python-shogun-4.1.0-2.fc22$>T^7յ΁e[ ҭ>9@?@d  6 \ `      # / I O T 2 |  ~ Hl3\33(b8lI9I:IG4HI\XY \(]^F-b!d"e"f"l"t"u)Tv/ w1x8dy>f@Cpython-shogun4.1.02.fc22Python-plugin for shogun This package contains the Python-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.V!buildhw-04.phx2.fedoraproject.orgFedora ProjectFedora ProjectGPLv3+ and BSD and GPLv2+ and (GPLv2+ or LGPLv2+) and GPLv3 and LGPLv2+ and MIT and (Public Domain or GPLv3+)Fedora ProjectUnspecifiedhttp://shogun-toolbox.orglinuxi686,uUPq J 5j CQD_e .B1;</,&5Vcb6El)/@ P *wFX^H4  NNz[z `_TGATA )$} yp,.70T1,% 3  . e$k  % c nMEhPq4nQao ArUm9u4B0|F 6 _ k  s( WL A(RD/-Z2 |6eYf!| o+ 6P ovJ1hsbw%QI~9/zCP~&)U\ IQri 큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤V3V͸VɨVɨVʒVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʒVʹVɨVɨVʹVɨVɨVVɧVɧVɣVɧVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVȿVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVȿVȿVȿVȿVȿVȿVȿVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVq53f3b4d45acd078abc71ecc4d3766d8427b45952f8688c42a0c5939429d77ae0a042795efa9f28585d74aefafe4d2e1b602f69957c726d427f628feb96f5a7e2e70ed82972784f4dc8151dcb89d0d60711a114586cd363c26b2643c196b14f62e70ed82972784f4dc8151dcb89d0d60711a114586cd363c26b2643c196b14f62fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a6c8548b2600124991a87bd2f83f69eaa9e0a9047b428b3f3adf3f34544a0bd736c8548b2600124991a87bd2f83f69eaa9e0a9047b428b3f3adf3f34544a0bd73fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a052364ada3a4ccdd1778352742bc2ce7b902c7d62f662a1b619fa70919acb7be052364ada3a4ccdd1778352742bc2ce7b902c7d62f662a1b619fa70919acb7befc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a8b9c86db10dca14da353189b832fb232373e76f0cee41926650691aeec1e1b0c8b9c86db10dca14da353189b832fb232373e76f0cee41926650691aeec1e1b0cfc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a32ef359e41f917a377df0639d39c14a6901bea1825b2eb4c9f5c86e8e7c4b95232ef359e41f917a377df0639d39c14a6901bea1825b2eb4c9f5c86e8e7c4b952fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a3befe604af736c88b4262a76c8124c697594b7439a9cb756b66ddfc04e2043913befe604af736c88b4262a76c8124c697594b7439a9cb756b66ddfc04e204391fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a20acce817f8f154387910cd0f9227d6caa4657537c0b8f542f5c56785e13a18a20acce817f8f154387910cd0f9227d6caa4657537c0b8f542f5c56785e13a18afc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a5356d55e5765179f48d21f169c5b8829b254eabc68933943d0968752fdb8b0c25356d55e5765179f48d21f169c5b8829b254eabc68933943d0968752fdb8b0c2fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a8a7b3405dd9eb23c65aa55747eb4c83f940669af429661fcf787c3d38e8ebec38a7b3405dd9eb23c65aa55747eb4c83f940669af429661fcf787c3d38e8ebec3fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a9c8e174a79e7297465b7e9f0fbb0684850d5f07ead6f4a39c42d94c4a3a4c3bf9c8e174a79e7297465b7e9f0fbb0684850d5f07ead6f4a39c42d94c4a3a4c3bffc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5af9de65e008e29763d24ecb70c62c1217d6d245ffd8d66e1b3669ca9ed883c078f9de65e008e29763d24ecb70c62c1217d6d245ffd8d66e1b3669ca9ed883c078fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5adaad7f6ceccba08076132f4ce29c953495ef64b061de65686df2941d940df509daad7f6ceccba08076132f4ce29c953495ef64b061de65686df2941d940df509fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5aa4af911a59a2eac760991dae7d0c149e358439ffa5a0550e50809ce9e5b7c83fa4af911a59a2eac760991dae7d0c149e358439ffa5a0550e50809ce9e5b7c83ffc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a83864e82d1aa2c28ae550e7f410a913e03f7406a2089dbc01de7b1e4f4a44c1183864e82d1aa2c28ae550e7f410a913e03f7406a2089dbc01de7b1e4f4a44c11fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a2dd041e0e3efb7eeb2205fe445a130b13e61e9d1ade655a96a923d11079870252dd041e0e3efb7eeb2205fe445a130b13e61e9d1ade655a96a923d1107987025fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a6670a36d1100dc7c270cb31ceb912bea50640c3d029b49f436