278d9594bd80c2bde91dc5abd25773d683797887f6a064af333553d024ca39bdadad58d9ccef1cd1b47d60023c29099ad54e10544d373c85467a999e1b03812f3ef2b33c54fd5f48d7560b59e338dfc442edb65d8879392d92ac9e0c26d52616814ebf140b2ace6b64760ac827e905ed27f7e2906fb23ea5140901d56ce24a1986269ad0a91c1efbf788842f5e3a71c0e621c9d3e47dd085f2c941c4c0bea609229cc626ee4b1735815bc00a5af9ff414f13d6bfaaea3f06d1f49cd1cc5be3ab4a40133bf89c81f93682a5b0ff0cbbadabc7ced4b806a2b52eb4ce85ce6adae1f5ac9760ae8012e7b6971455a23949e8c362511b1a4cb1bdba7fd11b86d65f729c31f63b7449c3896d5a3564d221ca3c1c347867feb0e3dfd07f2310c828fec1e3d87324d8a8f766cdd1793a173c1f8c6038e355616bbbb9e2676bf72832dc4c16f3d935609f8fcfd26ef3aeef3894e27720e314bcf18e5d88e6d8b1a3e1e610b9b0ba29b822259151f96262dd9b9224634f298e5161c9e531df0ab9e4d963ab184033569f7adc08cffeca80dbc183a157985c68c3d6f473e7fe94124de1a27614679447478b9a83ded3672fc88b22458bb69dfa15e34e9056f7884c8d0ac51b44f0848fc92f0c3ca60b0d034df57193d7cf46cd81eff6f19376ec5e852286b293ae2486f7584ae8d3c1711bb3b66a489aa1cb424a12117e6231b81f8efccf00b92baec0e14cd34d48c3c9083a35ece8371e49ca27ad906bc5ae30270cef0a9939779f97c1ef01b73debc5442fb5d4b332dd19597708d4dc7032dbbf92775b0e275c937cfa121ff6282cc2884d3038ac7ccd815c2d21146f1a4c39c8e1acae74a8de059dbbb5786e8808a872ef686d07d830cb96fe75e46648040de0a0f7e97127f014045ca4db04dd20c1120b8e1af81090b148c26289f0f9df4fc3f6601687e2f099e3900eefbd2e126fda9c0b2fc3c8cbdb39d94faa89b0aceaa28863071c6ab527aa13a0013e1bf04fed1d1c2955858e62628753e8d2629ea0e556c27d1b027e276cd689a879bb14e69f77f0f8367782c1eb97b8d65d16e72140739e40905192b1c22184acf4b5f21dc14857d862e120acbddd3ba5c0f7568b058232487a272aeff202f371835185f6f1d77bbb485c8f5adedd6afc71313a78fe73c841eaabadc1b86fef3393360be3fbd0931a1bd5b525135f78e40140327d131e0a636e56fa2e7782a63d13ea09d6950dc132b4a71b0d5a9908a344de9fccb4cd1b1d1df48a494c26b1ab163c88ed9784b374afeae6f00d47a96d7839283fd8f281355a111c13bbb08b3244e264f439e03949ef0d5cf94f4a371e9752978f927c17110fa22859c5955d1a77635110ffaf943eda6c7dc4eb5d94649d03a148d6a6e5315f7708e79239c9c21bf756374d7d7add839ceba856b7084302ed0500c676b3a7bc501ea61be49e4827452223c3672fac655af5b044b6126426372df07d48e3522d3fc8f1972e13fe646195f4986342c1c8dae9c5cbf96094c15353bc5550c40ba86627809d03509ca57658b6ca989498052c40bcb754343f0f84b40c894881820520636d0e089c54d5761ce0618080001ea7b56ff5fe98272c68f774814a8b93f2d9e5b856d94f716192651f635b72b518f6dab56db2a7461fee9b9b6c051720852bbd9c5372422d512425049b08a52ea3d67cb68ec5831f0bfc48843161e53eb34882efc20a95330afee8a1581197dc9e16102bd92e12d55ee3ba511eead1d02044b26775e31ae056936570831804d5735d5ebd80146f41ce03d54f263ab81eed482693bb523c6c9b94fb527aae0b42aa0fa9510b54c8191fcd1f98ff304ee8c1b55f320e438962d0f92395e86ae7abdd3da900fb558a79be7a00bcd8d648c3276b1fb5ad636cdfaba2ed07d888c73f09e5efcb812cf823752019aa98ce19ab2f82726d76cfc3802543bfb4b4dab22c64ff6a7feb8e70e5cd431f7cff8466e602a24110d80bf5f7b25db25e1c09733403e84b38a72f7990e650e7068ce0731331c73ab361732e7740a10f71030f4cfbc409c22aaae31e099fa98afcf6b82f41352419670760c1736489cba5aa6f8ea99bda730c6a87a39ced1dfc00da7173563937352b412c6afe878d93e9c561ed7395326aec79f509989c7bd2b39490ebd6bf383d97decc96b4c93436367280f56aa26c277a16924885cc27b29dc4c1f934fcb5fbe298747caabd27c4adebff9750541a27ba93b53b9aa478c727368cc11f26cf858e4233d25659011fcb803f97c1a98ac8dfed91834de1f4fd5fa7695f609d1fab8f82fd235ead7f3d4d80372426e5655594441e987618d48bdeca6db518b763ffe2b230a9fefc442e314003108c6b9067fa232e5d4ee4c4affff919e3d4179362409d9b49954e83b6bc0ca923cdbeb4cc0369f6aa5560083ec361e549ab04c499168ff4c52512ff35e47e515763bbfd93a290d6f22e78b7c2dd22bf7e04a51c0be9496b0ef6bb63b2585d466563d2384aac8e0f8bfed1865b89a7841874055c5b32617f7f308c629d5fce7222d307146ed9cc0537fb43c46082c5f5b6202636ec052fc2c1f6a1de7a36683a788f5e1aa382a5be48c438babeb847e0f009156c1a53b5a3c42f85f201d88d745e1bebeb6243814f9531cb775a48709e1339e754808f2d42ca49b4c741fb4fb6302dba4ec7d2d591a6e441366c1ad71aaed1e7d3a666e8babe60755f51624b9449fe467bf0daeec09a68f7d079d2589605136f72032c7677bb9415731222e2674f1dffe395120f29b0f25bd25e5e3d6c7f8e94c5922ce74cdf88f520fdd3dc2a424e6ea84e1c31f23add73ecaf3bbe4f6aee8d660d1d7d08466c91fc8d156321750867ce1a68f4dd7c480546d92f36116a1f1cfad356337630c7e400d79674fb573a3a8b84e6a2319e90e73e136cd7a204389b1ea207618f451e713ce3ce347c3bf2b4cd5e9a923c8fcc107209619d8742a3924dd0b740bfddaf0027d7406a00dd392a0e19a41b1b57aff929394b2c2dd3595b76f435ebe34fcaa7d92ea8d0a332568cd43762bc46cece8e7037d9caab1fb8beb0e559a34660d7a84f4fb11a831d04b1dbe9d028f1d727e6d0984f35bcb9c0b9502972f38711cd1519760366770067064ba7562735aa4742e9f351d96384729cb9e286b5188f844bb4575058fa9430e72371dcbc7d5157cac07a3c8b42ea1d9e138123ccdf7c1246036cc8cd09b6d0185f615e5a7822585ef9471ac275bfd72a939a72ca6159e5cd9ffe3021daa3c4fae18e792d54f0577b9ae248f8f4fb1191948ed399982693687fe9d537f95d5d26182ddc428b7a6c41f2d2607fa2853526a2fc2b257b4d2b7e7a3ecd5a9016be9052fac0d4b66ea3c6fddaf32b3871708e55ce7f3322db2bd8d5bb9f2b732479a4af2252bb61e4e208798a85144dcf3177f439cffe61dae2ae79e14fcded785d9fe6f711588e03bb7fe26ba8e459762e0207c02f4f7988b6f0547572e75c4e949c865e018af1b279ad73a7dd2f48d26d7beeae0c0340d2d9794e5759b93b971d3d5a5917d98c36990c1736f4d5f941884890bcd8ab23336e0f9ea81f71861c2ec68cb6e19b369357c22240c1b0f29b0ee88cede2a648ffc63e1d2874aa59ca3949450f06acc58508402ce82d29e53636e5e0bc79ef908c9afcab16c294c9c2b42ee26a316a20432db3830130acd4202e677be02bd8f41be8bbbf7246e1f3766ae82f68935ebf234b6b4d86b94896ac7d213c1363f782e2c367c5db6ab4198d930d38d0f81c50dd97e9635a7c802a3719fee179f5a46293ec5782c798a8581011e202a3a24ad5fa634cc235a377c6a855885dd792c71afc41ab2e93e97bb2b82c133be89db0298bc13d91eb25d299cd88e15829d108abf2a46784fa8230746438c19e8c88db5de539b0472f7a24f878c28f580d44b54cc1a225971ef472f54924129dcd45a0267372fd5309a8c83395a76780676f8c98adca24c9015dc2eff6c187a7c3e831896e0f7dc7ffb55e268e6915cdb362ac07826c92c939024ffc89aeb9f829072e0629b435a0fd173f4fe3031d2fa3fdeb7379e3e49812f10311e2d8ae43243b15c4573819413df8fe1c45e815b086c57300c46f2ee64a19ca4350e9a7febf8fd134027ad3374888ee3682d38e0af77a9dd12698aa946f8fd4a7d85095cb21b724be381a15b62f9214cece62ee7f7891d483c0d437fcba0664b5d64f90b3a03d1ed340d30180a10cd62203eb9a90a69ea89b514fe65d81f05fa25f203834714836418eb6dd94abe614977af1308d00916b68d4b3f6dff5d4fba6808d5e8d406af08a512eaf99d0874fb669599dbdb51d5bde7944d47ed2661a39aa47c725a9dc436f1cc26f0b18a3b1c616626359fa2701ffefe43f85178e20f5e6eccf64809af520dcfe648157ebcf65822d802ba4701385ebfd4ff30f198f51bd4fe26a548aa98b8136b7985feff52c98729080defc83144e5f9186e492a877d95b3973dd23cb60c9dbd42af35f40ca0b1ff472231b457880655a9355101db78694cdeea64b3572738ef137f8f851581fa174c40f2b640054f70e54efd927b21412361257d1fdb693a9fc6a04d11324da5d5e206564519aa38ab6324c10eb95008f60496c4b359349ec32319a958ebf9fa68adaf4406196bd9c40cd585100f6612458d620cb2c39bed14e2a45c6326742fba89061f38424756d040b380891f1378a5a481322ae14a907cbbde61d7cc076ae5223aec9ea710bcda07ea790d0c9bf7b93e4f9eed4f26c8b0512262dbcc412cd2cec0f5b10fb58ad07a0a406a624b078706de9c183eb94ae75e4e12a5fbee4e947deec3de2a15dadc57ce4ce40ceff3c7cb93c1b3fc1c3cb608a488e28ca8c540f4af69d359b8ea31d25e60fd080f47f4f00b936de5c4969772dfd8d807542cf055814c879c361cf4f1fd4b94352273b56baece80dd48b54edb72b0ceacb4ea2a8ff091c17cbc14c88a73a89409bd3f7317206d11698012fdc10c4fd9da52ed7c32637cdd85269438d9f779f011c78eaba6c22ba1b7ce4d84e7fb9d04d3fa9427f512419612bdcd89f6324f03aebbaacc7e1a6f273580186e4d369ed88a89230a0e4c40a5994b3ed1de4529fce266c56baceed95ce0c6be58931b6198e0465824fcac9bbfdff5759b986bbccecc75ad21794f18667092a17ec6421645ef8a78e634f0234a7e870c452f576ecefd9b2f49db8f04affd25b80f71d637b08c80eefdeb36788b8d01b681f68b57b86da339a875560bf80b83dcfa40a8c531c6dca8e6190fc73e4042fd43c116040045a40925a2b832762127f52f92389308fbcbfbd74ef4e4e1375418402994e6f1b74f322f7a4420a7ba03570694098d01cb1a2fd3194caa168f86f8e57992be7802dae204bda89722d5f1d2afab9139a9c639ef13cce9ed9a08813903f419915fac6bd984681cce1e45d5439b1a4f4f899a81a787e2f023855804314ad9b08420e71e252e50940cb7f753279b93ede818894bb723ee68e06c140655ed63efc5c39bfd9a555b350adf909d7c6c5c572935b72c2614536613f4e1e98735647db4f44e3fbf24734dced059f3c22ef2c8514c0534843fdf5491b1a418613def4dea7f9f72dad7444e26ebbfed254fd898c8faba68850b1e66b241d5defe12fcc63f3a24e365e1185661159965b12f96c40641bdd8491e89d8b28de508225cb58fb4add882a39f94fc9f4ec6167e8fb9e8f9e20a71393df2247e75259ceb5f059c3a2575ab8e2cfb7f5c39bdda474f468b860c6e5d2b2577e17c67017f72d78e7bc3fdae6875edf275d287346c095e1cf5b2514dbcdca76f6d65dd260e98f80d583b1e63496ea6b783ab733384c220f633fc1343b898e69b8aa84a9a2646fdbbb8770a423f63d2b1697c53526fe7369afa7b03915900c0e6e37c071d317aaca32ee008b03f6333a31af93537f4c99d76510a52926320d712469b810b9a59b212df56dd6915263b490728b9e63aacdd41ebba376dbf405dffd9b244199e9c66aed9735fc2e9fa2352dc98addeeb8f3b2307d3bcbf31615ff651714ce621ad7771c8202151e171bfa639c753b06f167d8a12209ee56f488978be17fac0905a627d5c0a029de70f49108d4613b8c4be3d4a89b92b3869b8b88d4a4eb255144fb36d481604472692a1f738efe9e11242f181e43a95bded2208c61d85a3ea3db422b67c62d4e80ad618477759cc3798752a32093ca71fa30d762d7f2f7bc4b435edc774dad21846f41823ccdcd0325e766696074e1dd78465a9ca6a4916a22eaa7c8cbc79db1041697e963f20e508ed6662edb71f4b0cc7a41e93a3f1484184c6813d3f11644cd0a0195dac86bc0eb20fbe40973f64ed7fbeab9835404130126e0ec190498aa92927bdcd09fd7e611ade5110cd8d03e83c3add82681df12f7ca2dd0024c842315d8af1b4715cf511b73f08487c566c54965fad0840cb4b9bea576642ccc581a5d14faf1e256d67e97731ab0edc0034b308eb1fc95a64b814f79922937d690e14a7415217e6b0498375794a2d1d6f6e1e7366ef29ba9ce9aa2f516680d6439c3d7edf095bcada53247e5c77f0b41bd0016126fa8d4b52a3e324af7fbf118eea1e4264da574b7627a50ca5356ac589f301115d090a63d90f4f19d96381c60c5202e7e7d4f53902046cda6d07d313e7a91ee835c08953dfab3cc12a9d40fb82443732f96b6be588181461fc1bf45af0b5d507ab666420be13905053667b5b8dcf2bb963a27163449bb2786bcbceff055c1c8581621111f1a077a80b2f6f7939968b79d91e4d985473948debd8f3ded3feeeb4b597954d6593735aeea40d6662156b03e5b383abcbf1abfa822ab60c7fe4a95ff26842d65d16d3491e48a45c257a9110734665639f4e50f6225ba6a750985107cbe206c74ea2f6ea5deb9bfa632b322b0d25e6c274a7af9708d68308192b4182affd746ed7dfdd565094e8ad03fc39b324f3cd95bb58cbfaa9ac219d71be8cbf12f3b26fec52b2c509d3cae57dd1c8cef43a19e3e7ebecf7df929a60e2182db4155984c1163c70bae559019d5109b3b2f19e255d20bd0ced592e1b14f9c45cf328e3d7741ce771e9bea3d468ccb0dcd7b2da9fb9078405380f4e4e91cb68ea063cb36dc0b83efd4c4744f6e6abc867a45a6afa23193c11fe61f50467fd4e81535710b601ebdb17bee9140c5651afc70dfa5054174089fc8bc3fa02829da7ea98bbb5a514f67648b8f9a08d13ff105cc27b62e7f6cbfbba3b678626d76df37fa36043aadaecff740ee82d7ea5bba0d67c86d494ce6ff63e856e624fbf3471bbd08ff93b044eebef03fd47af9c83336630f8cd478c830f115799784ae00df127c7ffd6264670513720e6892440d9da312bf5d26fba620348df