python3-pykalman-0.9.5-4.20140827git2aeb4ad.fc22$>d2FݾVa>9L?Kd 3 ]X\ ww w w w  w !4w#w%cw''w)))*(*8*9*:-TG.wH0wI2wX3Y3\3<w]5w^<b@dAeAfAlAtAwuCwvEwGlwxIHwyK$3KCpython3-pykalman0.9.54.20140827git2aeb4ad.fc22Kalman Filter, Smoother, and EM AlgorithmThis module implements two algorithms for tracking: the Kalman Filter and Kalman Smoother. In addition, model parameters which are traditionally specified by hand can also be learned by the implemented EM algorithm without any labeled training data.Uarm04-builder12.arm.fedoraproject.orgDUFedora ProjectFedora ProjectBSDFedora ProjectUnspecifiedhttp://pykalman.github.com/linuxnoarch {MM%/**    ((eHdR+R+_Z^,t u9"k[Iz O7 - / s3'1! upkm\E/ltkb,":(Rv n'rlAA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤AA큤A큤UUUUUUUUUUUUUUUUUUUUUUUUURӋURӋUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUURӋRӋUUUUUUUUUUURӋRӋRӋRӋRӋUP UP P P USdgP P P UP P UUUP P P SdgU|UUUUUUUU60c24b01e4f0ce03abac0ce5219e13a1d283242e95578304ded6aa064f6bcd6f83dd0ee3dd797c024deb48ff480360f83596c4f8ad764efc057b2e3bace2d29b01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b3bd936aaf0b4adca5ae1d8d2906c4e6f3634cd3a17e689442f56f19bac6aa9b368ed1edfa3a7a3e66ad537ab6c49350e1cca53e4112f5eccfc2deb64311e6c95786a9842a605cac68f4cc1f2d94a2a7fbf335a08fc7fed0489c4c23476338e3c786a9842a605cac68f4cc1f2d94a2a7fbf335a08fc7fed0489c4c23476338e3c4b97b009d13c0090c536331c12d8e47e3a2259b1d77b91aa20a1a3ca4d47480f4b97b009d13c0090c536331c12d8e47e3a2259b1d77b91aa20a1a3ca4d47480fd87a2740ebd0be625d6e92f0f6d5ec448989de4d6e37c3ca7ef081e0e990138cc665d3c451f17a2e4bbccd61238527592e86144c7f4c57ea91b0f5b982ab359345999ccc8f9604066b6f43483ec7547ea3b02bf4f6a1c4b1f6eeba7f03e7aeb545999ccc8f9604066b6f43483ec7547ea3b02bf4f6a1c4b1f6eeba7f03e7aeb590078746da26a8b6854cbf7a60f6fcc5315f8d3128be51de7df76a90c1510f0d9bccd84b6de53102577165d3d34a521312646fae749ae855e1a6d2007dddfa679bccd84b6de53102577165d3d34a521312646fae749ae855e1a6d2007dddfa67600c62f93c30f264a32cfd5e9aab2df8c7e7c1965dce82f0da67f9a3ae14252c600c62f93c30f264a32cfd5e9aab2df8c7e7c1965dce82f0da67f9a3ae14252c41692345287abb8c11360bb7315abb67e2a1cdcae0c0f349fb97a951da99b37021b492e604148b2c27afd0b71485d3ce55bbee23f14e167e0db7937dcf795a34858ce9089a6f8b630de7725a00fe251397a785dca83a91a025d52274bdf3212be6dea1b27bc959b8cba6ec60a0afc24f794f82e322e0817e427d0fc532f7f701afc21a19fd9cce3f1eaede4c9f50a6c5d258ebcf4fcb4736d4220243da18ff63afc21a19fd9cce3f1eaede4c9f50a6c5d258ebcf4fcb4736d4220243da18ff63a405aa6df2b92038317ce884ffe7dc1033914b290a2cb41d95d923d864215bf80281263abcaa9b42ac5a1fe249dd12db81ee9386c3b5da815c3429fb34f3a7109c8a9446fe75f89301cc6a7b9be359f203324a63f3d5ca341bd41814364c71729c8a9446fe75f89301cc6a7b9be359f203324a63f3d5ca341bd41814364c7172ce7b961de07e3f19784d3e1ebcf3dbde94f07d4095c1c15301c312081a95e713ea4b70421239aeabdcd0c49b11370348adb5adb812a6785525ac406f39c75337c63986e4ddd2af2a127088a33bdf74f2144ea55952130411cabaad82930118e2b14e8a8fcc69874662de7ca3b966499686058493bd7f36cc75a8c9c800d21fa2e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855a9ed38b1fed1f9b7b9689c028aa1160c0ee3dd6dc2a2851177f72dd84a2e9a59a9ed38b1fed1f9b7b9689c028aa1160c0ee3dd6dc2a2851177f72dd84a2e9a59102a275bf09110c6a5d2f7999423b6d45ee72c5b97da96271898fd31db1facd9102a275bf09110c6a5d2f7999423b6d45ee72c5b97da96271898fd31db1facd9227910f224d3e1af549738361685cbe9fde5ad552164641d3eb04797a87b692e227910f224d3e1af549738361685cbe9fde5ad552164641d3eb04797a87b692e532f620f815a375f82c755429fc9ddc130136a2c6c566ce8b406b0c8c37ba6043556083aa44e1b1d11864d30d557c3ddf4321e9ffb8e66347d55722c923ddc11dfd5d5d881d030115779c756c7b6fbfe248621d57b9bff78d52b14ab145ade20fc868789458186341d56e0606ed9421466e8f9768e481eea0c5aeeea77a9dc62b76f09edb3129415446242fa0f838349dad63e3c166c972049329db3ba759c58585e8576635c7822c5157def7ad09b8fa8c599cb880e4bc05a6a48cf5b528b8f97bf2ba1acc153a66cd9bb0515b7f7bd3326fb9115fbacebb2d298daf5d08e76e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b8552539f5ad13182252c77da55a73273c190c9914b1ab19d96a7a6c7d0435f7f0c12539f5ad13182252c77da55a73273c190c9914b1ab19d96a7a6c7d0435f7f0c11e6dc035056a91ca7309a2a5ebbad3b563c32760d2b1aae6495bb77918c19d371e6dc035056a91ca7309a2a5ebbad3b563c32760d2b1aae6495bb77918c19d3746fe9918fb1fc5ab5af5c78c3d2a66c4b629f14b60398bc077269e130b3a176a46fe9918fb1fc5ab5af5c78c3d2a66c4b629f14b60398bc077269e130b3a176aaac13744989c0bd023b91dc10e6da8615b04b62c734cb9e9f69023a20ab27a4b1dfebbe60fd6494dbed1f94859f2b723f36b23aee95ee27e0008afa6409d6c7cfb77e2f377674defb77771246ef174c386c64382df3fd87b5459aec6d9266e85584cb72987cd654a78c117b242242ee558a15787ef42c693188b036f7ec761f7955c4a7295eee741359e4d0eee69bc837cd67c546640f00d2e4c97adb4a6ca684e0f90ab5ba93bdef5bf8406bf89b4088a74a44b8e9d2ab1f21bf5fd80a025ff23f3158391c7663e98e54d291c26424212382dabd47cf532984548e9a9bd9aa51af2f7e3cbddbf84ad3875b66e0062e69c728ca6e93d4167d1e55f363792c2e2c17c2932d66249640b6c49207cd1d089a2b1d55402a06ca0aab98fc3236cc1be7c7d39a68dfd4415f82d695a2bf8d503c0579398175e0ec7b2799bb41a967d4073070137623ddae31b8f40e7243e9dcd228461652934055e44e48570a54c329692e0ca496895a899dda38ca3264560c3ebb367435f1f86afcc3440aecc4aedf0105e85793c23f758dff54c859c5a002ff0c56eb079e0a40d05d85009ed63d559a4849c307e4c23774540e06618b54a714cec80a1efcc16c529da299b424c89139c7c07eee15763fb2cb33bb39cc785e60204df777cdb6bc741fdf884e0a3bcd317e20145740bf0d963708de31180a57d581ddaed883343219652b9b2d8a5d1e34bcf3d2a0f6af1b336597f6ade597a2fc150095e8ac556ac0b8db8714b9287d15d045fd991ddf2b208dd9bf39a591f50e6ec793416e2867f54e8c6c7e89b68c226c7e345c518b42e39f951