e112b4f9e4c7df6670a36d1100dc7c270cb31ceb912bea50640c3d029b49f436e112b4f9e4c7dffc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a55bb628dd04f353c613b62e0e51fef5670da90e669c0de508d73488db4fb4e1c55bb628dd04f353c613b62e0e51fef5670da90e669c0de508d73488db4fb4e1cfc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5ad4d4b00f045cbb8f38fc56a96664dbc6565520854e7a9eeb2ba5c1aa767fe645d4d4b00f045cbb8f38fc56a96664dbc6565520854e7a9eeb2ba5c1aa767fe645fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5ad6e7459c58bdaecaa08729f9c89b11d310ee076f75540ddc1c6fef6dd02d7863d6e7459c58bdaecaa08729f9c89b11d310ee076f75540ddc1c6fef6dd02d78638847b1b3ccd4cbae012a9f2c84ad79efa68aec665e6084ca24aed29830926c82dd6714f23dfb8d2801754b9e8bcf6d36d7ba8ef655489361f6ddb968a275fc88dd6714f23dfb8d2801754b9e8bcf6d36d7ba8ef655489361f6ddb968a275fc882511095531cd46b2c3225dca29706d11cd4876708695aa8a978c2a6770444f1dbe06757c663dd114cc91144e057a44f87e24d1c3e32bf84130def6c81e1c8293c3a8e7b0013ff93c9aa9502daf8554445da9289ad4d4cf975edd401290b98fabb7efd085d32b9bc2db115a67fceb85e22a9886147bca0d50a75524635d3100f8e9c66c8df75056a1c677c929a905de5d1ded38a4c021ae34b28435917312cf86f2bf10180adcfae3c397fbde3562870d4a775a45b837126210487b292bd5dcb0f89ea98fc070ab7c2b9180fa71faf29ebf04519fb61635045502be094f2a86ba4d79de25d98c6cb46116dac3def31b67dcf9f93b64abb4689b2580fc3dcc5caebba69a32fe0bcb7dac934b811a656ecaef940c5c791da450340ace0f354fff5caa6afef44b996cb5026d6b4aaf60389987ee3c4accec15ae7d1ec9e8de9ab4ef18c092437e65d7d221a4e8bf56aea11f06db466dd5ce0df4238ae171a6951ab6765ef829344096e9bde724e59fecbda3499a6aea382aed5e0409d509f35f6ab6f2c2f2f67110af91e1f6fca8c6b14b787923856be2d67c0474760b8999e8f2e98bc6c464358ab47036f869ec06629a6d67488eb4469a87ab4a890600e3689af6ebe6c67b518006335cba038651b430cadb857da132847e1997a4ca53c311024776b7a171e4f8ddcbb304f5c0b6ba9e141e2f3ecaf98097b7323fbc0e48ee865f6deb18b1224dadb64927534fc0571d62e360c99ce737ee6a51be6462ec55bf6f561dd911e664fa280c07fa9fe102026713a4da172817d89e829eb7d7ef6f4a72a048a389001fad61e272a35eaf73d05b85e01d5eab5e9c9ba949b846230730251cd21c7af78aa3dc123869616c6fc990ea9ed8d9da5fc0166af7140341cee36c3dba10da524b46a27fccf9802f3806baccccf098aa89b53b85ebe74633bc1e47cabcb8362b83bad2d508edf38b8e06ea605c47aeee78bc52f996a5db288ce74b6b0c8aed0c31d342acb2f5675a59f2e51415b257d8effb3c7b6a7e2c998a4fba19e67a1c005733d32c2bcbb933a660713b8dc17f4ceae22dfcec5c28ba02d0ac2677a6495996629796386452f6e5734f743f25b660da1065e2a084aa9e020af1723de98a5940057af5872f36b1e7b2f42f3d8f7b0c8ea247bec0f1e38b9128a54ed4e16a900e35d688306b1dc4dfc8143d5ae100abcf4af0078f83020ad5c474db1f9d16f9d65aa0679d6b98e448edddbd508d7f28181ec3ae9eef3232239a61e19c568463f62b88021f684428863c1d268bab3119fe2e0e1b6b7b83090073442335cae94afef52135df86852b85ef3b42a946cc23cf6091a6b3a8921980c574548fb88aa9fbcf4a6ff99b9a863142059d89d6de8c4ed0a22cec07637cb6f39748ccc839d8c6e6851b988b05aec94c9384007d2ec09d15df683679d4f535ab355d0417cbaf23812ce9e3baa24db8d14d3ba2b455c12b9c9b0362bfe06e29ba137d33aa3989215f1d1d7606a81b4a7e4644bbe4846394cbc4067639694e56c5083f088b0241544f05f9f732e6a5d2db77a3c5b908da8539e2fd0ca651dcfba5688fe2918f8bf26306f629578f51f13cf38d3f1b9e343ceb42410df9ac98b335412fd4b12c1318e1b833c989efd24755b39b977c3dcb7da4c7e5993d5ab398819f3cc41ce6a5fe3fa0b19a6bb94b53f580761d9fcbab8bee18eadc3ee1a239dbc733a59e492d0e056aa1fd0dfa25f0a800f61c3ee3907587d86435c5a5c2377e683926f7ca4abdbdad0c88bde064e39d6ff7cec3815de403ed7d3e834648977bd1475797ba0559c08edcfe5b8c5dadc82e455460d2fe2f11391d3fd27340b9697a8b5c5601af51c02092406342770d7c27d7a97df1a77e0a01dd6223e3fef548ea3bed6dc3747758406dc7a29ba3657329dc0f14231876359768858b329ab8c1e6321919809e473cdfc0a69487646f28e4893c00dbd40955859f64ef918435e4540b971764716d431eb0451543285a983cda0bfe530317593145bb35cd2710c85f511d759eccb4943a0b6eb05d4d7b554a27481dc91b6cd71bafad29764f8f5d0ac7f85375cde9bebc8adfe77100f3513a1d53614c9cda0ed89bff91fe6026af982053efd937768c624e8d70d2c6cbe435e6caed236da0add3877cb2a68a5525704b4880af1aee8b7e3c2e29c0129fc04dc215ecd9270b18c7838fc033bcce2d40e36218db34374dc8ea233f9e876748fe275c27c5fcf8a0450d467faeaeb7369914932fce4fe9729719242019015a8e93aa0617f2538759d2468e382d810cb1f64fb44442ad3247bd64d31830f48972d28413a0022cf0868d257be1a9147a04cb3ff8457197d20e42c40470a8507f1eda1ec82d0f40b915b6f576acf6429933004645ac44dff640bc51c0a160c8027bb2c046c85204482c435dda7dd1830d808da8acaae1d11deaecaafbcb80ca55582caa0ab1c7849120a0420e1febb483060cd3e78e1f0df98eba70edb5743732b8dd38d0f4cd819217b4a0f111eadd5416b75f1db459a065ba90707918309486b2726b7a477ba3bd15fb4b8f4bf7b44094c9ef403183aa4e28805d0dba2d44509cba5fb9538d7ca2fc7a3e052594e35cbf5033967390ad602dc1ab89b490624e0ecd70432f65746208dea8efc72ed5d4ca4f07939540de5fb54aa0d80d3cdc71e929208b5021ab26701990e9c88e2722c4a7958da2f356204c3d46688e5f0a430b50d9042bccdcb2aa946e7a7ec99f284085834a7b98ffab38181a5de3f8fc6a2d1e43a63faf9460450479ca7e6e544711c52c23928d721a3e7e36234c5e87a7fbefec00e70485af7cc30ec978d742114cff5b8956766fa026eab52f42c16c7b7e1e98c97b686ef30899515cb7af051400f5d337ffe4424e682c336756446271711c223a379e7d6bedba507859708759d63846896c26dd1003825e5c49bb03c8251dd3ffb8acbe067944d04a089377c66cd8b67a7253970cecd9f253aa2d2f433963efabe42aaef06d0fb6ae92541e7c90f4f64dc0660916d774ab0e58b07804b2326fc4d0bcc9a8e3060a8fc70f875281a68da5d05766a38f4992b1678a5704370ebedf5a9a9ca6eeedac99cd5eff874500173adf590a2c19f4ecf5d87166104c94b6dc6ec664821cb7236ea78f5ab593b0c743682f536b384e5c64dd72bd2cbe7952be97ae20d7b32aa78d3ed4f536ba655b0c7c32bc147eea9903380d60e9f9b21e0104ddfd269f74b23374888c0efb527d11ab2b85e1762a163db4e6cd1e894e5c832d6997656e6d08317b66cf54e723ea1666809e4df92c321d9e079c04fe8d46a1d24ab5dfada314297f8cd5fddd73b214cc831b15c1ad857e27744a14215506adfb1dc334cdfc75db72d2599b88a8d09ecf5ae0bc59640476e1ddc096e4b31c66c898542e7e2aa80c0af3733bd8969e4812bf038f3819976a0d3a554eab1263a40c10bd55efd880e40f6b8e0aa2a88a12c6d46f9be5556d334b83fe0cfff528a363453085ada81e4a396a6f0109d1b6d9229d9f485fffa1f4630aa02b4e903f9a5ab6b85aeccd1de8a79ced6de8fe21c1da61fa4478a04a28931d420222f5278dfafa964b153bd7466d303531505e24fca755a5f9875782e4c257175926a367f45150342f80afbc6c6caa06b8686292067ed9b5463e8fd82aeda561eb02bb4955ca37e751129cb38b81c3f3f6fc457eec55f89858af850d876adb1f4864cdd5f85dd05b5950a63e2bef4dbe8877a389ff34c63872a7659e54312443e6b23f79bfd1f5cfb35099d1116ac5aa5627472e29fb1ca340a9edfa0b320e80ef72011d1a2cb9dffeab70557aa8b64c9caaebd61faff33a011ec18a7b6c0c7a2d02dd72221f36751eb6f6d8d0ef59d3f27af819c492de78894aa5b510f72e4c4b5aaf824d2b98fdf493829ee5c7be8c440bf4f929c3f4addcc7d06f5a936fc334562120b24bcf49cf33ca69289d9f961311a812361494d40f4f953ca808d60298b3e188e4ba11429920147a18845e25891d1bbe1b187d58f934442ebf8549d9b3d89e4a6a38651375ee475a4cfbe104c4c941624be189a8bc5d16723d534192b126740a1e5c3457d39b70cac95ad0ccedce859abbab88fefd073dafac2842705f455cb1997a1ce4fd7f74361fed48b0fb34d815ab76d4b996b8ba381350f1575cf19b5c38a770c0993ab539956bae644ea611a13e792654b1a07c5fdb16ee0aea842eea684f523742b951cc3d5d0e3058097d7ec720ed05993c68b6e07d046f3f48b5363419cf0e02e73b2a2519baadce0ed9159b6d77c775a8a4b76c654c2c1cc47098ffe9a542c22fae27d32d8fc213deda206a43ca52473d619af322d0246b50094161b87e270f0b9754515e44eb02890699b80a54ae5fb2fca155db9baa1c408c36117ab5e7ccd5205aedc659e3eb325bee32c27cac943487e8473c978396d3026503fb2886ddc57462fa50589460358b74d28800d150757e04d4a2877e6b4c700d102403b9a83e90399f734b3ce30f34bd79df5f3fee6026a5b68df31dde864547ee1b0ce5777c3a69a0533ef3ec0185ea5a8ee0023e01dbfd332f96870c39abeed6c173feb88692514585cf438547d927e64524ddfb9e64985abe73ef395a0885f31d30924a9ef334eacba8eef12015af31322bd5d8d8608e0af33c34ea7ff6ae1d7113dffc50bcde03cee065ad64c271c63bfb92efa55b0035b4f871171c6908cd9a461436585d24889c0c72cc3b2e3d747b9ca70180471034001da83083360edbb0c965132ed1f89a15caeda24b1932a7c65c1e700aefe0a80180e8c97142782828db8554e9aeeb4230c298561b4abe732c789c2494ba5e7878b0280971520be099f455044d8ea9c70557e992a8cb9ab202d621dc864f8b40c9c2aa48ce51ee96bc2604f6866d1ee5047dfc09cc166ee1948883397845fd6231d6117ced9ea81168244aeb1516dd67d27981dcd2652f2cea0d31bc277c680aa5b7156e88ab664262c7c977e1116030445ef509fde1adcb0c57c625cf41f98fdd0105b31175a889dea1e04b3f5c8bac28ed935d6387e9e112757d69c4988bd00ecf2970eb62a40f3445fb76e1c2957107f625bd4db3f5553fa08922e3570cab1de3c8c49b23f75c38baabb8b2d9d1508ff092ac590da9163d50cc3b4091b1c39256a011a9c424a4b0d2a5fed9d0e32368a548ea4e06681d99b4421e719db310ff48f7b9eb932e60ca69b84469d3d078df3a36557f1d2f512fdc1b6682859d10cf45f3ffd5bc53628b39df20dc9dcc07b0a87c8bfe93d939958740627bc1b5e6a1949f31f312d0bab645c4124ff97b79f6cebfda8b169f053583d20e8f3421d7f0ea6cbcab24f338a66d80216dc3792726611080fde0e869f10c5f680a29715cd32f57546a317c3667846abc2827c00a9b86cd2cabebffa90d5f85f36637cfb571514f62f218d312d0f1fccba368c8cca8a6621829bc7ddde398afcde55d0a6ccb2e30c70acc01dc5cb59b4cb4ce8919e1c80dbfee7f1d6512730cafcb6877abeac8f8fc3485470029510482c8e70df34438732dc5ebba80b8059670f7bc6bb6dfa083df01862f1b364994900abf1ad86d0ceb08595587cec49d9af689e300691f603426da34ac61eedff3c8b34e0e4d0d55a1edac6846ea8194feef52012d3603d40e454e2c1a411c2b6361e9b3b59a45370ab53d84bff8d94e08deb95670b9f5b0e3ed8ca5c49fe6788dbf37ecf168ae2a2b8f95800bf9c8f0b3d8f3869ffdd374d1ae32b135720bab7372167050b454fc32337a144ccdc5b5dba8ee3af1872c68916dff051a5d2c1e62fc4d03bb2a3aa67cc342a6c33cd444d729c5c5053c2637d61007d9a40edd1a397f81fb4de8d1c02ef311bc34151ceb7eb5015b8ff8d2d88e418f6a0f83bd437200d2c5c2ef9b77c8d025e471931a7f17238aac7c6d8ef828efbb0f984b213b9de5b105a1ba43b942c8203f63c85337bfbf040822437a08d584e57358a3a674eb91c0cfd930e80c274a653cc0219a9f3e420b3d21edd64fcb974809fcc763d517c4de255068cbbfa355af623cbcb87193e974dfa419f4c768d6c5051cbe6772ab8c91eaad54872dde28dd0459ff362400b844b713be8f015fd02fb416aebf7a5bb264375813f2aa7ad76800336158105ee54a592892c1bb30ba26cae607e9118d364bccc50cca4591cdff4de89442b5155dcd224cc865eac03427b0f1299c32acf570f789eb1117e88cf9b9fc9b5a8bc1b74c5dffa68c770d7ef62f4a7984098336188c3780ed447e7ae8c822124a0cbfa7748ca3cf7bd4c7ee8021d98552cc70fff18efb07688b223e5907c78e15d756949d6119f33466c33d3b341ff41c32bc0f5c9a720ffd6226fda8966be6aab2b72d0de74a0e9f484c7256fb49a660a9756b62225ab16d4ed59a54f7ab89867b2b393ddef0c2b1ea423cd024f00c51280445765b011e3b38d11e01a4af4aed79de5b2675c7f7e29f1ceb893b89fc3fd68400e639bb1e821817496e945fa5fe2980c9845b6e4780ba1807ff39d6ab90d936a6e304e6310ed484fa82e770df3c1b8c5ab3c2e9b34b135f7b497111683de492bd6bb9f976b00a38a8db06353ddd829cd65b16b6101f0642cf4843a9e7159d9c0ca35ad5438c8459d890022d2bbdbac68fe934f959cf490d2a2763829214e276f3916869643d088f36c0f4254273e1af3e02b3ed61ae64c4f5194973905502609a5bd31f73ab502ba7e0c0e889eae7fce9e6fe0c398a2e3aa56ec882ff571584b1fa41edd24d632b4e242a7fb32fe0108feed3d7ca8886e90fcb9c98b030d8b8eab05b17e341fbb5e0556fa30ca26ab60d34411c331974cc56bb5e3e01c8f969d0f008ea8bc071592cc6aaf4604441a1277a5e46629b436e8d4e96f040620a811a4671790cb48154d7d927161aa96fe24c7c4e92ec128682182aa6ba58d15c0c313c447cd493ea0470de9858a24c8ffac44fd57256c8df675870d2c85c009e3ebc0a7fdb6bc8aba9cfc4c6198cbf14a427c0266942547138205aad35bd3dff7daecba19bab9afbd9660265d75106a1a15c055a27cbef29317da37adc363f586274a48060b89d1d3a45f60466108f620da7846bce207824b4c01d9e535209114f65a11ade962a41b607b8bb57837d7794c23a8c839616d328cdfa5120aee4264848ffdaabef78dd068ccc2a1f50b147424533f1947c75154b803d351fcc2dec1ec6b356f2a4fc9c48bacaf6fd8badec16eebf7d0488167933c79d694f5e4ec3589c0ffbe91b8dea00312e56634eeacbab3713c7fdc3c98a3072651efdff64e9e87bdbedb81180f7859f53074890cd6b3f5195744fe6d2ac28bec9cee269ea4bd0ed0f253cd3ac435f26809361489206de4d20235cb2359aea6722326ed285027d362f8dabef9a55c6f206195c321a08c9564de2a8005da39f2d03a3f5d5eba65415bdd76352ec3a78398db4fa653b993f1756321cc159ffbb73fd641d41917d35718bbcf19ba48baec6dec38412c65dbf796825c4ab31ea23bece25bc0e06ecc84b8ac74ce9b02fbce8267278a2c07dff0cb90a54814fb6507eea907b6d1facb09557424685ac1e29caaf467b19ee1c4446db2d02e8e63759c76260dc89be26c0f2ca6ad9aeda965d03525a9d7f09eb3b77c58fb9a7e990a311d2c9032e0381bb466695617fd2056cfe63ca446e19095f217cc89916c7369bcb3cda8fc49390e54f3e1036b53fe2c29ed53ff92c208