5832217a5b4379c193af52b85ef77b98d413ecb87d234f5c96f8d20ca817b2cdd94f524ec45d8cc8fa7ee0f0dc40ec913188d16284f509c8db69c62bd28180856ebbcad6bb7cfe07963dd1668af4b292f5af9852e2d7120d8a20b71b11c455d2eaa4d74d4d0d29509e9c7f325499d15d57c0ea37d3bedb043bde03b20eb302db18c348c4535f4bc6b67e49098e644d40ae6d2183acecf001ea56eae21fea370beed5e6473b4ea676f3d9d478d6733d53d4caf2002b4a2bbc17c6dcab2e4e4d0bf658e9cb45c2295531aacf8cd5fb23b3b3a1e76394bc4f790f00a1a12a99c516673f20745a704e2f244cdf26a0a3575aef55744baab3c698ffde61955bd8ef63a12716acd80ec9fedd1232f01ec974a34aa3587f972a9c99d3b88aee0178df69b3f33259311e72d05c4ebc5770424c07d7f77fc8f43a645dd5c7fe269149280974dfd14b0029a7971c9a16ccf0a129ba8ecc852cd827e36a507282fb70a6a1ad51308b260fc6a98eb88879f7b291af9fff68d8364a6fbff2ac0a5af508bbb2affbfcf687ead791cd1fd732c267fb86074880bf20eadce10b0663dda0a10d35551b6cb176985dc58cb206f1988595c4c3b73c68fcdcf564b6e3ceb7362dc27685971b31bdc2c1ffb783bb302feea16ba258fff3d66f1267ec82562fccbbc32a3e1eef0d40c4cc546690193697c7390336dcfc796b16dde948c3410dc5ac8dba4c35ac8df2697859275ff9ec36a041fc8fe6b603508c604ca0ca5de5f4a154f946629ec2a01dd2e97cb0e358de78b86a355630af327e5cb7a6929533f78bca151a19bcda0ccd6247464cd491f7436ab4d5a24beccc28cf02479a47856efbf14b5811f853eb0c511263d5cf5da8212c7d2d46767b86df37697ed256c2da43f52260ca3970303dfff23135a3d2e1bb324bb7fa93630a4e3579be8b9e928df49f7613eb5f055d5ce9a8b46300300b617e973f90aaceaf8e154baa1f93321c6bff4b9a2d907ce26833ec278f91715a5ee90831b29f4292b19bd9d7854c30f68cab997206042ebce3c17d282c12fe02f591de53123850f4c8a2648b6efa09cf8be1aa92a300242b947fdaa34690031cb40a05be0ed0fc1ad8c9765cddba99f38a7c972b849c1d7acaf2b9816202658f9ef4e4bb57ba3cda36df32956a0ee084a7e76c415a3585513f851ed398ea4676574153b57d88950ac43bb0105fc36518b176765ce548d7a12bdbb6fabfe310a9598991469d7f00cf05048427c5cc6ffb87f93d9bdbcfa334dc8ac774e405e721de800357a168eb0736439b081609ae67e94b9f031697593497bc5b9571cca7599396136d3403e309f2e216ce368a65b9d3fe05b6e0f3e7b3b1c461f61fe64ca98e8b93b462b41b58f34974df41f66058b5eb23d05e8c01593cb58862dfbbb86b26ac495c8fc920c9d388c01ef957a772c44785e55d17499b697ca09f16c985f926ebe12b48ba6ec3eb76486e1044842cd0f6d4569999b946b8991bf9325908ad9c5226ec02765d15a9b1ba43a0f7b37d1ac14a01a32092304d014d1b92330157bd7af58a4d89010e701359444cd95523210554601f3367ba69951c5558306b70b3e643ca0f27f808bf3e8ef8fcce531873ca25c32419bb6601d911e50dd97c8fc3aaa6d483142b33be013db23fe66bcd0da582ace4ca993fbbd37b183bc9f6991b0129d06a6aa73cb5035574d7fbeccbe0edd81fbcd26138104cc141f40562c803b1b0b79b50213200125c6f3dd78c52dccc820729725dcf590efeb96bdcc55c044f5e6733630ac371cdc56cf0163bff900e3b45f97690eff4f48dc76b994999e2dbc34e69c90ab5794fd3e2d13378225b0ca741f20d25a2069d04a80fc08fe0ef7c9496bb3029f5f1fc94efc0b0db404e7b48ead6a92b50cad73a08351ea1d3e3c6390bc11108d0de272ea949150fcdbb612ae3c44febee309065b7703c6a332ba5ee029bc18dbd9d9eabb2a8158fda957d33fb7b720a17a9537d5f57e9a5abaa82e7dad3196e7de05dab37c1ea53f6e2b222e078511004412799a95baa2daf3f38915b4d9f6156363d82aae29120721995795edc0675da568d5dcccb8a4f6e973bc296efa6fcc6af94aebe6e368b4e15ff9cec974fbad11fc03c8bb82c0f5364c5fa77c1905bb03e095e617cc4c30168d569596ee2d88ab7bf3b2997444662655397e539878e850f41b89222f049019cd85b512ec11cbf4e68610cd60f654eb35bd551ca896f05c88fc1f3557248f3c9b66bccd54f2a2a31e0d204be7cf12b253ea82d3fc8f68455ec5d716e1129828019bf1b15cf0ed156ab2185d239eab2d04e015f66ca2d4019f20de042ed92575034728aa79481eceb0228eedd623fdcbbe30ec6e8edfd1d8c2affd24a1c2fc0f063439e8d6eb5c7f7fbbd502b857ff5acfbad764d916774182e46c3c646c6843a1cc2c6e48adc823efa3708ff6a54208d207c85c41c105b70dca66f909d2142524574418c30864914d898486b3a7b057225ff97ca9d7af234948478e93265512a94b78f31b179bf69968454a6a56bb732f7a2a71524e575ef3bf166869de87be97a6f6440e9d757f4615a0aff12fedfd2eab192eff12cc3ddbccaaff9a52be8e989763cd598d05f3e97d30757ac8b95bb489a62e47cbeebe384fd0badcc66ae68b7c3a6c2598bd466c60595dd8248757c10d378b3832c85e6177aec8bf1af2cedcedb642453093d3b49b6b39980726e7906fa1ed57a0ec5e423f82ccbbe6f28b78aeea6d6c01dbed29a2abe3c4a65ef2a678e129a0d3650d7eaebcb4df768d0117627f3aabc5344c2c10c362adb3b98d41158f63e9050f57d7d5fa1b5fba4ec0c345507b108186004f0d349748927da15b0fd748bd93f5f8fadd7f99a5c566ea7ea9b08bb4e34eeead345a9f5ec39c07c79da8c69d9b726c597fe0c2fc10d46cd95c60e9c39cfe5f66dade50e064ca9eb8315269b7746c5e0a494cb8a2585e10bdabe5597aa194df3875056a08823a7900703d9dfc51c6b26c536aa0d60e501ce542da181082b59e43480f49aa9749a03ac15dc883ae7ff413c7332ea84e4c4cd37ec383bd448b2f860429ac0ec55e254bb1f3d6659e4579c906975eb531039b4fd850200c9fe5bb03b1e5bc73dcdf8ec3fa5de1d8ca2a3eaeb9758622afba8ed802caac3dda333785dfd3cb228d5fc9d10b04d2e1e05a9b33114ca4b2cad7c4aa78c5b8ed51f158a7fba3d2135b1997593b9c5945073af1f8117148b14366b0a3dcac1af84fd7cf1be495c17a970d6ba5ca8d4c68960c7f52f9dc33e98fc93279428e59d5046ae1c1d85f96ae976e0e5be04f51965b6eff80f461326c8c68f0ec6fddbe8f53a9bc3e74738051b99c64e46ad9e8ab5a8c320917613d9d27005d078a65a372dcfbb2a4ca598362851f0789b4f8b5f3bd7e14731889ac8207fc99c619e4c35b6708cca0cafb00d29fd2f6aac4db0f9811ca4fffb164fef6e32903ae26a93f0e651c59eadb906b800a249c6c8aa2d5c9ba1fd7c05c65e875518cae74a7ffee56342bdd3c6e18fd1b126695ae6ce3e0d16b2e82ae3b35feea79e408ffa715484d1841aef67fb0741aefa8913c1863f8861f0722c35decdf17a487ad32d3000674399d1c226fe7cfa547bc37f9246a9de6c0f143082f20080129bd451775433e8af535b387ed9b231fee4e5b5e8259d290975d13df6e888ff0212f261adc4525d02c13ac2a047111de4f3361c3ca6a4cd15bdc8b1740c4ca36ebfc05ca7e8f711eaa0dc54373b96d4eef9d65ff19e9b3e7a2a2caf3ef5d80c3a18492b18fa3bd90f57c88808bcae10ad94144749f0394a7c72317942031ea5551335021fb2008f889a45493c8e3108184622a21c0caab0e7616ab2e2c4cbfeab1af299d77870b631533133c4b27974b5568842a4cd2690217e83cee7ef351990be14250b78d3a5b7bcf8eca1ba811a9c3b7760926439ff097b3b6972470ce3b7c58f3946280e23023e6f0e40412dcf10db10d119746b19f2fae8d8548a4f72aa62cceb078813b4ca3e6d35c394dcd575e23daf94b573a3b207b9a995790bef32b0ce2c55defea5cb01d6325a2f36969c62e620a8689a503561b121a7bbfe55133a22cef99ca41c3bc82ef2c43096f292cfaf9b9c23e4a50a501f6550f924b3ce071898ca3c3d26c66fd4bdc8a754cd7c3efb0864a17e74912011e131361c5e976a7a89a67a39a81485d6d469a2c50640af48bffa830b5f0e4a8bed6f4c3c137695c8f905a056837c94a2d0827f538218084e2cbcd6f3fe1877c3a4d89235adeb39aceb95f51f68962712bd0cc5c5a36e96f490c8a01fd47b2e5609ecb22ac42ace8cd75e01bd644a8236767a03f5658c1e5bad2267841238fc11b48b3e685ec5324b9da117228a33ff0be0b1feb3d3430c447a7c197ea65a3599ae458f1a1ec3be8454a2e5a0a3c359c9fbc4b629ce4f0225514ef7d239e845fbcdc06b430bbc10445da0000e80bc1bf0af2bb136d76d264a6e9d199ae8a51cc82a223e7ff72de58209955c0f022107475ca7a3860c643d7ea999fdc814a06c96af39964d62c9eb4f4d06442df42e13b7a4df42b9379d2862c0021fa8387a13e596df96ccfd720805e2864b41c72d137683030ab6d0055cd7747209c1f21259b10aeb21a44a20fa6eb156fc6627ee33f45261daa9f48307998e6272a74ef88f99a892ca482c4116e20829f9d352073196c88fa570e311b7f0b112bbc5d5d9a08eeb7f6723d96474cbbf6c2a2bddb9e977a3526e3b96f508b78a5d3d542e241c0935435d497a2873e4ab1d4563d4bb4caec45788c0ca8b4f8a825aafc2cc1c1b4d895c8b0dd4ee7606e33a9d1660a629c9fd20a993dd232d6d1bb7a7d6fda2792e41df7841dd23a809e18dc6055b4043768684bf0e1e2c9f1ddb440855fa6c5bc4e3170a02f6ad5ab224cadbb189c576f59ab3e0227e8faa32bd58ac9e3626f3fd37b19b5fd3790d071f3bbad8c06de42da4adfc380e4f438d6b0af9debbc6a8a395b9bc7fa2233e34a441669308c6c33853c907e63391f6e610c713ac070c071b4194e3d71d5d5f676fcb3c6ca244f11e1ac8b73bf4075e7f6889e85e12e6623835763af9545153606a46d019787c2b6860bb76692c5e892cfaa47b2e4ab8c283071637fb341c4a6d461342c67c9870d12c5068bca1780b434f0d15586dc6744c280e8de1d8051a8f588b14096874ac764cff1ff46d072643b67bf0c23b9bf448aeec6a7c83fd1fcb9620bdfa849ee0c8b3cbb20b9f12930398cbd56257b3c2f1da4f5cf12c1e137b5257e85d9be16e72285dbc6832fce01f1a4be60f2b7b09a93c5675d0337d3c979653efa19fea83870365c7fef56c1d1478e87d29390be0f8eb9a09d513a6445b6b5ede622475026e3a979747b094a0ec0a590dfdf263867b9af33e11a5fc717d86d83f2e9ec8ead94e2a03089b84da50c7e4f4e77e831f26a6de9704f3788db456446e6d1c0ea0f412f719dc56e441ef0936d096290991ca51875d9dddd769336ca37e505cfd0f7ff9293968414a7c68f2387c7f4d2743d668ec93802f1805e18ea01ff5b2b28b90b955cabae01707ceb42231a5082bd5d04a59c97fa3be98ccee328997c47b3c184227ca356d3e7406546721ca7c25ef6a102c819e5c23efcebac003b7585df4b1439e578a8e0b67e50f118271dd48acf6391114844a856b45823b8e6a8c0aa93025933f893eda92496e25aa3b9e240877a0eb65177aa9b1ccf158e41fd2a4d01a6b1f52e29ba19197bd6d9816db596f1525e808c0896a4e5ce444c37249b48b9732196b20483fe3192648fedf67f0bea4dfc07273679227e3fe70c1bbd8aa5aa08ba6ec9d00e9240184edd026021cfec218bbd6e56fbf0c16c616b7c2c6bcace43ddf231baabfa94772e213152d58c11c7a7251e572078a1e646a1fc6261a12d71e9ffe52b4b79b1ceb63a1c296599987c590c156c7634d6b4d8603ac7a2bdcc3d8a5d06486c9a91884f4c23879e55293ac1d16460542fde218862494689ddace936da62472dfdb472b300b4224808e9ea88a1f920ed4bff1611dee1600dff7a0b50d92cab83da973e80c6cb446e854a9de70731a5db41edd0aabee7ee79e801302c3bf1e45349783903dcf45efdd9410f44b15b31bbcf67f3a1af8166d32170dd60b2208e4fd1394b72b254033402959a902eb0894d95958562a46622610e3857761e9f41f0f4a908af1c75a5907fc55d58936aa23061cc4641f8c08323038512123fde5bd6f55f7a780fe8cc39021f8335f48c229d338a80ee15f1aef5454d372ce0e224472384af8eaacdcd89c404d6acf3554600b74d2c7cbc94f82e50ccc06e39171bf8b075814aea1edee791f7885a054654482fc27c9a0108a3169ac8b99ff979b51f0e86e35405e5a0d12ce97163c4258d1bc0294e72585e449bb5041c75099cd53fae57549a40f13e553c469c3116a7e15e9f878384fc6346662bbb2d66521ba887e5def4f4037746a3832c98c3779119fbaa83cabfbcaab28413d767177088f6018a840e3b514a66027f641563404887c5b1cf656bc4a1f541294be6aa7128d2a9980f0727069257a49b6fb9948ccb69cc123994219e9998b5837a7e8496ce4d8256a0d5675f173e66f82ce4296711066508cc15d981be4272a43a487db92981903e5dd2ca9d245ee3ab1294130b0f6e9e4ab7d38af08ec61af1ea6350499d3b0b7362ac095c031d29209d90ac22f5aa4668e91c134dc21f264cfd036d6f03b711700da021fd8104227353b4ec25b95717ad7b6a22962d9a304005ce74fa3453a5a699b4999dbbc163f03e2d58bde914e25da482f0658428463d7ebc088be0d52f12f16fc33101b04380955f8b53452a4e636b676b5d3c104f4671b25ee69b106e1c63e9f8bf659d3f458312f01d9de2dd12d18179d7613fb7ca184867ed71cc3b07ca439773efbb18687797e74547863fc88e9011d26700253b47a269dce8937b23dfc13b527a743d9513e90724daf6043095a61afdd60f13a43fa890acecd82ad4be62735b668e1c57ce79abb3dbbc0123745c4c59b5b7f16733c67505304fd0013c6e5f8fc1ea11d0e77a04ec71366d1eb94fed226a7e07038f09779dcd57c8456fe3a7463632d2d782020d8015e41fc4f6d6b4f07ca72cbcdc02563765f2c8f72b18997e51c5d960020c908216b2f2204995e7a42e60e25d629a614241a68a576db51d249b2b361367718d1e58e0c1f7747e2610bac27fe50a6b8fdae3cb5e49b4f74aea9e36c7dc20303deaf6a3162634c08cba3179a58d72a8b0a4717ddae9855a833ed0dfd7692ae7eac5946e352efb933f5cf354c89d6ad3629d3c7fa19db6b78011fc4722cb4e0cfeb01bb5e97d9c0be2fd78cac28b8fd3b87cc148a70286309fe2756bd07ffc12