e7f943cc131acd0e2c419c5b06c15e217c84741b42fbf050c2a28e6cee57d0cc9611371951519946dd4997fe16f22e5645034ba9ab3ea320043e367d66516cb66f175a015c64199b44af409b83d91209019ee9c530d3eb24bb509cbc6bc987d9ee2df98dab9150931aafe02046f040dd042764e605c9616efe433189889165448bf1c06aba4073f421cf75f571bd90d0b454789a2eb985b74d8a9058db62b962c91a3c6f1da1d86bacaa0eb5a2142fc73beb537b630e6472317b0dbe74a73361c7cb16681c63747fd9203b2e244861ff543bdf6ba26ba01d176cbd96888354284a0c9dbe24543b81f8c47a64e940bb5490c7f413cb1834b8fc8c98c09f88cb2264011c3ef917fe651f2678721384c0aae346dfb06261c6caebd23921741fb5ffe6603f16634fca9840c2bf56ac8201e9264d6daccf141ae2a6288687b83d817f7fc0daef577e43d1410871f2f9fd1ceff0af825faa55fcc0d9d9d52070dae60f646ec56c0dd111be1c13459b06470c7ff5b6f2fbf79f6fd41a94fee69490d957dfdb70363564b2c1ed1f007cae7261d17d0a5ff1e48d76556f2d42e141a8857180e46e2c6111ad6e2e0facdc9738e5aec6282f4467ce82f83d6aeddc9a2ed917f0e5a35179abaeed4d6723db6878b356b6daf5298442d8fad13bc28fc726775196ec9ab953febf9bde175c5845128361c953fa17f4c8f4ce1c60d51b25fcf8317e1371b3fbbed3262199366d90abdd4df9d39a658e36946056f97cc557c78918d50b635167168d5252523e61668746f3a64d1139c360bfc4a4bcdaf2dcf20f1c3d2a528fdf56f27b3ae5c4418366514defb3a7e3ba79d4b9ecc9b074fe53cc46e994a8a8d3a1b1dc9a9d4fdec9eaed0567c5f6dc4d5cdb6b1a5f85bb7538b8cac29ac6bf06dac14ffb02cfd43c31518fda2da2f9cdde087f9b2c41c33b54d7b26efa1c288ff32603d78734944064a783f596508e2041b28ed024dab9240fb51cf99a2cb21f061dc9d9fa16cc22b937437142f351a706e78d4c7c1bf303907c307ac34e25632ac67eb71d772ca1963636792d68fb833933b4d5f297c2d46d18361fd459ef2995906fcf3ef9d6f4db71bffdb38d598755d2b84e116e9f84f58818a1d61e647fd08e0b50fea155bd32c0707a27b0793f09fdc5a294eea179baa1c79006b58f30398d0606d7200470fa5c23cf23377e4ed895ac04155ad9a8177620b60e592a2ac0fa812568aa625c6c48f83e4b1594efrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootpython-pykalman-0.9.5-4.20140827git2aeb4ad.fc22.src.rpmpython3-pykalman@     python(abi)python3-scipyrpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PartialHardlinkSets)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)3.43.0.4-14.6.0-14.0.4-14.0-15.2-14.12.0.1UUTTTTk@SvSvAnkur Sinha 0.9.5-4.20140827git2aeb4adFedora Release Engineering - 0.9.5-3.20140827git2aeb4adAnkur Sinha - 0.9.5-2.20140827git2aeb4adAnkur Sinha - 0.9.5-1.20140827git2aeb4adAnkur Sinha - 0.9.5-1.20140827git2aeb4adAnkur Sinha - 0.9.5-1.20140827git2aeb4adAnkur Sinha - 0.9.5-1.20140827git2aeb4adAnkur Sinha 0.9.5-1- Correct python3 package requirements.