adad6e02033768555f1d576c468b29d25a50ae495be5f5ebd11531147b54ef8fb36d85053ad202239e14e00b04f5ee4ea6d72815af308854eb024d04803380043abc786904f82e06c856bf860a3ef7c3e2f7016496db9c064d52f4ac255d266acaa9bf5520a4c0e8907d9eb5f3b79047902a04d778441830792704df3855c7e2e0d07f57baadaf5b43a6986fe24b161721bb832eceff58fd6f6a64f06f653fae99bb0639fa8d3194b0ca54c6197d9aada7369d8671f15847c78c61ed10e050dd71e67b13d10f7cb44b994dd5dbe98995c44597cc112736da6c16d2ce6e5c0d7609ac5f7cba2cc2af4640711d6e96884ccacbf9a37b7f5ba05603c66b9abb1a20fb8953530edaacf6c23204bbbf9d3fa4e9c0cf98f2a71932eea57ac1fe886b6558ac6c5ba1dacf01e6f012d383a2a118019bb1feffe321ac62a9e1e00057bed8fa65a4b2ee3b3201289ee9e7e838eaea8f1206548c25027fbc03e9643558301994ce9bc48c72e393833df11330366e7490bdd90d9d509ee2469d2bdbd22534541de8791bf2d8fd3f7a328e204e58957638bc8f2c846de5fe1bd8cbb2e3137eefea8740979bbe189ed118d4a958881cc38e5a1adc1d1c80abacb91a78abe0e6ed860a1e5c60091d8cc2b0088eea52d9603df568c549e6b4fa5c41f32dec3d66f27a2db64473c01be5783b13bcd4ffb2e730a6cf1347d982e9ca9fafa3ae8d673b493bc589c423de59d5a547e11d982685f59363a9866d4dfbc657579ce343de37afb93dba13db9d693834cd4f21be350bee28d98aabef5328a555856e5f4b5bd1a331cb9afde542f9e302dd8b21201ebbd945ddc9da1a1aaf3b259d074ffe46c1a63d47e15cdeaa823c80f2b338f0ec6af84243f643cb91995f10bb995fdcf3ccf0b2fd127197beda7cb908ec8667dc919684c1f43e2fcb14191bfdfe66523fea2fdc07aca1c6a16a180a90e4ccbec90af2d9588d80c184b84ebe1bce21b1481eb16d449a5effeb7e7b320a99162386efeb95465e0d968c75077ec69ec9d8de06542e29dc0514ffbaff1cc3379b48a7cbd3a8fe4b219fcf781e44841a1bea28615652d589c0458d87e33266b5a7d7456332358b3f0a8fc17101ef361cb2b2280a5e4d384db2000c448891d39bc7f1cd01053a7045a57c7ca32c6aaa4e9e6e517fb17830343c9399a83b235656f0b00449c5cdd3595df5ae8deffd0d92cfc156223a1971b1b504dc2cdf496a06e0a06810bc10421591c8e241b66a4f32b13f45d76f389dfc837b8c33614f8a5414e4ee06db27b778eb3c040e0668c4ac4ba2f3a927ad4420cbf84438287c39224d6977cde1cfa402b752755c951bf1d3ee39f67b8cb6c43df51e3971056b19d72c2edd36b1ac7b76c397d71be60c9edd3fcd9ec8ec61be4203930ea77d8a41bf7f0d29e14ed8cbf044b067430163e751c5725842c46721bdc817da5c9c3ebf89986d645c06a07689ea1910f86766e903f3a739b829f3e7a05125c3578b7a0645c4eadd352e54b3869a3dbcc24082173f2136b36f66d273de406fe099aa333d5e5c58f73c66c5cd31e45c5663f6713aa49382c634dd1ed6f8f1ba5e9fea260f7342a5be879b9aad2a918640ea54d1ec2bc4f3b468ceb917f83f69a79fcb9f0940b87d9d4cf883755754c05dbd1f6a4a6b76ec0dc0decf7c53ee50816583f153b99cecbde15d12bb48579d03e00bdfa31fcb466c5217835f9535df2397acf0cf2ef6fc57a1b098ad9302fa9a214eabb917b31d4e71c4d49f945341b5b9f6d3f004da01090622012ae13d3a9aefb755d445da80ec25a863c65d80062c993ead09480941a2c2703650ccaaefc32c84a02399648edb3c2a0ef14d8e4806e895c50fbdec591c4a4e93b77e7f8a658ef1a88507fcaa78d083b1c442f55e7411232da87d6c16b118bfe163e5769c5f710af3994d7b591fcc9dee966fbe54a32a3b15d24a13794572064c04c14641be3e539b5a604e848176fc73cb4aa9adf9fc73ce872f65e36024a0d23a962c6098dd521b61bca81281ac9fe0a3e4e89764918545a6ccf7ec1e6155dbbf7bc7cd48014f6ec00142626e6ec015f064c727be506d0712c6cc34751025ac6bce76231086978e110534c71b8018f88c1e2a392a2e090dc9d23a2678c345943922f90297b3bd127a4b1d2cee66854d2b8b00bd1da716c594a1780c4bf9110beca1ff5531d5b422858f3a52c05edb36699845a3e7f87b040763806526849656667fbeff5230dcf57e6a9e8ac28a711c97b3c863e695255f5ed65a1b186ba1bd8bd0c7bbe558d586e5485787d5e1c800d15aad363572687aa60be6b59cedc5297635dda72e17b843983ccc337c81c58d2815644bfe80e33fd538f15a5f3afdad29e46745c8644d89ed25393615e634637e9dd04ae514ede4e79d904297b5085236ec59d7984574df22a4bc939326c6b5f146f60a91c6f698a1037564a59d56e3a97e065ab7a503f901e958c4ff552aed334795e36c6d07cc11ce305ed2eaf167f90ad44cd719dddb1008b85a9670d2701dda6cc4f03fcc161e47f26feafb515ee7d74333b43ccfc661f688961871d76c5f92873e9d8916b463b2ab2e16492cdce3991ab59e05a6a007d645ff6cfbe33a5965a943dbf30795402d5ebc3a82ac94897d3e7b058b6b04baaf2f9dd84e896e39c2b56d77204e701172f3ff3565e0ef174d05da66b14a4a76418b0f09df86140d7ec240da8afe87ebe23577041bbd214f06a7223907343c013e5169d0abc6fd9be1f9d485458be32