d0ffa9ce958ef898f74bd058e8761af08e311ade5f28471907adaa9fc449f0e044c4b7c968181a13eb8337d98922c8576ce78f56be17d5585fed52693341260c92f9b9c91752c797f7228a54a69c2d9d5b03733e4bf6d32c8f65de1594cfa936b6f4f6d6543498dd2f2a4366fefcdf5f2e9db636fb557cdf6b49827e39c1beec67791b6568996c87af314a5e98347e2229c57f6923af8c708fecb6ee6afd535fd805dd15ee8920289f323a2825e7192471bc47efb61cc71d401740d31445efdb3c066b3b5358f50c563738584f296706f15a803fc4a5c9a5fcce1d28210394e74ff463b1182dbcc03f5d21f6a1d63476f0370e29f1046d6c860ce5bbdce560c5db26407cb4d757c32465e7d56650b8df160b58e529e93c5466658818d38fec45c96f95a4ee4c2220c46027ae4fdb40f021041c8a2a5a3e1e1d2451f0538bd0582f6a6a6874c56672dc2551b03b2fb519e15400b46a6a7606141c2c2450a298dc07abe5d4b2b2cab28573cca86177293c94b86ef746309bd9d8562a11a0cdd49651c6956bf9c686f055d5db8e7b5cdf1c125e7e07ef917e2f0a6242b620ca6a4c35aa2ca6cace5f93e4a2489ec6e1bd7b306462b9f3d7fd9fe70110f876dec8bab747c007c83844db3238f349b866f673523bbd9c4a7a6ad2e30b00a3b458b105228cb1afebae139131b544b7b3417b236ddb8ff4bca53b17a7fe33a50ea743ff3d3f1c3b9f72362c41372a68b96a82de681c1295b1554ad43c7e60e97353212921fd1cca98a5a76da1e4c52537adc13b40cd290d3eeb591143d43f517a39e9b40ebef42356f61e5269ef95d1b10603e40827e1d49ee05ef9b5bfe90690a50574427708811c07390a358b960d7f03c54c3db9ca9780de58a86923b82140b567977934708af13fcdce73222218ffe385685ccdd9607afb9d333530f8997157b3fefd2c4ae7d483faae5055b06cf06054fc345bd8aa1c8094e963ec706d8ec9629a7f5b037fb00d7320203944bdf33a429466287f10e3552fc07d27268930e95f60341bf2d688c4d07f59b2b199712fd14d2e7b9d549e447a781d1dc229bdcb274c1543d72199efdb3313426696ff41e543d93f8b282d8d4be3f2820cbd8adbac58af0bc4835f020cd9fe759a9ef7ee52318698c7911be1ea3304eb5d6291b6e0d0679373d36340a334d8a27317b2aab24845a3d96630d366e1882f2ec5dec7aa5aede75fd5ebbebaa31d7fd944a981f788bcca21df4bbff3bbca057d1d1af79d7c1bcd54004b8be946fa09c445cca8a83c8b0879954e298e18ce29ae671950306c3429d9ab1e80430f1255fa46dffbd7dec2b2fd9ba8e7f8a5dd4b393bfa9a36a1382fafb4f4e27cfc02b95efd5fe279f4b74751c6bba1aefea04bb8ba32165f2771a4b3006692b24f6542fa9aaec10893956436fb41aa1fafda30c5d9831d4333fb384090a6fb8d7e847a83e4a6dff017471eef45cab71aeb653d65f5fe0d5fe4d8df23513cb388aa75e83554e9d14a4e827da212ee487aa34390762833a21c0d0f2e43b9a95d79ccf66a3cf9e00ee696c304e27b6289b378f38dd9ea80257518c27f9cb35a28444d34db52e68e655132a9bf440438982110c2be6f32a27dcdce0874a121be600b3d84067c682d842a903c0533e8332e84ffb6c99069184dbe34d87e99df92d3047e1c27316157b6db5876204f7f709acf83bf956983b301f16caf559ed691949dae3b8c0666d2a24bc70a59501eeda7cc54289facefb783f40d7f2b816679e0106537d21835b3aa5e655e75ec9a30cabf65f681accee51e327cd3650556ffde1164bc99bf1068bb82b06f5b2638a8fcdf0193d988435c07dcbb9341cae0a1198615ea470c51a9c3b0fc81f6938f691859813bcda82a7c77ff033229311e1d70b4cf8b05cfd0a5e7e8affff07235560f6a8f52b4163554a28fd562dfe6a4ec70a755078246d5024bf613f196f6d131b59582b997bd2083016905d5b69a4c385c23774c8fcd99c5c91225dcc88d01ecd3b4600eb64d1df62c1975300ac55087d10d2f589227d100cb1062e9fc3503c8c8ed4a74308c5a8cf5a9106bbef915658b7071744bb38ff4fb460b904492b7a552ab4c8a41db96865dfef080402bff18bdada3a2f5e7d9b087412e6b2cf8f3d3d0959ba01005c8bef5e08ee6f19972b7b53c24fece2a6fd0c3c364a00d60b582b3f66cb49007ccee5f3855a8cfad4de977f64dc97e3724b435846e3d18b268b9dcdd4cbbd2e99b4f87b040cd09f01ac57050fee254e3b468c007d11a7d00e36cd1ddbc23109ec82731aafd1d94bec5b297535251a9e9e6351c7d90083fc2f01eedf2511095531cd46b2c3225dca29706d11cd4876708695aa8a978c2a6770444f1df9badc04b7e81f58aff2d34c191da2ca726e8b2228596cee5142edbb8335d84a01075046b0e6c4ae4674b0dbdf99c376a1b5fa2d906e414b491a3d915f55c5b5889870fa9b89e0773e03005740e3ad851c2d9ddfa0cff0d01f9f52966b138d3cf2da2d0f5e663e02f4f1d5ee62e58bd3e9956542a8084950c5936bf4053bde90c4b3c7cb6c609054cb5f20fff48ae9855d46c55129016a82ee90c7026b4b4f24674febeefe2f4ee9e974d154ccfd982720185020c43b00820cca427a3bfd4f38b4f6211a4a52f5155362376d5ea6c5d6ebf3448e14910bc6898baebbddb5fc3d8fa28f02b2ddc9c2344ff1e3541038081402ced0d250c4fa1970585fcf9bb852b7f9e9375d3cb18369c97530cf7e964efb7afcb2d2a1c24e278ba540954b8c675101f872321a40bbf1e75e7e3534b837d1769caac4ff403cdd620384eab0cd5cd75654bbc44fe3fc8618d71d8d8ee9b09a22297bc357e525b67b7696d545d2e507a2da6857d6cf97f5103c2a9788ddce815760ef8c82442451b560b20a7464511a118ba312167b4b1189a9b0ca7c0c3654d947fffe1f9e2cbd46f3dc84dbe2699bea2b34399ccb5b233a186213d3710cc224ce094cd4dc2f85e26b001b88e1fb43595ceb58fb7dae3dfbf84a100826602c61ad5c8b51ed6f76bbf0a6a06e43693292e3bab5a4f550dd4f78c6e260bef459a56c5d6f0acaded4de85813c1ae0ff256ebe39984e7a42d9aeeb86fd28eb4bbe75816814b465f9d1840fdf01a24d4ea1d6f7f08b58ee214cf8baebae7a10e0b7398856f3240bb05d541376ce086cca6cc875b3a2bfe9b586d645d2383a9922ed8a6a91bb28a6364bf4438749069e06365d4a25fb8d1d089ec8ed0b6e6f4caca830cb240bdb4666c65105d1c9fae07b567840d0275126e5a245fc852a0252125f27cbc787a135b8a5313a55b35b56f1164549fe5ea6b28b06d978e6e4023adf9295aede7a8e45aa523f974e0fb8f3f3e4250fdae564affe4b4249b034130ab41b7eb71b944e26710c42c6c77677e5cd3742765fc27e35464aa8895af1c338be646b830fa449442619a5b5d4f879903e35a4484711946dcc52997d2acd9ab066d29a3df1f8da5fba7c85d6fdd9f557bf80643ba547c9fa288d2f8a0c1ddc5451373ec36f804fba4a329d4a5b26cf7581167ccaa25a2b1f9c92970cd42a8a29ce79cf7ac8c5231fb822a45dc89810c0985d7bbfae416e17036a22ef13add4152b39696ccaf42eed0192d93e4ab0ec0918231cad5d2d47bdc1ef737e2784292a9ee3b26ac64163051ea8def1d5714c9e3fa705d1f92630eaa80655fe04f835f57d1d6cb2ffbd25e1820e067c4bd642b71fcc5c52e7bf46e57ba986a6600ad6eb57b2d757c1a09953b940340c36ffdd7df0c960bd325461b8f173be73c582e8292633addb06a40e56d3def9a82ffc1e7086c5553f1b7ba9d86a8bb5813fbfba1501677e18a08521de892b4cf4ce97e0966df0424bf9939cc2cba06dfc1ac768345e7b5cb20d386a35d5a8730c86141169363020702356c1b287c9ade1ed4d87ecf09a14e4d34fac221b3c03f72bc628a2673085bba984e8dc0215866ed155921499fdbc5fb5cec67488d4d1e0b0f6a9b43a994c7b5ca48893a893e83342f8d32bda131a586ece003511e0dd9c40da6cc604a942e95c407b10b8c68fb66ebe2f99033ef9085e691c4c5fc7b47d82233b9c37f700d8034859eb1556c08a0dfb725c16ced2a33deeb9a0b53fdc00be76c0a750f898a1977e560c9e72830f9afdaec9933ae9c521bb039f53f4d84155464c55bfa5498803ee5bf6bd23020be042fd7335d99ee0875f5de024e2f50975c531d7a339d459fac653e9aa7911520b48eaf73d8c5e02714e2e778b12c254730f1d8cfa561a273f2b4676331ebe28fe8dc643d1471fbab953b7054f1f1e48a9c5925ce49676d827a720ef7bea63788c714aae5ff253d8d03d34369909f7e6aa9736effdd6a34417543ca1aac6aeb795c083ce1d7641ebc5b080723dc2f79d77f8b5494a0c92b66b60ff6e7c9318228a53ec6f187b68f3c64a04bf7ce018afefcb70d742ce7546c4b069f8e2802bf572f9477e6f25fdc465564051d82f71c64385896897758f8050707bd2765f01e5355a2266357ed36a29e3d3bb6397009a0ac8272f0a74f9b6d90c0e4aeb14923db855dd1ce28addf7d33c2d7db891ecefeaf75875134fdd2f7aad95dcfd31529fcc9e382d3a9d16626fe8133cf845ac0fe290d80d724afde6deb01b1fba577feef2245192108e306f468b8a0fc6371dc252a974b0364cf9f9f15124452c437b0255a09cf40f1dc7afffb4c4e379f575b46ddda2d718b860b3df38528af41207c3f333916b7ed58b1b6e7ae5dd0299205a08856a75b9ede229fb88a0e6e65c26ce70e89c1cbead3579b3787d1a68d3a8fb871007341664d5f88cc7a024d5221e3151e79e544b9939d5730a2ccca726443f88c57c9940324623ed3c3c59342c95f54edfb93a4e7835d478a18aabb318fee52f393b6a102db7b102b7f121ced3780804c00755f101140f8a6a4c911b05e63fd4fae60c8d53c60a01302766ef2d3dd4718aa051eaca88b582c62d0613ae78c06be74241d0d230a1f3d1c3e8b7f6e8fdb760c9adc057f711905d7eccbe129cfe64618bc0d26f5af9bef8b5c23156eb44f012f5c69a2194d46ede508e9830c73e5dbc4ed1ca04ffb3a21d00eb55f51c970cfe98c8acb16bd50405eba6ca77e8232dfe375e1206ed80c6854fc228b3776205b3c60e0d6083bcc79a8a8551a6a5adb8349eee1a11e806d41a0f627beba1b015b82670f4d23b97cd8573db6550832a66e8c9e7f9a98ea8335e5c7dc8ac1ca1c39149b57a9ef6ce423e774f70c1b6d6feb249fc6b8db5abce0017476d8b3dead0a9c13021a2180dd91959caa82bb4f6685c9b73f8b7f8da7e47ff627d86bf8a1c39fd078c060ff95b79a431a716af88150ab308f146a26cf6c02582372594a7395730aefafbb00c01145cad1630d88a78fee8dbb093b3e591af3b2caa28eea82abf1156a8639a28f38bd5c19c1e998884b7e72ec1c5d9700d9b9076d76180235ec6c46cb8d592ac21dcfac76621e47b09d52bc7b0df7e178beaf260ed8315b67a9758e2f0f407027cdeda6e42d567845fa9527c69143f917bb908d08612dd21b374639de917676683928aa7f5b54d9a3d3939380d226136d60c562e55bc505f73d7963840138a9a4fdddac5eac75dce0f5d1ba40d64e3fa3a525617a856adaa75a97150d7fe857be2aa2dff5223b8296b323295c95daa2745719c4a96e3e73e99aa78d2b76f2034907bae4fc14bcce58d1b61b1ff0a67870d811bca697de07a7808b00837cb12c26dea22a86dbf11f65d712bd45d1ef56083faf40121f8f6235824a62ea9dd1628d1557ea4fed47f31fdc4c63958a3bd8744676d46432a61a4db753c7156a3406f79249285f3201d1cfb1ab8f8e52376d1bb6f2b186c907b2b23ddddf6d74f68fafbe5dc09a62d463d52741f1b3dbb784706d82de5809b3aea6405b89985cfc26cc1838b53dfb6d947f2a38d02447959aa6954c573d275c1058991b98e4caa866e6a6e7ace72bf08c178d025300aad3fc23fc2d61a0e69db2b6f7cfd67b2aae8fdb79945b909b45342d9aad4c945a60bce3eb69074db85b77124fb67ef471b18fea2af7f8e1c8ff0bffad5f65a3cc102a6b4cc093697755cb96fc8697b2c62eef1ca55fc78e89e0712721f8b2127c2e4ccaed7b857a192966fb2812a84b5d802539df458b1e9ce21d1a0621c6adc2b5af7c0466da9ec6ca738679bb4c9f7060238fa4f90cf50cb490b08d8ed7b73fd0b510e9d315d8fccdd7ed9eb29724b103e41c1da82ce28fd41b2846d22c48ecebd4e450da3ba945b727166f144b17ff652fa63c680d1860135316e603b9df143b0ce2764a2a9f4994231629d2952d6e7c0980c930a41e64e5e0c1094c7b92cc17b398587aa7cb72d546c6474c6ea1761f664e2c61b846feaf7c16b4f3cbc2ac343667d3dc36ea57fc64af472fc2770114f33c2d198f2b49114b6b569d5330588fbea49c45684d745f5480d3e411ac65d1d3c642118dcd9ca61cecdb429bb68c8b62cfa1dcc81deb250af95105143c656c55fb08a97130bbd5def369f18df6f2c0b85fe20a404a4437c1b2372969cd0a7c6abb8febb58d91336697407d32df6e99edae7c2f6d2fc1f019d371f4b585287ca808a95cc4f46c997c71371d045e86531746ac07171714c1bacf04b22262d9e6d28eef41bd7193b7c03f59c762dfc7729688149b8e92524c5412ebdfd391c9284521b9f12bee22fd8c014406d70088d63e00065375b6468dad928bc5082e13de9987624185e5ca513b252cd082f920c74a7a3aa75b1e779c204830762eddec5c6831c4db24662f23e9a1693729d940f023f4a0302dcb78d2721f6c89f8d3e08bed04f0b257f680e6b697f3787e3f5e0a8035dd9628abf420649dd26b4f89f0f1213ef8ad60ff269fa2c1c2cf409042b14f8218418b7ec3533f6e3534843a89e8fca900b1af7f3c038221a61ae41105037329d96b162095be1e12d294b65ca47b3942c33f77713cd8f825d9156fc6cc38a4010fcf46f5e65ec591e8e5c58a9ca87af6c8fac78bf1062a128b7f1c26d558c3cd1f7f46abf5e6a383d3a27e7316decaf9e247d9a689ccbf8abde1a70e89ed19490b2f1954da11f07f68f90365a5b906140e02468bd28633730c2bf5aae2b1f90592d027c959fc2d647c946b8f6f1b62b3934df89a6ff9c250c6148e223416d80c2c7161dc47e9eb9b4f9d8999091d2a09f880be7aa37a662e18cbed3bda9df7162c267337829929a82af9ea796dca47af1debc18cfd642f3fc315cb81b894e8d584840ed1a7f8603a4b4ee48b4c659f80284cfdbb01193b61e6691a2eaf2199510305af8f48a17f202773f471ea9bf03a4c8162a42c045de11be8159ba5a4c17766d8f0c453186886615d85c445ae5c920d5ae140028672475c0dc