- Rebuilt for https://fedoraproject.org/wiki/Fedora_23_Mass_Rebuild- Add scipy as a requires- Correct SOURCE0 - Move COPYING file to main package from doc subpackage- Updated description- Updated as per reviewer comments - Split to different doc sub packages - Added changelogs- update to git code that includes documentation and license- Initial rpm build  "#$$&'()*+,--//113456789:;<==??AACDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvw0.9.5-4.20140827git2aeb4ad.fc22   pykalmanpykalman-0.9.5-py3.4.egg-infoPKG-INFOSOURCES.txtdependency_links.txttop_level.txt__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyostandard.cpython-34.pycstandard.cpython-34.pyounscented.cpython-34.pycunscented.cpython-34.pyoutils.cpython-34.pycutils.cpython-34.pyodatasets__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyobase.cpython-34.pycbase.cpython-34.pyobase.pydatarobot.matdescrrobot.rstsqrt__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyobierman.cpython-34.pycbierman.cpython-34.pyocholesky.cpython-34.pyccholesky.cpython-34.pyounscented.cpython-34.pycunscented.cpython-34.pyobierman.pycholesky.pytests__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyotest_bierman.cpython-34.pyctest_bierman.cpython-34.pyotest_cholesky.cpython-34.pyctest_cholesky.cpython-34.pyotest_unscented.cpython-34.pyctest_unscented.cpython-34.pyotest_bierman.pytest_cholesky.pytest_unscented.pyunscented.pystandard.pytests__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyotest_standard.cpython-34.pyctest_standard.cpython-34.pyotest_unscented.cpython-34.pyctest_unscented.cpython-34.pyotest_standard.pytest_unscented.pyunscented.pyutils.pypython3-pykalmanCOPYINGexamplesstandardplot_em.pyplot_filter.pyplot_missing.pyplot_online.pyplot_sin.pyunscentedplot_additive.pyplot_filter.pyhtml_sourcesclass_docs.txtindex.txtkf_users_guide.txtnumerical_stability.txtukf_users_guide.txt_staticajax-loader.gifbasic.csscomment-bright.pngcomment-close.pngcomment.pngdefault.cssdoctools.jsdown-pressed.pngdown.pngfile.pngjquery.jsminus.pngplus.pngpygments.csssearchtools.jssidebar.jsunderscore.jsup-pressed.pngup.pngwebsupport.jsclass_docs.htmlgenindex.htmlindex.htmlkf_users_guide.htmlnumerical_stability.htmlobjects.invsearch.htmlsearchindex.jsukf_users_guide.html/usr/lib/python3.4/site-packages//usr/lib/python3.4/site-packages/pykalman-0.9.5-py3.4.egg-info//usr/lib/python3.4/site-packages/pykalman//usr/lib/python3.4/site-packages/pykalman/__pycache__//usr/lib/python3.4/site-packages/pykalman/datasets//usr/lib/python3.4/site-packages/pykalman/datasets/__pycache__//usr/lib/python3.4/site-packages/pykalman/datasets/data//usr/lib/python3.4/site-packages/pykalman/datasets/descr//usr/lib/python3.4/site-packages/pykalman/sqrt//usr/lib/python3.4/site-packages/pykalman/sqrt/__pycache__//usr/lib/python3.4/site-packages/pykalman/sqrt/tests//usr/lib/python3.4/site-packages/pykalman/sqrt/tests/__pycache__//usr/lib/python3.4/site-packages/pykalman/tests//usr/lib/python3.4/site-packages/pykalman/tests/__pycache__//usr/share/doc//usr/share/doc/python3-pykalman//usr/share/doc/python3-pykalman/examples//usr/share/doc/python3-pykalman/examples/standard//usr/share/doc/python3-pykalman/examples/unscented//usr/share/doc/python3-pykalman/html//usr/share/doc/python3-pykalman/html/_sources//usr/share/doc/python3-pykalman/html/_static/-O2 -g -pipe -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong --param=ssp-buffer-size=4 -grecord-gcc-switches -march=armv7-a -mfpu=neon -mfloat-abi=harddrpmxz2noarch-redhat-linux-gnueabi     directoryASCII textPython script, ASCII text executablepython 3.4 byte-compiledemptyC++ source, ASCII textGIF image data, version 89a, 16 x 16PNG image data, 16 x 16, 8-bit/color RGBA, non-interlacedASCII text, with very long linesPNG image data, 11 x 11, 8-bit/color RGB, non-interlacedUTF-8 Unicode textHTML document, UTF-8 Unicode text, with very long linesHTML document, ASCII textASCII text, with very long lines, with no line terminators  !"#$%&'()*+,-./012RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR?p7zXZ !PH6m<]"k%.pa CG!G.W?k۶"HGna Q1ӳ c rpx@G0#P?ojL[`$% X_3-#%.3  %ɸ}6z9w,D?B2⒦ew/2rg~_E5O[o4vf}Q8R;[1#ѲTb輨E͖|nra00RK!/*ZWspn>^]"{hٿSEI\V̤ 'IX0jFi0ˆ"ʨE+F?@lnB~Ot5flQnG&I`hs;i?DkAX_X!J3?OP 'pHqq1uqm]ۚa>c]#yqI^Ty;6Q:0}_&8cJPޭ l_|7!#Ҵ2hWT>Ҥ.\9K%PhuKғ;k|Ԓaƫ<傮A# o%y>˧_ztg.)vz3}M2%v6uGOo 1?=Wq&~0P>; %H xE F uŶvR/RSD W'ۘ@ C4p@#>na1|+u˦4z/+@|L!v"/ә1hiH|<^)8oa"ijlK]" t0&QKU{'^P.R7%ZA!|+5C*XብUFk֟&q}GdN]+-i1gi)y"{d,ChKǽU[[a- (h3>]85? #( 5{52.^\fq͑Gi'yHc/朚f'kE1Ň:eFvwjQxe;2YkhDlHKs7?( %AzԎ&Ƚ Ҵo:RNMR OeX^PiǾJ`"| 0u>f[[e ,Nfx~|KO,ܝᡮ~fhx=}؁{ gلSRe27}B07fP͔;苜h*q~JT!K& *8v]\=kR+-]UͰ\K4=G_(E|`_ڥj:M1ЀG:q{L%N@{o(̬Te?ib˒֚b)}Pc1TQA1S1mp`lq3Ɗ{6V"ͻmYh7"Jv'%ۯ[QGd;wKxrOӥ!jW12k6CWCDzCR;XY8u@!"9LNI`xq.le|B')7kAX h>њM;/(b[FF׍`3[F\ "qkŊ@rS}Soz6H_X h(ظUcipl@VE&>@pC-T2 A2f.Uޕ$^1=6r&7#> 'D8~Iǿ~Cz.V'B>W [6z,oy Lr묾l'~Lx$X-/O1E~qIwO$ EM_8S\ڋ Yi=WB<Ю%9VN돨z3wUuydpW3뮑!z) h0'0s-+c>\$12$)5YHM_ׄrdw3 9F+^acΝjUO\3!yЭLD 5HSE AP `'N;i"&yÁ3k3wZK`y *r]n#4t ͌⭐ӯV&{3V`iW2,&ԡqdhTDg'P l$ ]62P5 K\ Xt릤Ys |Аz-?m=;Ux dȞ9^bcgowSaa+bxSSQ垓慥+pi*XŗH&d KI/[>%"KVa.DY&<7-8;_4rJh]UD7}M(gYmB~;Puz-Zۜ !Ml&dC LKN[y7<:A; Q.-)y,xO^WS'"+!Ghq;_@,c鉏~`&̏tGPfW DJetNs=)WDpIN+A/a7GZIK? 8T` a<: ,0d}DIA޸dJ_%t|kZBTDMe-3D,ETU'\YyBG1'ȅ$(ʃ wGVsW@Λ\J2uaSWbuXE+Y]s~kMW8 9ϐo'!"QMt ټS2xV8) mX6z+WnrNv, 'I U mUCF: ꯽sR5X8h#:.YR MIFR([`bäbz$0@ lb+ul3B#Vhp+-=1*9+k(&GښI,ٴz#̱kNF65$բs`3H,DcWXr5.>j75mQ#"p\(9g [*Maj./pGW ]~(GJYf+#NQ0tK%mpyB) i`R p&yrVF%R7:S 8J|ɬkwW hKK>nYp=umdG("6/ad5} / VT2¾Kا~CsuN<5堾yf!@)c-م)-5Sb;~XiLp^>Eڍ}Pi?-%T:uY EaXaJ5~6@v-P|Cjl;5% JyjLn3ЮᷕdAPU\$@Аsd%gae%\+iM5>\L# Z-Fg6;aBn=d#e 6_y[]1*xƗmf 3e4P f񯮎/d"' Ts@jTzB#)HTz[wI5Eb?dc}cHdu N^t1ea* g̚jP>E>Xɓ{Ddj$d 52`kK 5*CQ=58c6aʄyIWs]q5v;K.|8 /vr[Z3|,Ҿ5Z<)WAk=k℔y S|Js^)4v 8z80J\J >`슨R_(øM YZ