339e2328128f6ab5b2a9d37685077053be6f83ebe44373c4b67a88cf9de420a3d34b23da8ed08cb89bc80a89c71b13db8463625d96ffede499f73bf2e4b14c66aafa1d3f7d09db338c01c061a369d41df4ab2907056ac68c7ca9b0b0a89a26ddbbdcf1e2907f2648355d543743cafc8f5c341cab78411831382997646e534bd908f850626278bd86b6967aed7b0008bc88df88440bab12c9aa7776f2c05b28b690cc4b54ea398940b8586b999e425bf4155f6072db6e448db2727f4ffd61454aaaff57f93062e9a57ab8fddb090cd81cbe6f31d1f8da53b2cb3676ad40e3687e689c128e4951db0804e8cffd985993a7a556d6c97601f52559197b01cfd6cf9fd874bd3b86559d1b6d23dac234702a65e557b2762759c57d171740a272e6f059e619cd6ca83d7c0ff3659e092c327576cf5c1194a9b95148022bcd37a27439fb6512158ba3485234a70522a57085d485e4cbc22b45165cb6dc60b8270ad2512750aad1b132ad5b284d677bf61d969fe4381c2cad315605b6e4709615d5fd79b2032bf5e629120141154728c7ea85893a8ac05905372fe07de5e786f72074fc9ec64a87ade28be29649c9207980bfa3b0cd6e8e0b32b0cafd7084856a822e49f4826b2d685e36a1a88718b8e6325e9c58b509ca0c6d7768864cbd546082ac6b138dd915ea430432fd65ea2895543d6ab77467297c0c6667785c8405038c0246fdf9e1a8424048c380adc741fe78744e0a664276da6b58ffb5b955a2cf8c0dfe8e397d9d11b219ab34a7414786668dfcb1e15932a909fe8aed3ccedd35128ade7911a1db845f4f0da2d8ed4ffde6c2c5f7e602214001b95e4a13bf94fb79b553143571ad89afce0c1db28f74599cc2a1f9ca01ebb2c4336d2a3db8e7a97edeeae676e48388e25aeb99777b16ea4cfe3c0a63c9f6125f70269b7bd07cbe9aae0234a390be44c91741b7ff67b6112fb44786062befa9c30bf8f531052ac7eb2501b221b73d7b0663ce58104598266f1054c4ad3ba2439c3a65858beb69248d74eebb2d996f4267f67cd359afe0445ee429f4b82a8a201e37e47b633dbae929fb3e04af77e353ea66634fd8f3065dea4453e1b748bbdd6128488cddd1ea5abdb24498770b23b9142d1a46a1c2cd16b9535facb63ce6dd70ba4e674a7d1255401e3540952d1678360efaf6eb985eb95f6c8bbfd4635b696d78ef19588cb9c718a6ce71b4c580fc1525bd1f6a74374ab8a6917661f7ea5deb81713a52dac3c8c0acdfa6ed8d564299abd5729f88e26e587a02c8e66f2caeaf7aaf59c5181d5f57135d8cb1b743f7d9827e4dfeaa4725a1ec836396fd9f6182361942c2d61f949e148e17c9d12e2a35d70887b571305f2e4069afef34af84af2d3adfb124cbb542c8bb500196f12a2bb1ae8d918602ebedfab6a461ee2d089c0212dfeb5c5ad11497d7a832b7232c05d9fcafb60684c7d01f9b54a5f42fb1b542c6f04170b38999537827d17faec0f1506cad5cfe2746edd94ce14d3e1bc6545d2d93c950cd1e604797593d93a7a4b2a9cab5cabad8aad2641c8f77fc05fbc0ccb5566c5dc80133420188e264bf1b8601ab809154c6432428624954d5ca0c821bc477f3b4c7632a1dd0a23e39b9377c6f9c2f552364cecb4e600eaed81c8c063e0849a06a3837099f1975916c42bd1c6a7f7eaa20d7d71ab25ef75c6d2224799c8472e9f73d3031a0574b6752e04dc9a695c97e8c6d5da5909dfb9b87e9ddc98c63b16d0b8b6ff2cc534a7c964f75912e6911f763284452ac4f35b451cf56fc53e200fcd9e506c62d8c4a87bc69557e2e7ea0f8cdc678ccc373814d8bbdc9911e89c836130bb27ab8160c91263a65582c9ba4f69eb3047e7547ae47c5349fff871b32f789c414d6bf0560ecdc6017549944c9b2c0b437613fc8b60af6c7fc9ebc8cdc3f19ae17f5ab92b9e8ddfda65c594ee98c33a2beee816cb88e1116dc19ac090444e9fdb75ea1ec15c210350e52f1af1a6c479b3580392aaf89e6067060f5e08bcd1a80cb99426ed7a6b06d994a63913ea4da486dceacdd954587ee348c116694472c1c849630d09d4da94b61ba624975e0f3ba05ac779a1583ae6ccaf6c6120ab2948f46dd714385b03b9749a6d9c6a6114af84a91ece1d703c74455337aa91f4fcfad0fb719a33ae619a655aa6f4b984d8bad85e89732b3ec69b53f8b49a63da6c09c49be1809ca3e445283366a6a7705919e58d5b4a367f52757217d9c1b7c99d17040ed4b6b729bc7d612ba51eb12fdcbcf3670bb0d9fe47de23d334fe9a92b51b04716b8c230d8549274389147f49dd2af58c25b0780f69c37542ff42148bca582f714b9670971c16a95ad08b93303653736add4a3a16e9e661a261308912bb9eb0c806f688c16dd1834c18b7492ecb76e7c619b20ed3664826e6bd469bd541cc08719144c1c3ada508fe72c7aa5ce903850cd6ba07761ad781da5e8ebe818248dc3420ca720b4a09f90bcfdfecd399e584a19057cddf31e0d29792634f259f1365c434eff5e9823837045c9ca37b39745cbd59d10ca138c5996a9600296edddb8563eddfa2532a278ac55418ff921c1bd95a488aaa96a5e50d9a626079e906324f48a0e35fa6a7ebe3e56a2d07794601b14cbcea0c9b2e77278eb7cd71e0d6d8bd612aa7c10b142a4d1ddee0151ed284a74fae07d27a5fa27d20d1d011bb88e1835e784c15540f6a4170276e30de3f9d300e96ee5515a9499800d7bac8c4e8c52d2590cd0111f3aeddd8f2448002f59