24beba1b83560cd20666f7ae4e8491c25432e3fe4929c2172f3ae3453f372312419906f23f070daae27ff05b09297c86453a50bbf6a419d617d79c0a2523571a6c35c42f8866bf3376ee8b1ecadb8d1ba4868ff4f1b6d241a4c111c54b1405b2fd6e0d84bd11f600251812edfef6c080cce871c3f405d9a0273852b2c310d78e54f2d1757479782ee55503b27f50de063433aa99adadbe72d2d44bd697efd17efa6bd705b0fffddcf75f5c58f219ff71f4f102a6902068340269029eeb34f2467f9df0f7f1375ff22a0b4f48feb3ffd1d3715365a218c061428ccb2498a2c2a68e2edf96be2cc1d95562206d5a62579305ef8c102a06d95ced940ef9b99f1f1aa2a1fd117be2c62fc71c50627b6c2ba523c09cae55ed66b4ecd52c339cf627cbe01bd8f6b38c9692970ff6ff830986ba8c68d25d7f28fc65212fe4a0e90fd20236ac2fa1ab2a46032659e7dfbe022d559445e6cbe84deb1650cc4612da9390357e9efbaa554c4159ce306d2a13278f2c4f57b4cb8c5ca71c649cfaf8286d21007356a9df4c74a258f0fa203def2867ec561e6e06022b35d11059b49244c134d5de9b116f6877d7d6c3e93a14ce3a91567495364b4dcbfee262ce5b43b235d4d58e422832cbea89b7cd929e4ff4d93ecd36702cc9b7fab0201006a3296490e80a685e700d34897d9ee272052676ae5539a796747f7a71e969b5b49c992adcd13fd7a1a9c6bf3da78dcc906af6a4cee3fe9a4648a2491d8e3fbf9d79845c075bbf1d776c8b3e0d246ed74e6560374068eb120cd2ded463d4ba25ea2d00b6c436f9256f0f75f11adfdbd659b3edcc1c5df51b08f30fd6e04b398988b5e950da6a3f03e4937e4f9adbdff5dcef04b21adcb5daf9a64f60c9547bf2e73813b0f4a089a743f4ef5b94df760dafc8d235d4c52fd5443b3c35e3ac5cf92fdcb99657f077f6b3329d9538258f998ed2276de4c2a62d877758146bc9cd5936f0ab60166d7664ba7d3e5a0a8adab1cf99054b47f390e2f0b080ce6545935e5637f95f06a57af95082f499026de01b806a613f5a321ac6dcb818a0b1c54e085e4d1fd9a72471cd79f9dd7a8f096633d7f78b1e9fefe8acc9a98a7467df36fa608266a3ddd8846d2f06f64d3380594132c429ab1905219550ae202ab8bd95c2736139baea81fd8ec8b31e976ddf2d12529ce4869fbc5350df153f3236d33616c4f586c71963df3b7329cc1cfe159e1f766e5d610bbf9b61bc5739126f38afb440a33ccd1c124e5de37c1a9e6fb4a2b38655567fcf6edbebb40ec780f12bc63b775f2271d196c4b07fff091aaaae2b5102ee4cc67112f5eb86f81fc2079d6974dad8b255d22da3ea700cfb4be2dabc53a3b0344f7bf3922e025d7c6bf0d2775a6b34933c65b5267934de5207af6802c06a1b3f79c5f8ec4c0a04c9245228758c5799b742a63d93f3a980d1723e751e30b8cf02d755412fdab5675c9a63c72c1f6843217ae4ab57e436d2a905804c366ddb054d08bbe84a64398c8575b14da8a032ab4a0548b27cc38elibshogun.so.17/usr/share/shogun/data/toyrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootshogun-4.1.0-2.fc22.src.rpmpkgconfig(shogun)shogun-develshogun-devel(x86-64)@@    /usr/bin/pkg-configColPack-devel(x86-64)NLopt-devel(x86-64)arpack-devel(x86-64)arprec-devel(x86-64)atlas-devel(x86-64)blas-devel(x86-64)bzip2-devel(x86-64)eigen3-develglpk-devel(x86-64)hdf5-devel(x86-64)json-c-devel(x86-64)lapack-devel(x86-64)libcurl-devel(x86-64)libshogun.so.17()(64bit)libxml2-devel(x86-64)lpsolve-devel(x86-64)lzo-devel(x86-64)opencv-devel(x86-64)qd-devel(x86-64)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)shogun(x86-64)snappy-devel(x86-64)tapkee-develxz-devel(x86-64)zlib-devel(x86-64)3.0.4-14.6.0-14.0-15.2-14.1.0-2.fc224.12.0.1V͛@V&@V=@VHV_V@V0VwVrVf@VP\VA@U@UĝUĝU@U`kU[%UXU@U@U8T@TTTY@T_SSuSSǺS@S-S[S[S,S,SwO@SwO@SXSQSKS(5@S&S$@S"@S!S!SSSSSSS@S@S R=RʚR@R@R1@R1@RR - 4.1.0-2Björn Esser - 4.1.0-1Fedora Release Engineering - 4.0.1-0.11.git20160201.03b8c1cBjörn Esser - 4.0.1-0.10.git20160201.03b8c1cBjörn Esser - 4.0.1-0.9.git20160125.0382808Orion Poplawski - 4.0.1-0.8.git20151219.af8c1dfMamoru TASAKA -4.0.1-0.7.git20151219.af8c1dfBjörn Esser - 4.0.1-0.6.git20151219.af8c1dfBjörn Esser - 4.0.0-0.5.git20151217.7e4ac13Björn Esser - 4.0.1-0.4.git20150913.d8eb73dBjörn Esser - 4.0.1-0.3.git20150913.d8eb73dFedora Release Engineering - 4.0.1-0.2.git20150808.779c3adBjörn Esser - 4.0.1-0.1.git20150808.779c3adBjörn Esser - 4.0.0-7Björn Esser - 4.0.0-6Fedora Release Engineering - 4.0.0-5Björn Esser - 4.0.0-4Peter Robinson 4.0.0-3Orion Poplawski - 4.0.0-2Björn Esser - 4.0.0-1Kalev Lember - 3.2.0.1-0.35.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.34.git20141224.d71e19aMamoru TASAKA - 3.2.0.1-0.33.git20141224.d71e19aOrion Poplawski - 3.2.0.1-0.32.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.31.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.30.git20141223.c329375Björn Esser - 3.2.0.1-0.29.git20140901.705b7deFedora Release Engineering - 3.2.0.1-0.28.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.27.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.26.git20140721.81c0008Björn Esser - 3.2.0.1-0.25.git20140717.1ba2924Björn Esser - 3.2.0.1-0.24.git20140618.2f7681eBjörn Esser - 3.2.0.1-0.23.git20140616.31f5609Björn Esser - 3.2.0.1-0.22.git20140604.98900c2Björn Esser - 3.2.0.1-0.21.git20140604.98900c2Björn Esser - 3.2.0.1-0.20.git20140526.7587570Björn Esser - 3.2.0.1-0.19.git20140523.681b5ecBjörn Esser - 3.2.0.1-0.18.git20140516.96b815fBjörn Esser - 3.2.0.1-0.17.git20140516.96b815fBjörn Esser - 3.2.0.1-0.16.git20140423.68a5124Björn Esser - 3.2.0.1-0.15.git20140418.34f9672Björn Esser - 3.2.0.1-0.14.git20140414.b0146f8Björn Esser - 3.2.0.1-0.13.git20140318.6134bc2Björn Esser - 3.2.0.1-0.12.git20140317.6ee3991Björn Esser - 3.2.0.1-0.11.git20140315.55912daBjörn Esser - 3.2.0.1-0.10.git20140313.9b6dcd2Björn Esser - 3.2.0.1-0.9.git20140313.e380071Björn Esser - 3.2.0.1-0.8.git20140312.d9c535eBjörn Esser - 3.2.0.1-0.7.git20140307.c281eaaBjörn Esser - 3.2.0.1-0.6.git20140305.9c67564Björn Esser - 3.2.0.1-0.5.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.4.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.3.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.2.git20130305.9b37dc1Björn Esser - 3.2.0.1-0.1.git20130303.df06a0eBjörn Esser - 3.2.0-2Björn Esser - 3.2.0-1Orion Poplawski - 3.1.1-2Björn Esser - 3.1.1-1Björn Esser - 3.1.0-0.13.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.12.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.11.git20131219.207a709Björn Esser - 3.1.0-0.10.git20131219.207a709Björn Esser - 3.1.0-0.9.git20131219.207a709Björn Esser - 3.1.0-0.8.git20131217.70f2657Björn Esser - 3.1.0-0.7.git20131217.70f2657Björn Esser - 3.1.0-0.6.git20131217.70f2657Björn Esser - 3.1.0-0.5.git20131216.7230f07Björn Esser - 3.1.0-0.4.git20131216.7230f07Björn Esser - 3.1.0-0.3.git20131216.7230f07Björn Esser - 3.1.0-0.2.git20131212.70e774dBjörn Esser - 3.1.0-0.1.git20131212.70e774dBjörn Esser - 3.0.0-1- fix serialization with JSON-C >= 0.12- new upstream release (#1306079) - fix build/testsuite with gcc 6.0.0 (#1308270)- Rebuilt for https://fedoraproject.org/wiki/Fedora_24_Mass_Rebuild- udpated to new snapshot git20160201.03b8c1cc3b8f4426a2fe80055fdfdc9e156953b6- updated to new snapshot git20160125.038280845fd7fb886f4459996f1405f8ca8c1612 - re-enable mono, issues with mono >= 4 are fixed upstream (#1223446)- Rebuild for hdf5 1.8.16- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.3- updated to new snapshot git20151219.af8c1df859ed3d5780bbea5615a5c523e5651db9 - remove Patch0001, fixed in upstream-tarball- updated to new snapshot git20151217.7e4ac1327cc3ee4b09f498c1b778d13f37ff0956 - updated %description - add modshogun.rb to ruby-shogun - add Patch0001: revert removal of migration-framework- changing name of python2-subpkg- updated to new snapshot git20150913.d8eb73dd89f47e0da28f07163c4f635b96d0ec00 - removed ChangeLog from package, deleted in upstream tarball- Rebuilt for https://fedoraproject.org/wiki/Changes/python3.5- updated to new snapshot git20150808.779c3ada68ae535062346ef71e6c1c39e482a8ca - drop all patches, applied in upstream tarball - add more testsuite-excludes for ix86 - disable memtests on %arm- rebuilt with full hardening - add Patch11-13: enable CMake-policy CMP0056 - add Patch14: fix handling of C[XX]FLAGS- temporarily disabling Mono-bindings on Fedora 23+- Rebuilt for https://fedoraproject.org/wiki/Fedora_23_Mass_Rebuild- fix: Build fails on fc23+ because of hardening - fix: BR: mono >= 4.0.0 - exclude tests, which are failing on aarch64 (#1222401)- Rebuild (mono4)- Rebuild for hdf5 1.8.15- new release v4.0.0 (#1105909, #1183622) - add Patch0: fixes double delete[] and tests with swig 3.x - add Patch1: fixes to CMake-buildsys - add Patch2,3: enable python-debugging in testsuite - add Patch4: optionally disabling sse and sse2 features - add Patch5: requiring 'rubygems' in testsuite - add Patch6: testing Py structure hierarchical multilabel classification - add Patch7: replace deprecated json-c functions - add Patch8: obey $ENV{R_LIBS_USER} when running tests - add Patch9: reduce debuginfo of swig-generated bindings - add Patch10: make sure all modular interfaces are build single-threaded - add automatic CLASSPATH-export for java-shogun - add automatic MONO_PATH-export for mono-shogun - add pkg-config file for easier use with gcc - move headers to versioned include-subdir to avoid collisions - retiring octave-shogun on %{arm} - R-shogun is stable now (#1043885) - use atlas' clapack on <= fc20 and <= el7 - narrowed the list of failing tests and don't ignore fails anymore - remove obsolete sed-kludges - use temporary files instead of pipes to pass data between different gcc instances - builds are running multi-threaded again - use %__isa instead of %_arch for file / dir naming - add memory-tests to find reasons for possible segfaults - run memory- and unit-test multi-threaded - use %license when available - use %bconds instead of %global madness - spec-file cosmetics- Rebuilt for protobuf soname bump- rebuild for so-name bump in protobuf-2.6.1 (libprotobuf.so.9)- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.2 - Once reduce debuginfo verbosity on arm to reduce memory comsumption - And once mark -doc, -doc-cn arch dependent perhaps due to above- Rebuild for hdf5 1.8.14- updated to new snapshot git20141224.d71e19aa5a575b2b4e52c908a694eb1db7afc973 - reduced number of make-jobs on %{arm} - conditionalized and disabled OpenCV-integration- updated to new snapshot git20141223.c32937574df1c560ce7c10f1b8860679ce011a8b - added BR: ocl-icd-devel, opencl-headers - enabled OpenCV-features and R-shogun - purged light-scrubber.sh from repo, now shipped with tarball - updated documentation-files - build mono-shogun on %{mono_arches}, only - install documentation-files to %{_pkgdocdir}- updated to new snapshot git20140901.705b7dea7093cb094fe90fcebac20b7e7d1debcd- Rebuilt for https://fedoraproject.org/wiki/Fedora_21_22_Mass_Rebuild- updated to new snapshot git20140804.96f3cf3ce58514299f98e688b7c43e057ad4fa41- updated to new snapshot git20140721.81c00087da6f05d36aec410fef0fcef5be490f42 - enable SSE2 for %{ix86}, because dSFMT-build will fail otherwise - switch back to a monolithic build with limeted parallelization - temporarily discard errors from testsuite- updated to new snapshot git20140717.1ba29247b850adef1b866a6c2112a6483c88428e- updated to new snapshot git20140618.2f7681ed0c1849088ee5bcc48b91a1c970ff3a9b - excluded segfaulting tests- updated to new snapshot git20140616.31f5609f7a7345ca05b5c1f8c7425236da2270df- export additional C[XX]FLAGS on 32Bit-arches for SSE and SSE2 - fix typemapping for Mono (C#) with swig >= 3.0.0 - exclude testing python_modular on Fedora >= 21, segfaults related to swig3 - build libshogun with full parallelization, but the swig-bindings- updated to new snapshot git20140604.98900c2996ccc4509099a6a337a71d7ca9991bd6- updated to new snapshot git20140526.758757094c30ae249f5ddc84f3cdc11b4b4203c4 - dropped obsolete BR LaTeX from -doc-pkg- updated to new snapshot git20140523.681b5ec17c0ca9c98cb54047dcd679bec9171989- adapted the logic for finding rubygem-narray on Fedora >= 21- updated to new snapshot git20140516.96b815fd1fa9769a24122f9016ff5a685a8a6944- updated to new snapshot git20140423.68a5124bec8df5a013b2406e8c00d93ab83bf88d- updated to new snapshot git20140418.34f96727f343b7f7f5e0426dbbf579f5dbc0f51e- updated to new snapshot git20140414.b0146f8b7314a4de25273dab2d6da4a37044bbec- updated to new snapshot git20140318.6134bc2e1e721726102624b372c1f8e7a31816df- updated to new snapshot git20140317.6ee39918dc99e72c23a30419a608f11217146e26- updated to new snapshot git20140315.55912da6dd499632ab2371cbbde9fdafaa913cac- updated to new snapshot git20140313.9b6dcd2a077868259029ce2f28b306e56b30bf2f- updated to new snapshot git20140313.e380071f5a8a5d35c0b33ea0ab55810ef9845354- updated to new snapshot git20140312.d9c535e85ed8dc61d537052a9abce200782b87b2- updated to new snapshot git20140307.c281eaaf51f44c16c9a7ded0678cbbac265714f6- updated to new snapshot git20140305.9c67564278abd5a13efe9ae016f8b3e01bf209f9- use new macros provided by shogun-data-pkg- use `CMAKE_BUILD_TYPE=Release` for the Python3-version, too- fixed year in git-snapshot-date- updated to new snapshot git20130305.9b37dc1e630d54a9c16f2d19b6a10c34d8aef73a- updated to new snapshot git20130303.df06a0e1a7e3551b0bee218246cfc4bf1a4696d8- require java-headless on Fedora >= 20 or RHEL >= 7 - exclude some tests on %{arm} arches only- new upstream release: v3.2.0 (#1066944) - enabled build of Java-bindings (#1043882) - enabled build of Python3-bindings (#1043884) - dropped Patch0 for Octave 3.8.0 (#1047053) - bumped required data-version to 0.8 (#1068941) - split-off scrubber-script to seperate script - exclude some tests on 32-Bit arches only- Add patch for octave 3.8.0 support- new upstream release: v3.1.1 - data-files are now moved into a separate package - added example-applications to doc-pkg- rebuild for octave-3.8.0-rc2- updated to new snapshot git20131226.1c7fbaa732c8476b2df26bca2ae93de666959092 - updated to new testsuite-data git20131222.0bbb04f354a29ed3ab43ce002388b79bb274e886- rebuild for NLopt-2.4.1- rebuild for arprec-2.2.17 - added a line about `no-SVM^light-support` in %description - minor indention improvements for the list of bindings in %description - fixed `macro-in-comment %{mono_arches}` - added %ifarch %{mono_arches} for mono-shogun-pkg for building it on those arches, only- updated to new snapshot git20131219.207a70972e794df28f0fc67309f217f7fbf3b4e7- copying and packaging the prestine examples to another location is better and less error-prone then removing the clutter left by testsuite afterwards- remove more possible clutter from testsuite - re-enable mldata-based tests when there is internet connectivity- updated to new snapshot git20131217.70f26573a501791e11097615296127c1c36904d7- temporarily disabled mono-shogun on all arm-arches- enable build of mono-shogun, since it should be fixed in current checkout (#1043859)- updated to new snapshot git20131216.7230f074751a97842170b8a5f9c69fbd9b8287ca- remove cluttering *.map *.md5 in autodocs (#1043856) - remove possible clutter from testsuite- updated to latest git-snapshot (#1043283) - disabled shogun-mono, because it segfaults currently and has some severe problems on ARMv7hl- Initial rpm release (#1043283)  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`ab4.1.04.1.0-2.fc224.1.0-2.fc22     !"""!##!$!%%%&&''''''''''''''&&(((((((((((((&&&&&&&&&))))*+*,,*--*.*/////////*****001222222222233333333333333333333344444444444444444444444444444444444444445555555555566666665557888799:::::::::::::::;;;:<9=====9977>>>>7?????????7@AABCBDDDAEEE@FF@GGG5HHIIIIIIJJJJJJJJJJJJJJJJJJJJJKKKKKKKKKKKKKKKKJLLLLLLLLLLLLLLLLLLLLLLLLLMMMMMMMMMMMMMMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONPPQQQQQQQQQQQQQQQQQQQQQQQRRRRRRRSSSTTTTTTTTTTTTTTTTTTTUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVWWWVXXXXXXXXXXXXXXXXXXYYYYYYYYYYYYYYYZ[\]]^^^^^^]___``````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````]]]shogun-4.1.0shogunbaseDynArray.hParallel.hParameter.hSGObject.hVersion.hclass_list.hinit.hmaybe.hrange.hsome.hunique.hclassifierAveragedPerceptron.hFeatureBlockLogisticRegression.hGaussianProcessClassification.hLDA.hLPBoost.hLPM.hNearestCentroid.hPerceptron.hPluginEstimate.hmklMKL.hMKLClassification.hMKLMulticlass.hMKLMulticlassGLPK.hMKLMulticlassGradient.hMKLMulticlassOptimizationBase.hMKLOneClass.hsvmCPLEXSVM.hGNPPLib.hGNPPSVM.hGPBTSVM.hLibLinear.hLibSVM.hLibSVMOneClass.hMPDSVM.hNewtonSVM.hOnlineLibLinear.hOnlineSVMSGD.hQPBSVMLib.hSGDQN.hSVM.hSVMLin.hSVMOcas.hSVMSGD.hWDSVMOcas.hvwVowpalWabbit.hVwEnvironment.hVwLearner.hVwParser.hVwRegressor.hcacheVwCacheReader.hVwCacheWriter.hVwNativeCacheReader.hVwNativeCacheWriter.hlearnersVwAdaptiveLearner.hVwNonAdaptiveLearner.hvw_common.hvw_constants.hvw_example.hvw_label.hvw_math.hclusteringGMM.hHierarchical.hKMeans.hKMeansLloydImpl.hKMeansMiniBatchImpl.hconverterConverter.hDiffusionMaps.hEmbeddingConverter.hFactorAnalysis.hHashedDocConverter.hHessianLocallyLinearEmbedding.hIsomap.hKernelLocallyLinearEmbedding.hLaplacianEigenmaps.hLinearLocalTangentSpaceAlignment.hLocalTangentSpaceAlignment.hLocalityPreservingProjections.hLocallyLinearEmbedding.hManifoldSculpting.hMultidimensionalScaling.hNeighborhoodPreservingEmbedding.hStochasticProximityEmbedding.hTDistributedStochasticNeighborEmbedding.hicaFFSep.hFastICA.hICAConverter.hJade.hJediSep.hSOBI.hUWedgeSep.hdistanceAttenuatedEuclideanDistance.hBrayCurtisDistance.hCanberraMetric.hCanberraWordDistance.hChebyshewMetric.hChiSquareDistance.hCosineDistance.hCustomDistance.hCustomMahalanobisDistance.hDenseDistance.hDirectorDistance.hDistance.hEuclideanDistance.hGeodesicMetric.hHammingWordDistance.hJensenMetric.hKernelDistance.hMahalanobisDistance.hManhattanMetric.hManhattanWordDistance.hMinkowskiMetric.hRealDistance.hSparseDistance.hSparseEuclideanDistance.hStringDistance.hTanimotoDistance.hdistributionsDiscreteDistribution.hDistribution.hEMBase.hEMMixtureModel.hGaussian.hHMM.hHistogram.hKernelDensity.hLinearHMM.hMixModelData.hMixtureModel.hPositionalPWM.hclassicalGaussianDistribution.hProbabilityDistribution.hensembleCombinationRule.hMajorityVote.hMeanRule.hWeightedMajorityVote.hevaluationBinaryClassEvaluation.hClusteringAccuracy.hClusteringEvaluation.hClusteringMutualInformation.hContingencyTableEvaluation.hCrossValidation.hCrossValidationMKLStorage.hCrossValidationMulticlassStorage.hCrossValidationOutput.hCrossValidationPrintOutput.hCrossValidationSplitting.hDifferentiableFunction.hDirectorContingencyTableEvaluation.hEvaluation.hEvaluationResult.hGradientCriterion.hGradientEvaluation.hGradientResult.hLOOCrossValidationSplitting.hMachineEvaluation.hMeanAbsoluteError.hMeanSquaredError.hMeanSquaredLogError.hMulticlassAccuracy.hMulticlassOVREvaluation.hMultilabelAccuracy.hPRCEvaluation.hROCEvaluation.hSplittingStrategy.hStratifiedCrossValidationSplitting.hStructuredAccuracy.hicaAmariIndex.hPermutationMatrix.hfeaturesAlphabet.hAttributeFeatures.hBinnedDotFeatures.hCombinedDotFeatures.hCombinedFeatures.hDataGenerator.hDenseFeatures.hDenseSubSamplesFeatures.hDenseSubsetFeatures.hDirectorDotFeatures.hDotFeatures.hDummyFeatures.hExplicitSpecFeatures.hFKFeatures.hFactorGraphFeatures.hFeatureTypes.hFeatures.hImplicitWeightedSpecFeatures.hIndexFeatures.hLBPPyrDotFeatures.hLatentFeatures.hMatrixFeatures.hPolyFeatures.hRandomFourierDotFeatures.hRandomKitchenSinksDotFeatures.hRealFileFeatures.hSNPFeatures.hSparseFeatures.hSparsePolyFeatures.hStringFeatures.hStringFileFeatures.hSubset.hSubsetStack.hTOPFeatures.hWDFeatures.hhashedHashedDenseFeatures.hHashedDocDotFeatures.hHashedSparseFeatures.hHashedWDFeatures.hHashedWDFeaturesTransposed.hstreamingStreamingDenseFeatures.hStreamingDotFeatures.hStreamingFeatures.hStreamingHashedDenseFeatures.hStreamingHashedDocDotFeatures.hStreamingHashedSparseFeatures.hStreamingSparseFeatures.hStreamingStringFeatures.hStreamingVwFeatures.hgeneratorsGaussianBlobsDataGenerator.hMeanShiftDataGenerator.hioBinaryFile.hBinaryStream.hCSVFile.hFile.hHDF5File.hIOBuffer.hLibSVMFile.hLineReader.hMLDataHDF5File.hMemoryMappedFile.hNeuralNetworkFileReader.hParser.hProtobufFile.hSGIO.hSerializableAsciiFile.hSerializableAsciiReader00.hSerializableFile.hSerializableHdf5File.hSerializableHdf5Reader00.hSerializableJsonFile.hSerializableJsonReader00.hSerializableXmlFile.hSerializableXmlReader00.hSimpleFile.hUAIFile.hprotobufChunks.pb.hHeaders.pb.hShogunVersion.pb.hstreamingInputParser.hParseBuffer.hStreamingAsciiFile.hStreamingFile.hStreamingFileFromDenseFeatures.hStreamingFileFromFeatures.hStreamingFileFromSparseFeatures.hStreamingFileFromStringFeatures.hStreamingVwCacheFile.hStreamingVwFile.hkernelANOVAKernel.hAUCKernel.hBesselKernel.hCauchyKernel.hChi2Kernel.hCircularKernel.hCombinedKernel.hConstKernel.hCustomKernel.hDiagKernel.hDirectorKernel.hDistanceKernel.hDotKernel.hExponentialARDKernel.hExponentialKernel.hGaussianARDKernel.hGaussianKernel.hGaussianShiftKernel.hGaussianShortRealKernel.hHistogramIntersectionKernel.hInverseMultiQuadricKernel.hJensenShannonKernel.hKernel.hLinearKernel.hLogKernel.hMultiquadricKernel.hPeriodicKernel.hPolyKernel.hPowerKernel.hProductKernel.hPyramidChi2.hRationalQuadraticKernel.hSigmoidKernel.hSparseKernel.hSphericalKernel.hSplineKernel.hTStudentKernel.hTensorProductPairKernel.hWaveKernel.hWaveletKernel.hWeightedDegreeRBFKernel.hnormalizerAvgDiagKernelNormalizer.hDiceKernelNormalizer.hFirstElementKernelNormalizer.hIdentityKernelNormalizer.hKernelNormalizer.hRidgeKernelNormalizer.hScatterKernelNormalizer.hSqrtDiagKernelNormalizer.hTanimotoKernelNormalizer.hVarianceKernelNormalizer.hZeroMeanCenterKernelNormalizer.hstringCommUlongStringKernel.hCommWordStringKernel.hDistantSegmentsKernel.hFixedDegreeStringKernel.hGaussianMatchStringKernel.hHistogramWordStringKernel.hLinearStringKernel.hLocalAlignmentStringKernel.hLocalityImprovedStringKernel.hMatchWordStringKernel.hOligoStringKernel.hPolyMatchStringKernel.hPolyMatchWordStringKernel.hRegulatoryModulesStringKernel.hSNPStringKernel.hSalzbergWordStringKernel.hSimpleLocalityImprovedStringKernel.hSparseSpatialSampleStringKernel.hSpectrumMismatchRBFKernel.hSpectrumRBFKernel.hStringKernel.hSubsequenceStringKernel.hWeightedCommWordStringKernel.hWeightedDegreePositionStringKernel.hWeightedDegreeStringKernel.hlabelsBinaryLabels.hDenseLabels.hFactorGraphLabels.hLabelTypes.hLabels.hLabelsFactory.hLatentLabels.hMulticlassLabels.hMultilabelLabels.hRegressionLabels.hStructuredLabels.hlatentDirectorLatentModel.hLatentModel.hLatentSOSVM.hLatentSVM.hlibBitString.hCache.hCircularBuffer.hCompressor.hData.hDataType.hDelimiterTokenizer.hDynInt.hDynamicArray.hDynamicObjectArray.hGCArray.hGPUMatrix.hGPUVector.hHash.hIndexBlock.hIndexBlockGroup.hIndexBlockRelation.hIndexBlockTree.hIndirectObject.hJLCoverTree.hJLCoverTreePoint.hList.hLock.hMap.hNGramTokenizer.hOpenCVCV2SGFactory.hOpenCVTypeName.hSG2CVFactory.hRefCount.hSGCachedVector.hSGMatrix.hSGMatrixList.hSGNDArray.hSGReferencedData.hSGSparseMatrix.hSGSparseVector.hSGString.hSGStringList.hSGVector.hSet.hShogunException.hSignal.hStringMap.hStructuredData.hStructuredDataTypes.hTime.hTokenizer.hTrie.hcommon.hcomputationaggregatorJobResultAggregator.hStoreScalarAggregator.hStoreVectorAggregator.hengineIndependentComputationEngine.hSerialComputationEngine.hjobIndependentJob.hjobresultJobResult.hScalarResult.hVectorResult.hconfig.hexternalPMurHash.hSFMTSFMT-common.hSFMT-params.hSFMT-params11213.hSFMT-params1279.hSFMT-params132049.hSFMT-params19937.hSFMT-params216091.hSFMT-params2281.hSFMT-params4253.hSFMT-params44497.hSFMT-params607.hSFMT-params86243.hSFMT-sse2.hSFMT.hbrent.hdSFMTdSFMT-common.hdSFMT-params.hdSFMT-params11213.hdSFMT-params1279.hdSFMT-params132049.hdSFMT-params19937.hdSFMT-params216091.hdSFMT-params2203.hdSFMT-params4253.hdSFMT-params44497.hdSFMT-params521.hdSFMT-params86243.hdSFMT.hgpdt.hgpdtsolve.hgpm.hlibocas.hlibocas_common.hlibqp.hpr_loqo.hshogun_libsvm.hssl.hmalsarmalsar_clustered.hmalsar_joint_feature_learning.hmalsar_low_rank.hmalsar_options.hmemory.hslepSpInvCoVainvCov.hflsaflsa.hsfa.horderorderTree.hsequence.hoverlappingoverlapping.hq1ep1R.hep21R.hep21d.heppMatrix.heppVector.heppVectorR.hepph.hepsgLasso.hepsp.hslep_mc_plain_lr.hslep_mc_tree_lr.hslep_options.hslep_solver.htreealtra.hgeneral_altra.htapkeetapkee_shogun.hppv_array.hversionstring.hlossAbsoluteDeviationLoss.hExponentialLoss.hHingeLoss.hHuberLoss.hLogLoss.hLogLossMargin.hLossFunction.hSmoothHingeLoss.hSquaredHingeLoss.hSquaredLoss.hmachineBaggingMachine.hBaseMulticlassMachine.hDirectorKernelMachine.hDirectorLinearMachine.hDistanceMachine.hGaussianProcessMachine.hKernelMachine.hKernelMulticlassMachine.hKernelStructuredOutputMachine.hLinearLatentMachine.hLinearMachine.hLinearMulticlassMachine.hLinearStructuredOutputMachine.hMachine.hMulticlassMachine.hNativeMulticlassMachine.hOnlineLinearMachine.hRandomForest.hStochasticGBMachine.hStructuredOutputMachine.hgpConstMean.hDualVariationalGaussianLikelihood.hEPInferenceMethod.hExactInferenceMethod.hFITCInferenceMethod.hGaussianARDSparseKernel.hGaussianLikelihood.hInferenceMethod.hKLApproxDiagonalInferenceMethod.hKLCholeskyInferenceMethod.hKLCovarianceInferenceMethod.hKLDualInferenceMethod.hKLInferenceMethod.hKLLowerTriangularInferenceMethod.hLaplacianInferenceBase.hLikelihoodModel.hLogitDVGLikelihood.hLogitLikelihood.hLogitVGLikelihood.hLogitVGPiecewiseBoundLikelihood.hMatrixOperations.hMeanFunction.hMultiLaplacianInferenceMethod.hNumericalVGLikelihood.hProbitLikelihood.hProbitVGLikelihood.hSingleFITCLaplacianBase.hSingleFITCLaplacianInferenceMethod.hSingleFITCLaplacianInferenceMethodWithLBFGS.hSingleLaplacianInferenceMethod.hSingleLaplacianInferenceMethodWithLBFGS.hSingleSparseInferenceBase.hSoftMaxLikelihood.hSparseInferenceBase.hSparseVGInferenceMethod.hStudentsTLikelihood.hStudentsTVGLikelihood.hVariationalGaussianLikelihood.hVariationalLikelihood.hZeroMean.hmathematicsCplex.hFunction.hIntegration.hJacobiEllipticFunctions.hLoss.hMath.hMosek.hRandom.hSparseInverseCovariance.hStatistics.hajdApproxJointDiagonalizer.hFFDiag.hJADiag.hJADiagOrth.hJediDiag.hQDiag.hUWedge.heigen3.hlapack.hlinalgeigsolverDirectEigenSolver.hEigenSolver.hLanczosEigenSolver.hinternalBlock.himplementationAdd.hApply.hConvolve.hDot.hElementwiseProduct.hElementwiseSquare.hElementwiseUnaryOperation.hMatrixProduct.hMax.hScale.hSetRowsConst.hSpecialPurpose.hSum.hVectorSum.hoperationsParameter.hSin.hopencl_operation.hutilAllocResultUtil.hmodulesCore.hElementwiseOperations.hRedux.hSpecialPurpose.hUtil.hopencl_config.hopencl_util.hlinalg.hlinopDenseMatrixOperator.hLinearOperator.hMatrixOperator.hSparseMatrixOperator.hlinsolverCGMShiftedFamilySolver.hConjugateGradientSolver.hConjugateOrthogonalCGSolver.hDirectLinearSolverComplex.hDirectSparseLinearSolver.hIterativeLinearSolver.hIterativeShiftedLinearFamilySolver.hIterativeSolverIterator.hLinearSolver.hratapproxlogdetLogDetEstimator.hcomputationaggregatorIndividualJobResultAggregator.hjobDenseExactLogJob.hRationalApproximationCGMJob.hRationalApproximationIndividualJob.hopfuncDenseMatrixExactLog.hLogRationalApproximationCGM.hLogRationalApproximationIndividual.hopfuncOperatorFunction.hRationalApproximation.htracesamplerNormalSampler.hProbingSampler.hTraceSampler.hmunkres.hmetricLMNN.hLMNNImpl.hmodelselectionGradientModelSelection.hGridSearchModelSelection.hModelSelection.hModelSelectionParameters.hParameterCombination.hRandomSearchModelSelection.hmulticlassGMNPLib.hGMNPSVM.hGaussianNaiveBayes.hKNN.hLaRank.hMCLDA.hMulticlassLibLinear.hMulticlassLibSVM.hMulticlassLogisticRegression.hMulticlassOCAS.hMulticlassOneVsOneStrategy.hMulticlassOneVsRestStrategy.hMulticlassSVM.hMulticlassStrategy.hMulticlassTreeGuidedLogisticRegression.hQDA.hRejectionStrategy.hScatterSVM.hShareBoost.hShareBoostOptimizer.hecocECOCAEDDecoder.hECOCDecoder.hECOCDiscriminantEncoder.hECOCEDDecoder.hECOCEncoder.hECOCForestEncoder.hECOCHDDecoder.hECOCIHDDecoder.hECOCLLBDecoder.hECOCOVOEncoder.hECOCOVREncoder.hECOCRandomDenseEncoder.hECOCRandomSparseEncoder.hECOCSimpleDecoder.hECOCStrategy.hECOCUtil.htreeBalancedConditionalProbabilityTree.hBallTree.hBinaryTreeMachineNode.hC45ClassifierTree.hC45TreeNodeData.hCARTree.hCARTreeNodeData.hCHAIDTree.hCHAIDTreeNodeData.hConditionalProbabilityTree.hConditionalProbabilityTreeNodeData.hID3ClassifierTree.hID3TreeNodeData.hKDTree.hKNNHeap.hNbodyTree.hNbodyTreeNodeData.hRandomCARTree.hRandomConditionalProbabilityTree.hRelaxedTree.hRelaxedTreeNodeData.hRelaxedTreeUtil.hTreeMachine.hTreeMachineNode.hVwConditionalProbabilityTree.hneuralnetsAutoencoder.hConvolutionalFeatureMap.hDeepAutoencoder.hDeepBeliefNetwork.hNeuralConvolutionalLayer.hNeuralInputLayer.hNeuralLayer.hNeuralLayers.hNeuralLeakyRectifiedLinearLayer.hNeuralLinearLayer.hNeuralLogisticLayer.hNeuralNetwork.hNeuralRectifiedLinearLayer.hNeuralSoftmaxLayer.hRBM.hoptimizationAdaDeltaUpdater.hAdaGradUpdater.hAdaptMomentumCorrection.hConstLearningRate.hDescendCorrection.hDescendUpdater.hDescendUpdaterWithCorrection.hElasticNetPenalty.hFirstOrderBoundConstraintsCostFunction.hFirstOrderCostFunction.hFirstOrderMinimizer.hFirstOrderSAGCostFunction.hFirstOrderStochasticCostFunction.hFirstOrderStochasticMinimizer.hGradientDescendUpdater.hInverseScalingLearningRate.hL1Penalty.hL1PenaltyForTG.hL2Penalty.hLearningRate.hMappingFunction.hMinimizerContext.hMomentumCorrection.hNLOPTMinimizer.hNesterovMomentumCorrection.hPNormMappingFunction.hPenalty.hProximalPenalty.hRmsPropUpdater.hSGDMinimizer.hSMDMinimizer.hSMIDASMinimizer.hSVRGMinimizer.hSparsePenalty.hStandardMomentumCorrection.hlbfgsLBFGSMinimizer.hlbfgs.hliblinearshogun_liblinear.htron.hpreprocessorBAHSIC.hDecompressString.hDensePreprocessor.hDependenceMaximization.hDimensionReductionPreprocessor.hFeatureSelection.hFisherLDA.hHomogeneousKernelMap.hKernelDependenceMaximization.hKernelPCA.hLogPlusOne.hNormOne.hPCA.hPNorm.hPreprocessor.hPruneVarSubMean.hRandomFourierGaussPreproc.hRescaleFeatures.hSortUlongString.hSortWordString.hSparsePreprocessor.hStringPreprocessor.hSumOne.hregressionGaussianProcessRegression.hKernelRidgeRegression.hLeastAngleRegression.hLeastSquaresRegression.hLinearRidgeRegression.hRegression.hsvrLibLinearRegression.hLibSVR.hMKLRegression.hstatisticsHSIC.hHypothesisTest.hIndependenceTest.hKernelIndependenceTest.hKernelMeanMatching.hKernelSelection.hKernelTwoSampleTest.hLinearTimeMMD.hMMDKernelSelection.hMMDKernelSelectionComb.hMMDKernelSelectionCombMaxL2.hMMDKernelSelectionCombOpt.hMMDKernelSelectionMax.hMMDKernelSelectionMedian.hMMDKernelSelectionOpt.hNOCCO.hQuadraticTimeMMD.hStreamingMMD.hTwoSampleTest.hstructureBeliefPropagation.hBmrmStatistics.hCCSOSVM.hDirectorStructuredModel.hDisjointSet.hDualLibQPBMSOSVM.hDynProg.hFWSOSVM.hFactor.hFactorGraph.hFactorGraphDataGenerator.hFactorGraphModel.hFactorType.hGEMPLP.hGraphCut.hHMSVMModel.hHashedMultilabelModel.hHierarchicalMultilabelModel.hIntronList.hMAPInference.hMulticlassModel.hMulticlassSOLabels.hMultilabelCLRModel.hMultilabelModel.hMultilabelSOLabels.hPlif.hPlifArray.hPlifBase.hPlifMatrix.hPrimalMosekSOSVM.hSOSVMHelper.hSegmentLoss.hSequenceLabels.hStateModel.hStateModelTypes.hStochasticSOSVM.hStructuredModel.hTwoStateModel.hlibbmrm.hlibncbm.hlibp3bm.hlibppbm.htransferdomain_adaptationDomainAdaptationMulticlassLibLinear.hDomainAdaptationSVM.hDomainAdaptationSVMLinear.hmultitaskLibLinearMTL.hMultitaskClusteredLogisticRegression.hMultitaskKernelMaskNormalizer.hMultitaskKernelMaskPairNormalizer.hMultitaskKernelMklNormalizer.hMultitaskKernelNormalizer.hMultitaskKernelPlifNormalizer.hMultitaskKernelTreeNormalizer.hMultitaskL12LogisticRegression.hMultitaskLeastSquaresRegression.hMultitaskLinearMachine.hMultitaskLogisticRegression.hMultitaskROCEvaluation.hMultitaskTraceLogisticRegression.hTask.hTaskGroup.hTaskRelation.hTaskTree.huiGUIClassifier.hGUICommands.hGUIConverter.hGUIDistance.hGUIFeatures.hGUIHMM.hGUIKernel.hGUILabels.hGUIMath.hGUIPluginEstimate.hGUIPreprocessor.hGUIStructure.hGUITime.hSGInterface.hSyntaxHighLight.hlibshogun.soshogun.pcshogunNEWSOpenCV_docsOpenCV-integration-examples.mdOpenCV_KNN_vs_Shogun_KNN.mdOpenCV_NN_vs_Shogun_NN.mdOpenCV_SVM_vs_Shogun_SVM.mdeigenfaces.cppfisherfaces.cppexamplesREADME.txtdatalibshogunREADMEbalanced_conditional_probability_tree.cppbasic_minimal.cppclassifier_bagging_liblinear.cppclassifier_featureblocklogisticregression.cppclassifier_gaussian_process_binary_classification.cppclassifier_gaussiannaivebayes.cppclassifier_knn.cppclassifier_larank.cppclassifier_latent_svm.cppclassifier_lda.cppclassifier_libsvm.cppclassifier_libsvm_probabilities.cppclassifier_minimal_svm.cppclassifier_mklmulticlass.cppclassifier_multiclass_ecoc.cppclassifier_multiclass_ecoc_discriminant.cppclassifier_multiclass_ecoc_random.cppclassifier_multiclass_prob_heuristics.cppclassifier_multiclass_relaxedtree.cppclassifier_multiclass_shareboost.cppclassifier_multiclasslibsvm.cppclassifier_multiclasslinearmachine.cppclassifier_nearest_centroid.cppclassifier_newtontest.cppclassifier_qda.cppclustering_kmeans.cppconverter_diffusionmaps.cppconverter_factoranalysis.cppconverter_hessianlocallylinearembedding.cppconverter_isomap.cppconverter_jade_bss.cppconverter_kernellocallylinearembedding.cppconverter_laplacianeigenmaps.cppconverter_linearlocaltangentspacealignment.cppconverter_localitypreservingprojections.cppconverter_locallylinearembedding.cppconverter_localtangentspacealignment.cppconverter_multidimensionalscaling.cppconverter_neighborhoodpreservingembedding.cppconverter_stochasticproximityembedding.cppevaluation_cross_validation_classification.cppevaluation_cross_validation_knn.cppevaluation_cross_validation_locked_comparison.cppevaluation_cross_validation_mkl_weight_storage.cppevaluation_cross_validation_multiclass.cppevaluation_cross_validation_multiclass_mkl.cppevaluation_cross_validation_regression.cppfeatures_copy_subset_simple_features.cppfeatures_copy_subset_sparse_features.cppfeatures_dense_real_modular.cppfeatures_subset_labels.cppfeatures_subset_simple_features.cppfeatures_subset_stack.cpphashed_features_example.cppio_libsvm_multilabel.cppio_linereader.cppkernel_custom.cppkernel_custom_index.cppkernel_custom_kernel.cppkernel_gaussian.cppkernel_machine_train_locked.cppkernel_revlin.cpplabels_binary_fit_sigmoid.cpplibrary_circularbuffer.cpplibrary_dyn_int.cpplibrary_dynarray.cpplibrary_gc_array.cpplibrary_hash.cpplibrary_hdf5.cpplibrary_indirect_object.cpplibrary_map.cpplibrary_mldatahdf5.cpplibrary_serialization.cpplibrary_set.cppmathematics_confidence_intervals.cppmathematics_lapack.cppmetric_lmnnn.cppminibatchKMeans.cppmodelselection_apply_parameter_tree.cppmodelselection_combined_kernel_sub_parameters.cppmodelselection_grid_search_kernel.cppmodelselection_grid_search_krr.cppmodelselection_grid_search_linear.cppmodelselection_grid_search_mkl.cppmodelselection_grid_search_multiclass_svm.cppmodelselection_grid_search_string_kernel.cppmodelselection_model_selection_parameters_test.cppmodelselection_parameter_combination_test.cppmodelselection_parameter_tree.cppneuralnets_basic.cppneuralnets_convolutional.cppneuralnets_deep_autoencoder.cppneuralnets_deep_belief_network.cppoptimization_lbfgs.cppparameter_iterate_float64.cppparameter_iterate_sgobject.cppparameter_modsel_parameters.cppparameter_set_from_parameters.cpppreprocessor_fisherlda.cpppreprocessor_randomfouriergauss.cpprandom_conditional_probability_tree.cpprandom_fourier_features.cppregression_gaussian_process_ard.cppregression_gaussian_process_fitc.cppregression_gaussian_process_gaussian.cppregression_gaussian_process_laplace.cppregression_gaussian_process_product.cppregression_gaussian_process_simple_exact.cppregression_gaussian_process_sum.cppregression_libsvr.cppserialization_basic_tests.cppserialization_file_formats.cppserialization_multiclass_labels.cppso_factorgraph.cppso_fg_model.cppso_fg_multilabel.cppso_hmsvm_mosek_simple.cppso_multiclass.cppso_multiclass_BMRM.cppso_multilabel.cppsplitting_LOO_crossvalidation.cppsplitting_standard_crossvalidation.cppsplitting_stratified_crossvalidation.cppstatistics.cppstatistics_hsic.cppstatistics_linear_time_mmd.cppstatistics_mmd_kernel_selection.cppstatistics_quadratic_time_mmd.cppstreaming_from_dense.cppstreaming_onlineliblinear_dense.cppstreaming_onlineliblinear_sparse.cppstreaming_onlinesvmsgd.cppstreaming_stringfeatures.cppstreaming_vowpalwabbit.cppstreaming_vwfeatures.cppstructure_discrete_hmsvm_bmrm.cppstructure_hmsvm_mosek.cppstructure_plif_hmsvm_bmrm.cpptransfer_multitaskleastsquaresregression.cpptransfer_multitasklogisticregression.cppvariational_approx_example.cppmem.x86-64.fc22.logunit.py3.x86-64.fc22.logunit.x86-64.fc22.log/usr/include//usr/include/shogun-4.1.0//usr/include/shogun-4.1.0/shogun//usr/include/shogun-4.1.0/shogun/base//usr/include/shogun-4.1.0/shogun/classifier//usr/include/shogun-4.1.0/shogun/classifier/mkl//usr/include/shogun-4.1.0/shogun/classifier/svm//usr/include/shogun-4.1.0/shogun/classifier/vw//usr/include/shogun-4.1.0/shogun/classifier/vw/cache//usr/include/shogun-4.1.0/shogun/classifier/vw/learners//usr/include/shogun-4.1.0/shogun/clustering//usr/include/shogun-4.1.0/shogun/converter//usr/include/shogun-4.1.0/shogun/converter/ica//usr/include/shogun-4.1.0/shogun/distance//usr/include/shogun-4.1.0/shogun/distributions//usr/include/shogun-4.1.0/shogun/distributions/classical//usr/include/shogun-4.1.0/shogun/ensemble//usr/include/shogun-4.1.0/shogun/evaluation//usr/include/shogun-4.1.0/shogun/evaluation/ica//usr/include/shogun-4.1.0/shogun/features//usr/include/shogun-4.1.0/shogun/features/hashed//usr/include/shogun-4.1.0/shogun/features/streaming//usr/include/shogun-4.1.0/shogun/features/streaming/generators//usr/include/shogun-4.1.0/shogun/io//usr/include/shogun-4.1.0/shogun/io/protobuf//usr/include/shogun-4.1.0/shogun/io/streaming//usr/include/shogun-4.1.0/shogun/kernel//usr/include/shogun-4.1.0/shogun/kernel/normalizer//usr/include/shogun-4.1.0/shogun/kernel/string//usr/include/shogun-4.1.0/shogun/labels//usr/include/shogun-4.1.0/shogun/latent//usr/include/shogun-4.1.0/shogun/lib//usr/include/shogun-4.1.0/shogun/lib/OpenCV//usr/include/shogun-4.1.0/shogun/lib/computation//usr/include/shogun-4.1.0/shogun/lib/computation/aggregator//usr/include/shogun-4.1.0/shogun/lib/computation/engine//usr/include/shogun-4.1.0/shogun/lib/computation/job//usr/include/shogun-4.1.0/shogun/lib/computation/jobresult//usr/include/shogun-4.1.0/shogun/lib/external//usr/include/shogun-4.1.0/shogun/lib/external/SFMT//usr/include/shogun-4.1.0/shogun/lib/external/dSFMT//usr/include/shogun-4.1.0/shogun/lib/malsar//usr/include/shogun-4.1.0/shogun/lib/slep//usr/include/shogun-4.1.0/shogun/lib/slep/SpInvCoVa//usr/include/shogun-4.1.0/shogun/lib/slep/flsa//usr/include/shogun-4.1.0/shogun/lib/slep/order//usr/include/shogun-4.1.0/shogun/lib/slep/overlapping//usr/include/shogun-4.1.0/shogun/lib/slep/q1//usr/include/shogun-4.1.0/shogun/lib/slep/tree//usr/include/shogun-4.1.0/shogun/lib/tapkee//usr/include/shogun-4.1.0/shogun/loss//usr/include/shogun-4.1.0/shogun/machine//usr/include/shogun-4.1.0/shogun/machine/gp//usr/include/shogun-4.1.0/shogun/mathematics//usr/include/shogun-4.1.0/shogun/mathematics/ajd//usr/include/shogun-4.1.0/shogun/mathematics/linalg//usr/include/shogun-4.1.0/shogun/mathematics/linalg/eigsolver//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal/implementation//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal/implementation/operations//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal/implementation/util//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal/modules//usr/include/shogun-4.1.0/shogun/mathematics/linalg/linop//usr/include/shogun-4.1.0/shogun/mathematics/linalg/linsolver//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet/computation//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet/computation/aggregator//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet/computation/job//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet/opfunc//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/opfunc//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/tracesampler//usr/include/shogun-4.1.0/shogun/metric//usr/include/shogun-4.1.0/shogun/modelselection//usr/include/shogun-4.1.0/shogun/multiclass//usr/include/shogun-4.1.0/shogun/multiclass/ecoc//usr/include/shogun-4.1.0/shogun/multiclass/tree//usr/include/shogun-4.1.0/shogun/neuralnets//usr/include/shogun-4.1.0/shogun/optimization//usr/include/shogun-4.1.0/shogun/optimization/lbfgs//usr/include/shogun-4.1.0/shogun/optimization/liblinear//usr/include/shogun-4.1.0/shogun/preprocessor//usr/include/shogun-4.1.0/shogun/regression//usr/include/shogun-4.1.0/shogun/regression/svr//usr/include/shogun-4.1.0/shogun/statistics//usr/include/shogun-4.1.0/shogun/structure//usr/include/shogun-4.1.0/shogun/transfer//usr/include/shogun-4.1.0/shogun/transfer/domain_adaptation//usr/include/shogun-4.1.0/shogun/transfer/multitask//usr/include/shogun-4.1.0/shogun/ui//usr/lib64//usr/lib64/pkgconfig//usr/share/doc//usr/share/doc/shogun//usr/share/doc/shogun/OpenCV_docs//usr/share/doc/shogun/examples//usr/share/doc/shogun/examples/libshogun/-O2 -g -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong --param=ssp-buffer-size=4 -grecord-gcc-switches -m64 -mtune=genericdrpmxz2x86_64-redhat-linux-gnu                directoryC++ source, ASCII textC source, ASCII textASCII textC++ source, ASCII text, with very long linesC++ source, ASCII text, with CRLF line terminatorsC++ source, UTF-8 Unicode textHTML document, ASCII textHTML document, UTF-8 Unicode textC source, UTF-8 Unicode textLaTeX document, ASCII textUTF-8 Unicode textASCII text, with very long linesC source, ASCII text, with CRLF line terminatorspkgconfig fileC source, ASCII text, with very long linesASCII text, with very long lines, with escape sequencesRPR?p7zXZ !#,Ŝ]"k%r|bViѴ@t,ݘCRչgki|U^6&Z;=ktgPse醴8tA++++pC-b'Y8=2=TY-As\٭Jvo>?؏3xzm &.2ʀl4ooq9ppa)߄J8pSB5kl移, yIlqБ ˙Ue/YzՠT}zmC?sSjIo/ZBW# Sd\:C&.Ȣ+YPg@*]K[px+)ŀ;!=IK7{wwW"α\W>=_y(0^ #>1Ń1s9 ʗ|&~<>*O9T.Y8 $Mx|?I]TQ rsOrgQE+pwë/ro}mkԸP My>CڨRSTUw sNWEox %.f]u ԤPC~K l/peɥ wL^cwN@CZI0PFc+PAZ=N^BT"ڭ?_ߔ|e.dt)~=qHd8~*ll7Ԁy~I5X|G(YzFj{`c+G*E+. ƥ=MDH4MB]~/5j6#uT=:K^r2 ByW+.7YںJ8ЯVifaˆO81 jX `2FK s҅US瘭\W |&R[DKSD.Y~R4[c]:Sk sֿMu,ibHdÝ;bg}!%V?OBko \Sm9' I\脐D ộ㝨5 EH:8a?3 O%Ŷdd4m`[8=6ЫBud!\']mϨ/]QOh{𰀶l1hǩ =*{σZ:Q/4 afy}(s_ŶmFk뺦-e$P5cD_۞? ;d|2Kɜ%Ѝd:Wf'З!.Zȶrt5굌{L_vN!l%/Ns%+HۢLTq8e:۹s38;>R=bod&{ @ϏO)B*z)5L/;U#oѯ-D]~3{x:d7TPN3Wۼ2T?c^2w~>;s .i[Q *kܝ‰,'5`Py%["U9 Λ {۳pG#%pHνSoU.ֱQJbNXՃ5 lC>=m^^N ԮC2-t1 7 VILJB(iR5: ,rPJH{`(h|qߨL7$~n v8݁gl>B̆Y)Qr~қaZQ2JPq]H 7XcS 휲u TڛZg5R;Qq dNQl$?*'v⪨ӾaQ_Q{Tu2   TX魑js&uyio ?h6%E;L<ƒGxFwg' OR} C+6D#7^fw 6͕3ijMG0 ⭎&v,NC:Th9USvS+J//@ڂr ~f 1/jyWvGuu%z\' Uh\7! [b!U_LO/ZG@ު~6OVJH(N<$oNO(Hj ύT?