773694761bbb4509c8e6b22a78258cf9e7c8740ac71dfaedc5982daa93495704dcc80250500623ca33e04ab88a59f1a06459b1b1c3a35c578d7204a6829735df84f4d66b9724514f65c4901fdfbfa0889b6aba422653da683039230b2ee17458e466486aaa75a73591fe8929d7a92688ea2b50144d4d9c15e100c14ec868112ff0f9a76690eadf3bd3c3dc736061b2ebcd247565cd2166e1a456db3d2172e69e3b073202b901eac331cb14bed421d39d7fb01f82e2c5117b86b2796facc9307fdf2164396983c01cb533518386d1a846aa06df8261413d6e518e4064303a9a032d0fe32b7aabe88e23a5fe7f40c8b3b40872537dbc77e33a3fac4a2338cb285cfb9ebaf5102b66bdf6d3d9a8dc9a75cb65d5c98da2bba772ba90a2668ce5c804401e6d0b2361c6988666ac09e5d2df63295971e219de3dbfb00c172402f730dffb2bcaa8c40ff59188e598395affe60a3099da8983b2e4f229a850d3836b1df50ea81974723dd1d8f2f0d3d48dc5199e7d1a6325abd1bb018ab417863f50df0c8cd817d040a80edc240f16ae7d9cf806cd57d626cfdba9b45743c9d3a54ca08270613dfc3568a2eb752d04c3bea8ab353683f8cdf899229869234c93d5c38cec2f5e9211c140d69d21d83ce4b67c50e30bc9ab4a832de6bb4fed15d34ec2ecda7352a859ea02cfc2339c9ba6999cacf8ae84c524e49d4e83b21330be228cea246ba28837e509a6df7544a5b2dd7139bc9791488ed915d03439ccb07ccffbde0140e6b715f5cc0eb1a691fe1189349c720890f08d74e95e49977c723f45dbe25fc9c18be7fc7689419c3d2183ef39259f9cc7a94c24e2572da862127a679f79bcafbcaf0d60b128ef6ee1b7977281a68bf069afe570bd45a949779427400dddf7091acd5875cefaba2684b011a72c44fb8b586c2e21c0631188608b72fdbf6d9fb484fd53838a45a8847e0703087ecf6c02812cf9ff1133764558261dc69a0772192ddb8b7d794010/usr/share/shogun/data/toyrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootshogun-4.1.0-2.fc22.src.rpmpython-shogunpython-shogun(x86-32)@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@     @libColPack.so.0libarpack.so.2libarprec.so.0libbz2.so.1libc.so.6libc.so.6(GLIBC_2.0)libc.so.6(GLIBC_2.1)libc.so.6(GLIBC_2.1.3)libc.so.6(GLIBC_2.3.4)libc.so.6(GLIBC_2.4)libcurl.so.4libdl.so.2libgcc_s.so.1libgcc_s.so.1(GCC_3.0)libgcc_s.so.1(GCC_4.0.0)libgcc_s.so.1(GLIBC_2.0)libglpk.so.36libhdf5.so.9libjson-c.so.2liblpsolve55.soliblzma.so.5liblzo2.so.2libm.so.6libm.so.6(GLIBC_2.0)libm.so.6(GLIBC_2.1)libnlopt_cxx.so.0libprotobuf.so.8libpthread.so.0libpthread.so.0(GLIBC_2.0)libpython2.7.so.1.0libshogun.so.17libsnappy.so.1libstdc++.so.6libstdc++.so.6(CXXABI_1.3)libstdc++.so.6(CXXABI_1.3.1)libstdc++.so.6(GLIBCXX_3.4)libstdc++.so.6(GLIBCXX_3.4.21)libtatlas.so.3libxml2.so.2libz.so.1numpy(x86-32)python(abi)python(x86-32)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PartialHardlinkSets)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)rtld(GNU_HASH)scipy(x86-32)shogun(x86-32)2.73.0.4-14.6.0-14.0.4-14.0-15.2-14.1.0-2.fc224.12.0.1V͛@V&@V=@VHV_V@V0VwVrVf@VP\VA@U@UĝUĝU@U`kU[%UXU@U@U8T@TTTY@T_SSuSSǺS@S-S[S[S,S,SwO@SwO@SXSQSKS(5@S&S$@S"@S!S!SSSSSSS@S@S R=RʚR@R@R1@R1@RR - 4.1.0-2Björn Esser - 4.1.0-1Fedora Release Engineering - 4.0.1-0.11.git20160201.03b8c1cBjörn Esser - 4.0.1-0.10.git20160201.03b8c1cBjörn Esser - 4.0.1-0.9.git20160125.0382808Orion Poplawski - 4.0.1-0.8.git20151219.af8c1dfMamoru TASAKA -4.0.1-0.7.git20151219.af8c1dfBjörn Esser - 4.0.1-0.6.git20151219.af8c1dfBjörn Esser - 4.0.0-0.5.git20151217.7e4ac13Björn Esser - 4.0.1-0.4.git20150913.d8eb73dBjörn Esser - 4.0.1-0.3.git20150913.d8eb73dFedora Release Engineering - 4.0.1-0.2.git20150808.779c3adBjörn Esser - 4.0.1-0.1.git20150808.779c3adBjörn Esser - 4.0.0-7Björn Esser - 4.0.0-6Fedora Release Engineering - 4.0.0-5Björn Esser - 4.0.0-4Peter Robinson 4.0.0-3Orion Poplawski - 4.0.0-2Björn Esser - 4.0.0-1Kalev Lember - 3.2.0.1-0.35.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.34.git20141224.d71e19aMamoru TASAKA - 3.2.0.1-0.33.git20141224.d71e19aOrion Poplawski - 3.2.0.1-0.32.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.31.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.30.git20141223.c329375Björn Esser - 3.2.0.1-0.29.git20140901.705b7deFedora Release Engineering - 3.2.0.1-0.28.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.27.