{ѵ֓߯pzlغQD3`\V+sv5۔ "$nܚ6~NLY5k˲ Fy=H;1J6X'B _ǧkyvvK/ 7J0 jrʨ >'?'Q0D5'I` 'V$CR h4E-]kU 7~.&.$\YyI<973\C,v'u"dT|bDsK;uWetf|o>[`&AF--1FjAEc1fn;iQőlT@=ob-ڶ.2,5B L@%ו|+&k@}}oTp @Hχ4]>9o5cCKmLnһR:'M ,?VCcLs.Gl9drb7]iVrb(8߁5hʄF=>9ru0yZ̗\|: ItP }Q$A_M?Rю5犑fPqj遏۹Ri%C{#*h9{8*KِXb1.ژtn!h"{)y+ެƫD4ݎP- E>#>})c=p|ְWֵGΝ䣊({10gE/4M^!rlȌC\<.0Lxnk7fݲօIkC(A6kp*D~L[gp#;qϨlC^k=Jt4_{L;ZP P|$Ḃ|lM*DTHޔS0+p鏡.U61__?xJq y-N>g.y;SܳhΨ&X8"QHMڨlԅ )HN 9WH04M^ӂ7όq)gzj)lŒ^ܖdȚDڨ,Cb"&HWԨ.фG3fg 8G 72%YҹtȬ\BB%aSN#^PkE̷i,RKh& )IOyeeYB:mGר܍AsǞej"ڨ(܋*0"aȢBYLȡEȲ'9$"6F0l$!b*V64ٺ)$(e~RQ1 Y6*MaԿ[9U; nlidϊ,0,_)h`>EcmpPaE01<?S#!H=YLFR‡ a8/49h#AI5<2Le j5/#* ” qb TČ/:)%…Yj1kŢzZ)v 0H@u=!s$>ڑ~/?z2c-+ؑw۹&G-Z>s/xNO?]~v~"$Y])([ۏ;SMYKtnjVQK:ܵq].N=¾{E*:o{wO`e#(\\ įTԠٿCV lB윆!;4eUh51n:7EX!F3>ynć WeM<ݍZ6#D >3D%!#t(p'FleYi$ȗ4+L})qFnY0nr.4㬜% .j#KIK++uNlM$% LoHbs00 Np^Qڥ-`M. XsA c'c\G{-wmX=5`*O,U˨ &^wv rg1t2k3`c% @,G?7UA3h9˰ M}nFo7 A 鰤eB@3{g0%s@L#u+8$c 3qAqm`tf5^fj? CveZ 8 @] 1|9?YqB:^?4W9᭏q0T%8u5% pq|^'[&.ep4ëg;$sb},鋱?風1&gWJTB6{M jA\ KZK%f #$TDlCLqD."vl2JvХ8gll<֘עD+r#HJt7lpT6-5]XÍ =LyZ빒Qt;P Օ >;Ұ$ǜ:CbxD. 8:Di)g2m0U4jƔSA~yq"( >|W6')|d9j)Q ͍KpVsb65p{ȃT5i2W STS ͼLwg دV `#c+i(w/ղ!#w :ES.5?F[&{ r/@;:D?)c۝7`G-&=o)j*mM\q@r{Z϶*_%C38)STR-'Z|#tF`Vg6 Zшf!7:<\-DŇǪ̖Ī_TxůI;  Ɉ/h6, .1X~־hl W}^МM$jb1TWS.GKWLћR|cSuCQHVc=(U@S`ݛ`k[sa (g;mҠA%oi17@=>s76s8F&h\s)^6&ZU cTƩCӃ%3睊3y$dLc'K2*!ì AS-[ؽ&&+@^,wrOSLnbB:EZsر(q]ƃqItUdv"9v!KLS#_,5o,*{'^m3-q&,.Kh/^OTw4uHV UjE)JoLyu\Q(S8J9QߏHLc5!֚ObZf&xow[W=͸|zg?rvT-{/S?INR~29`i2HR!PXؔEf]e;@d nC%-ƅlR\.JLYF!y~EA$l;%*jAg[ߝNa37k.Wވ}.8+WVVn0eowpH+*M43MAxBF: Drۏ-X Lj}p{ QUX8/'cعbynt2c'`MYN(hi_Lk~=[î5Br<8_;rV+McDMu>tc?Iڤ̴7R*;LضPw;s6~*Ęr Xmr%jh*'V?ŀs%W" xI'0n/89*:m#ƶۯٹ!\o OÌ&=b'j_NZ\z7PwSZG Clpz{C)S8f%HXe5 W8uMӵfjUou4@ӊ•ҞY#POky :Zf=( Z۬dN6\YDIG>d\{ቝ]CO~> g` 2=|?FG\ט3.R,> |E{>m *#ah#@:b~V <(d2Xcm)mΘk_>Aʜ)tLI.m5S=tCyUoz$ 5vWY[k j)k(xż8'%_vc6STu?sp^Iv~.r9~&0Kps* ilYʊulAdt^Pg10#qZqEŒ J=, Yl~|eD5eqvAKCT5J6F'Z_Ay Y׉Qx'w.:xeH}ṁztqLE'>FXfDfcVqg&Mt&4FL ENA"wA$+,7bGq?>z4M_7c{t5Q ~fy576ggeAcAZ6+\ _!AFug*DoHF˸Y6wz'l-mk{ǒH2v}+; {m 7tC*36`wr;U,_)HwN?3gWcP,11kW!^ n@  Zz"&-H>6nz5Kz~2'J +&#OSo@W܌țB=C Ѿu 0Y?b %gp4JoMAJAZoGcG ;@ȕRR7V[?2"Dq|tO29S ]qqP _wC9k};uUq4eyٙ&υ3dR(D0M]9i6SC2N ,x$(ƇZ^yMlȕIilHzq2F{Ӂx`aІIf=w=LuXڵ*6xZޱ>hOB8Ń%lbA-Ah4iG/~Y:S_vJDC nniTҩYA<[Lr`1+߃a\XGs8'V ,2;e*Mn\ºGv.<dR :x#؝…R젒gWܛ9QkP,q^WoaVvJ G+<"nM/{دE}qpAX#I1")B13hXuO{/҉1/,6hڂM%zm~mqPyfmH34F$$µKkeX٠'thcyE.9+ܮnS3 ?=b?͓X-}c_ܤ`$M-ipZc23X=lǧ%ŕ+ 2پB AʐŞ̈́WlԯEڔ6]Va:p:!Z% 1WVDV[M'st0q9P[P⑋/sVE<8WV wgok V`(%!aۀ)Q0aީx`AH$GAeǒ,[|Uegr@ݪ0 c  Lu\UHai[d-0*݃3 "X)k&/?7% `QqījFRg]#_Z LU(sw\5vOR0ǰ :\*KG/?0HG+:IU&4r"gfT髮+MXu]jENmn0۸$xӏvz}Md6i|O BlO>)L PFխ@6۟%U3Y`vVmDŽ|Ub^V&z.n-X}lea\6X&aд->/Ay|:dC⹬*]v~s] )d_eb6~=Zۋ9ɐUI1&d (%ͱY*%A[yr% aغEw xHÝ:xyOk#A&InmFo)\:XZ2^Q[$0摷S:fT_g O@tw+zw r+BjJGm@.F rܜ₣ %zqŇŭ)&rHp9Crq(JB?C j|-w1jxmj4VBJ11McY۱Ɣk륂JKo*FWAL. HmK/ap%dR:Ya̵Ŕ7A.zwZ׽=j}R;Ja /^=~1 !]}Xn]`h@nNu]ֻ^%(v{in#4$Ϊ-SCqy~.1x"@_?m ^C .n}zѼp'XaS?銭KG)8#)97*:Ӣc" rjϖ-mR^4< G qV7dI`~?*6e`+Y(L)ƂM۠9bbQ#{tf7K@Tҵ ? B#&y>9Z^/*bǍMH?]Y .0ee5.|.fS= )Lv2Jۻ1Ϳ. gR*?]lWxa}h ſ$\JśwL. +*s cZlBcwAl5nTu5IMvdЇ8lA`6>:yRT-rY]|x:")7Z5 Hѝщ}gبK>.604:n.mbc%\_i+#-~zih 4c]3}ljط+ ą-#[^ lu۴0!1.?JΡ3l;Cs+Ǝ[eeNa^yBD=zabr($]?IG)~2yRUpd+].5$_GɠZ9y?=?E4Ź6@߈qfP~\c.-!7wO7/uY̐*D7g73TbuQ/QDT"t^td)}!&,x﹌J'W5suL<1=]Z`:kXn TzXaU5z{\b3m`~v)Ʋ }9^Ò;Qy=Jܲl)er?neG,"RQl_ SGq`QڲHRhGQ׽YGyVGpYY M8 8֡"!&DL\-F.ŹN|cgB0P8Oxyp+ˡO٫1B-¡6X00L\ّZ4l* 7Y-BX˩(#M WmQ;tJiaErNzfנNKgBYC0XUPվc_dli2j?t'$i+u?ȍ85{ɀ5iy} '9ƉVsOTHx|8x Ģ3{_ZXBe%lDb<ѫ%{Z"W0(Q)[4}6]>ѮV#; 7K,@/xʨFL.1A-#o|"r$kCqq8p;bn#$y1uHԓBvvW3'e(bBzq;o5IϡHvJq/ԋk6sGa>A\ޡCA'XQ}Ck$'fGL"ɭcM%S]/zM]5e4v8r@7Qʇgǘmr74VnVevjg5%j ߶txE>^(sԵ(!RVҊo&XtZ#ב?5A֨囍zeb۟$[+TZG+ug]iQvz8+|69 QLQl,}xVejO7} Bd5Hga'ec0[x٬V*Uq'c~Y@cie} c9gv˱+-"6@8pÓ?ƛWkSM:[x,{iɾb_j+g=s 㭙s5QWxnv Dn\1^VB|?XO]|凌qɈ^ 3DN2C㶟J\a܂ -)?9R،4h_FNU(ȑIy]kOH6^IӬ^WAL@&%U%ltO!Fx3;"N@uiR X#eй5F'nшxDŬCC)=mPڛy٪٧y%Z٦SIuIjp4wd@Ե$RwB=u76B׷ Fi 5ce V N|%\ިAD w{Øat>cl1'h씧k^~銀(פn9"`9R`ݱ3{YJpyx!O^a~֏Mo !wxW/-a;$XlIe!|U.fkڛ :nJX@,2O) _r2 WV[zO/@Wr,O4FS:M{Ͽ.\ҥh-ⅠyJyt eR \4P?[R-r[wǂH# (LY(~W0o†er,I4ټJ N5QJLXͿIaD%R9(ZK4"dSvӾbjռv©OMs{Z?U( ;HJNaX:z ij&E2 t8ia_4 vF=y_-`G+@N7cK=uމPšFI#$NӝUcT6 ᬴d5!T6GwG8}MVt^ϴ>P^tB6u\H/xF_6N3#xMK*I,Ų=$8!6 )&?؞q,Rد0x 1$@RNu(GJ7m9f0z-29gE.-qXvc2"s8 J="IhO@7+ef26 :5TVE%y7RPAkE #6qǬٮE\pqgj/Tls5'Q>Utez0ZH=݃L]L;Ҁ[\w8ӆqV_v%κQjTNMً[E.I'~!3^ml8X;".|8-ZX hI7x]uiKtp' y$24oI#=IOGnSjxi22q#~-+>GQ:I'+(gxQ?D8b֧W_w;J 3Z:mHƐ }VQ蒾h⃚Œc5,x-<֔'"ƾK-흞DnoBVw790q6^44VU[1 Wb\Lxp$Ų>s>șNwXvoO/J{ݤ*ψ;vv$ѕ4FdI9଀9ܗ[=Nҕo &h ܃1NՌsLo$[G yzri1UK8ËtX T|@.E6&ۜH{ ({ ^Mp'yO \ħnn*V d^tO#Jnd[ney<~W*>D xVg[2G*Hϊ\hg۸/~!g+0PfYyO]{/1D$u]~5:'l˝S WQ`:TPlȠD.$@nB0]AS4X?k /P`bZُ6lA,@X[K."6x $RiwʼnⳫF;R ;X2Ҁy/4l+ ŀWF=aW`VM6ZYS\wUPPY_ۓòMz4-%Dc(?i߃zXs_L $(Iy&rt.ތP_ZМ!%Lcdm6'5^MA8[eq)TuW:b$s'C._>4A;b|>f<7֎pPFf܋n2p*/ʻ-AmA(8-&_J"J"RZL849N4=H =Ύw"Z2y19)g&xݒP}S'|IiBH> ҥp_z>b';Y9hz)roLF`+QܶLz/3zޞl 1pg[iw&>HيJKЀ*准"aYONӐVM[;e t_ n^ӘaNaa^П}WGK`͘1ꞓ;l XZTatV >3"̌c,17p@ݎkTD hKrۖpݢ:v;o{MρD Hֻ `y5Bky7 e,M>.QN~~ž:5f4@p5=2FBH n?fis2Rcts&E6ZE5(綦3w?vY uEzt4'kQlg׋;!ɋ~b*d/StiIQ;{ }`N?UNs8 0EZL~HfE$ZU/aAV2q8tRFmE]V"38Nx<Hsx"J:} p=xwk`FHSWw Vo?U'C<9*d}s<3b&fX=ze}He$yfnxjxfFme*iw9lJ͢9Ͻ!(Orc S<[$@ZA Az͐jJע7x2KO^3_MzK"C"&O?^%48 1TQ;9 nMG?6!f2[ )5oJ0G*"qgmheīϛlx!޴+;,KSKeJRnJ-f>҇BQH" "BNC88Au5p>$䬒θޛWs ^'GjCw=&l 63EGsrE{!MdJ a)|c04!;U,c.4G;5"Y8`'Uq:S~bSx9tB] pp"Dg-6H/_\s:v~ 252^ӼӃ^ib-xTz$u 5{*.8qý;ɥrB:ߍ "/DKB]8}@ҵjYa{2f⯡ӑE1!_=26g[:3ĺ፻B4A= 8–SkRh[+iW9|wXגri0X&5y2h+jn&e~ L[ꙥ[-0N'm_$7[{@.)WВ{H씸} Dp*>!"*J2r@CPLoxB'5#"VqA kQ( },Vϻ9MjobLU);f/9#쮫,T2yIƨ 00Ɓð? #5u*\Dqh30ۃxB^V?M: ( V"ǵSV1nhg]g\LЊaY*bT#4rAKW:>$\pP=/ta*8qÓY%xV);gn,pK5e7= 7̨C:KאDh7otQSRgr|vdܛdU X`pNrMb;oyՀ704%k{vUDfjWFP [-QdRt_ao`!Iz8!I 9Xx1 F/Izftҟ 6x Y(mq E)Im ?Q} EpD PNdsVVW?FoA gp;0m(?Ϣjz=d%UYs&3K3v @I` FKkjBbcz4K1Q$YI ufʻnS9Ѣ +K7s/cM<^H]wǻ:v.g/ϔxjΙGBX4 USicmFV.yiAlƾRL>f&4C+}LSS R<j-ap?͆s N1fI E:Bdd-׹I(ټq}z"ai{v AItFDyyYȬ|?PY'DH)r 6Hkg"à7lqo>3 $)Lkdm'I 7->&s3*#4RdA8WIQl%i L0k;+OfÎ*"V 2m@}۲*fNAdG}zzY$#;4g2*M*m;zt=}*%ξy'OҾqkƜmٴq)vzB{A6}挅6ȼήYFkDJ63Tƿ e#'Sl#^̔kS$U0^W&ڶ8U':bU Ot0dL59`ֲ I\ԋ~ӸD:5,7GhL/vYw\ |fYl_{ H\P7l[u ~yGxnM4m'Z2 5-@; p 1Vrꠄyp7p:qGd~Z>,wRȩ/xy&h,F%hi 'ptE>_ Rݶ եt0K#Y>&G:< |Oe;(OR_Ruȍ?ᜈY (I_'%^bߊ$ 50/~WwVDziT^Va8ބkxZ]Tm5B80 7eQB69KZѺ8W]]k״z{mKE:l>S+20l"l@X\e 7x(2&.\ViLm=v:ڐ=ցq<;Llzqjj}E/#IG ԅ# j=Zm⚔" Z̏V뤤X;u}Âޓ \$ Mw <ɣ Kcgfwq | V4[W7X¯I /1gtƝYQɪS|QlN{л$uF@@?j"LY ]L)2]ݢzmdX!uĤj@Fɻ2PzZAt2'zݬ*tu6Tk(C Gyy/HտAVE6Dn/ovڹ_%+"Vv'9sn_G͚ OܼR Iե[ҕZ&GҊ.NW܄Ⱥ+Z\Ws2EJ_[$2cQ $ ,"".\֩V9elJAE7o3^0 u`iu6E&+޽^㏡`;f\{=ir>5R5}yXwђrDž#B[}++Ж2TOҩRHl Ui= 0hHP*ڞ:G1vbfIZ!]&GPK  \`+x5U-_C%H>QÊ,}[4@L"a,MXxzH\\t5Q q x''BC;MV5.æjpRpQ'!IΎk`6?5gp..Y5yBsH5-=8?$-ȼC$Oփ0`^I}'P,*!_+T;dv͠v>8*fۆzމ};<` !gf "GFZgCtHddف=dZER { UOSن*;|+`FL)ȗUA?%ZmX3xF8qrNAO{\_H50"x Hfj+I= <]U֖*.%y9R0"()D?g؀*:^HE|Mz2~,hS5>Va G61?ڝaJg)89&R)dy4Xiq+&`=oy Cj)1[$cͫ^C1D/3~nmR0& 1XW w3 N3g$䤺n^dVmt8"!`sT(ܻc=olfO{,-AR0n O x A뀠LWS|0J%.(ur/#E!A\O[?i౲ v,p+ZT|q.6?ViU`e~[%S5b[C[ݳS'flxo}zA12.\J?,5ewS2Z5NT D)}cUHs<;7d z1‚ȓ <|;_Y2(@B6,=Tg]{m?ziw $pmϙx>*><h`zwsTK(Lj O:*vBuO} }Bhʗĕ,(YQ(XfI"4a 7Ws բ>4֥o%;5#3p;<#]K<$%TxF3),R6EԚ*S$x6}(< )7T PʗLK:6{8NT;eF1u  jHB7 wV8wR6";_1utGBbH9|,RdB5\Ω ’ 0u(1ASfֺlpn][ny1'e?U-z_@|GWy)xnc9?ÿ6  zYZA=Vf夕[tl4׉@([a-=tz4z"<+U8QۀSioT+Fֲ".]Oqڄs]LK8ze2d%UWwNkR4zOkJ |^>!׈Bpe{r8/Iq(ǰhJ=xʻz69`TbYc%aj$dhG40~$FL>y4Ǻ"{]NfU McP| 4)B&l&+8dM߸Mhܤ:W+ocT gi+4J*dUN0]$n(1эw$Q_5f4M^wu=1eqE∸軄2c ]"26J:|WV{ wWSԣёiXVrKxI"`ç3')H#bU3R2lBFtPt g)R/,20+OBS>^<xcm=e[˿ k@Th6IJ_ml]/UJ]u{1YՓ{܌Ɛ߲ߙP5o 9b2m9Gm];*7n?L}~nd1^86hwy-)El_GrC>tUzV - e#cwj n5mHOquȦrHl.[ F޵uv5$ N"Xj }% [uHؾh.҈NRk`"'tϜ($G?rbma&pk^JL¦zx Jb]G;LL ku{QyV⫯§5V;f.dx{q7)XGM-HTIg/|]L#[7U *xPڷtO6GsEƿ@چAX3#9Oamb0kڬI.=f$^6R9*vk[.9LzV6q^}Dz,k!2j}sGnpraP/Hn"^6Ř+'*!8Mt7>X1Og" YT;ѷxQ0 nɵV%t~4~^ۄX S3x"hN+Mjg[Ͽ'71,y:J-(:лzH>yL+V[n:9d_qySNFc :&L+Ɏ Mdi' k1.zA;|x"Q:u]"V?dS@#@XqZ0d PIykT[-<2og1U=rLӭGƇf>:s,CI&`Sr*"ĂnR;WVU'pP܄ߵ"%\A?R^Vslʚx\E%la gяW|_uԯ05JUsRP\Лdԫ %?8ntOYZd٠U'܈*1\iuzZωl]ȃ+i%H&ɯ;Lxo'a 1'=5>ğK x2¼آtݨ\^$~9ZO^Sa:$bsZcSN, [؂u#֒A*lFyO}hQ򑃂 &{#r/)rgeP[V:Qlч)@Bfr~2ꭟ/o>oqXL7d\,EĘE~Jh6JМ;=|qۤ Fdtmv"Ŷ-W29Ӈ/}5 |X^u!Yz닻D0\we&ϞuZr+vD߃X}!q~- )q0u,:gFif<=Ҭ(à!"*EYjZޕ듗"KB_MkT꺣ˉ?vr&54ѷ~x et\$E+~Z 1UvN'N{ h7詪&`eIJ6|{e@>fv}`ذPMK{f:P(pU%bopk"/UBY' 448ǿ0,vvty8f" yMєE'))5 ÕVk1O4aoO& e{԰|b P֤װqri~MFpn81 $,Ņ1w3[촭#\l&n۰=Vv gcDX&6?qۂUI֊by0C*mX5J-p1LU ayd t$V.޶ K0֠uYh_,bmϐ i"@`m]n*n,ҕ<n>OȮQn:v¦,K9ϻb58 fLEXx q Go;MF/R"ژIf4sIf۵D 劁Ylɜe<~T&"X8L7He(ۚw uL6os?R ^,"HG8ljmY(Ӝ'qD7~vUCά[ u10hNaVҩ@Nؾʘ3wngQ; xj.qD 0d @ /xQ8=(K9ԄQfΟ^ʇP $8 m=fPir==D+s,< X}@mx9D1G) | brEIhI5HDY oY#?_0Gac [b3A8f8wN͖knwv"orD4_D %Yh# 5ybS inB9 ?)fo O&4`z!>-S"iCJ\XOľ]vyMx,AIBiVbom X&MSДE"n)yjHVgϏ66CEvAׂ:T=\?L͉uz7dtӮpw0it(.KyY#b9̄) M颐o,rM6‹L˱i t=FDUqJ"O1& .\A&K{W}" z|&0eq, \LE?;1]UJH|NUne*/81< „2CԳNZ#9Z:q5Řuҽ"ޓ6`T߲*{g.o&.0Z "ݲBb'n3=! M1I蠯cO+ҷz-9 unORFG" e 6ڼ I-;)p{ j`JDg B/Tϓ8 IbMl#RQT?vC,,NY}eFXI?UB? s:$SFxbXGg"6Aѓ8=`ƥQ^ TE|mw_ys"y3ԅxFK@A$CtņrƑSF-+2CBd3^A0'#g&VfK PUg F>b4l0ɮLЮ#ܞ o 6IS'pqX_g/ºdRt͋/̢4L>zB/?EQbg]Q l GPhb yc*9 _ dhmG|z G\|0}8/,mxq/mqR̖59).ވ?F/h1b7G9eL?Q[ n.8Ci`q^)7.!;UR'ί+|ꚗ R ,=_ ª%8\{f|r |h =kkõ7ww ;"CН0h=k]nb  kxx *I 9p-[4ev'ryӇ7:yJ`Xe挄wL!}ǟ(J GT".{vsBSd Υ>s7v~^gpV\dda¬`դ!鿞H4:<=SlGCay{L>M]ccEgtG<>X@ΰIRt2og}rʉv2rfRUE>I-9$!\y.Ŝ}@VI3˷WH1RCVJqzdrYCxXݦ33`W[!u,v9\ӄ[r]*]zBV X?ƏSFf>(N]IOMRX5R?q3T('R:%mzS@ЊEJ1TnIbQ*0H.EM##d)*;7C <]kKc-aZsjܑN9  &5*z.G2H܃ZqAW OsbP;"8^٩Ȓ`%{;Z^;i[]U7 f>"_XʬK۞6f:UЁkub;fu <,B\;9ĝqbCOPuk4C, uR\e\bZ(kۥ)(˘3,4j;=&jΗf KL1vޘ.KH`%%VMqy䅙g.UENI^7N`ڕL Xaq]Vej=d{q<& kWDԶǓtR;_V@9֑eьUO| Tt48^t>EE*#Yl9c8N=r~>W<~0' Ug=d ܄xJt}y^;R@ E|OGf%>..o$R8y/] '@HÒru)siy!6uS ş_)kA 1W0 ULL9Spe]#.l5rk×,%Y%LƖJH Aw5b$ a])v,9?. zJ&@axRkod PCzݓ4bJSԯ+J/g X|F"Dzq"vHkȷ.<+3򮉪kV g;HcV#L6'cB[I#pMD3W j {`:s(ɾl.`a^hy' R *ErqE2}b\I^Y+q#ZKDZ ڮM웋:nWL8,;|0 3bثfiZi7z@X*|!1P)vʳ)Jic}yЄ^η!#D貗=#)}1z(@Ă"plOBᢧN~1iFt +LX.2S9/%-?LvPj/'CKtPwF&p(vp:H76幌/Tkx #ڇx Stw.D\O;ޗ*,&|C]I˴9jf\UeA6\0TZ [09G)2._t r=p5go\U-!5~Q0Ej/+~fe=GDtE N2 d# vVj'-ٙkD9_Q2g' he\m}U80Œ0D51.u hAʠ\d1,Nef!vhAIڐjfopJ6T>s-%(wqQѡ%`2.ij)I:+TVI88oBL&n-#g0VYFXyNǍb6;|u~7?@gt7xR0boE*΢;5>=w$D {ªBViNSCr0n8~n xJ8kBJY) GеMj~)y QsЅ[zZ[0-x[W,-u1H.~}F̸1=d[d5e[8,wCNuKX6.7?@9bk ¬u-18Ea4Uz`B]_k&j̄mcxmk4E6lN.ZE`b#%ehKv k?/hSÙ>BbO,JtׇvȬt #!Atu㋇b7lʷ@!."H`_1p|33(Z<7x;Зôe1(qNCS!3P%c\H-e v.`o")E"ئ7ߴ̈́1zw}>߯$ZF[lG)?:cJp 0}OXs%(gV^_Rt{KW:#P xyy7))?\6V1~5 $]Lx1HPt[v-Q$idji"~`l I*=5S&nIĚKzWːh3!n̉j;)GanKl͖Z{{JAx 7+yyk?ى2:5-)` Dъ[}oKחrSAqzη dlӪt@ *- ~Yz2`(P4ڝ/vGr ?FdK{uS߄/a = VMIEn߃12eAYd@eCF^z?iąp"Nt sLodH893M*$D%BZWoL]mȦwwd_N/aAC#bҹ- 8岆g8ΐ֤围%d!`Pͤ9 Q }%9~N>:^z~uqKJń*ǀKM8˘!? yҎsISro=O>#)'ۖ&ٿ҈1Za04H7W[/klT7j"39ԙ̙ƬhQZ#mjTi Ɯ^բy=MJ]%%yd,3cH є~z3RhY D'V`$h7!Pְ1X?qꏭs)f ۠Fpw].8%,cw/aP>W"B.@B$Ԡ7CLm#;uSa8e9GɠDkD`ل0Þ=`EYJP@E˜ sni4уeCsC)3 ,6LeyM#^V,;_hۚŎQSV4g]xGh׾)Ił NxcaXJQc]+΁Ua^u)3Ma&+KSI  s0SU>_ G%DCb 㕟UGuW =;kRbu@Hse[uؔw^2M=; @\WѦtCq J†