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.26.git20140721.81c0008Björn Esser - 3.2.0.1-0.25.git20140717.1ba2924Björn Esser - 3.2.0.1-0.24.git20140618.2f7681eBjörn Esser - 3.2.0.1-0.23.git20140616.31f5609Björn Esser - 3.2.0.1-0.22.git20140604.98900c2Björn Esser - 3.2.0.1-0.21.git20140604.98900c2Björn Esser - 3.2.0.1-0.20.git20140526.7587570Björn Esser - 3.2.0.1-0.19.git20140523.681b5ecBjörn Esser - 3.2.0.1-0.18.git20140516.96b815fBjörn Esser - 3.2.0.1-0.17.git20140516.96b815fBjörn Esser - 3.2.0.1-0.16.git20140423.68a5124Björn Esser - 3.2.0.1-0.15.git20140418.34f9672Björn Esser - 3.2.0.1-0.14.git20140414.b0146f8Björn Esser - 3.2.0.1-0.13.git20140318.6134bc2Björn Esser - 3.2.0.1-0.12.git20140317.6ee3991Björn Esser - 3.2.0.1-0.11.git20140315.55912daBjörn Esser - 3.2.0.1-0.10.git20140313.9b6dcd2Björn Esser - 3.2.0.1-0.9.git20140313.e380071Björn Esser - 3.2.0.1-0.8.git20140312.d9c535eBjörn Esser - 3.2.0.1-0.7.git20140307.c281eaaBjörn Esser - 3.2.0.1-0.6.git20140305.9c67564Björn Esser - 3.2.0.1-0.5.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.4.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.3.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.2.git20130305.9b37dc1Björn Esser - 3.2.0.1-0.1.git20130303.df06a0eBjörn Esser - 3.2.0-2Björn Esser - 3.2.0-1Orion Poplawski - 3.1.1-2Björn Esser - 3.1.1-1Björn Esser - 3.1.0-0.13.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.12.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.11.git20131219.207a709Björn Esser - 3.1.0-0.10.git20131219.207a709Björn Esser - 3.1.0-0.9.git20131219.207a709Björn Esser - 3.1.0-0.8.git20131217.70f2657Björn Esser - 3.1.0-0.7.git20131217.70f2657Björn Esser - 3.1.0-0.6.git20131217.70f2657Björn Esser - 3.1.0-0.5.git20131216.7230f07Björn Esser - 3.1.0-0.4.git20131216.7230f07Björn Esser - 3.1.0-0.3.git20131216.7230f07Björn Esser - 3.1.0-0.2.git20131212.70e774dBjörn Esser - 3.1.0-0.1.git20131212.70e774dBjörn Esser - 3.0.0-1- fix serialization with JSON-C >= 0.12- new upstream release (#1306079) - fix build/testsuite with gcc 6.0.0 (#1308270)- Rebuilt for https://fedoraproject.org/wiki/Fedora_24_Mass_Rebuild- udpated to new snapshot git20160201.03b8c1cc3b8f4426a2fe80055fdfdc9e156953b6- updated to new snapshot git20160125.038280845fd7fb886f4459996f1405f8ca8c1612 - re-enable mono, issues with mono >= 4 are fixed upstream (#1223446)- Rebuild for hdf5 1.8.16- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.3- updated to new snapshot git20151219.af8c1df859ed3d5780bbea5615a5c523e5651db9 - remove Patch0001, fixed in upstream-tarball- updated to new snapshot git20151217.7e4ac1327cc3ee4b09f498c1b778d13f37ff0956 - updated %description - add modshogun.rb to ruby-shogun - add Patch0001: revert removal of migration-framework- changing name of python2-subpkg- updated to new snapshot git20150913.d8eb73dd89f47e0da28f07163c4f635b96d0ec00 - removed ChangeLog from package, deleted in upstream tarball- Rebuilt for https://fedoraproject.org/wiki/Changes/python3.5- updated to new snapshot git20150808.779c3ada68ae535062346ef71e6c1c39e482a8ca - drop all patches, applied in upstream tarball - add more testsuite-excludes for ix86 - disable memtests on %arm- rebuilt with full hardening - add Patch11-13: enable CMake-policy CMP0056 - add Patch14: fix handling of C[XX]FLAGS- temporarily disabling Mono-bindings on Fedora 23+- Rebuilt for https://fedoraproject.org/wiki/Fedora_23_Mass_Rebuild- fix: Build fails on fc23+ because of hardening - fix: BR: mono >= 4.0.0 - exclude tests, which are failing on aarch64 (#1222401)- Rebuild (mono4)- Rebuild for hdf5 1.8.15- new release v4.0.0 (#1105909, #1183622) - add Patch0: fixes double delete[] and tests with swig 3.x - add Patch1: fixes to CMake-buildsys - add Patch2,3: enable python-debugging in testsuite - add Patch4: optionally disabling sse and sse2 features - add Patch5: requiring 'rubygems' in testsuite - add Patch6: testing Py structure hierarchical multilabel classification - add Patch7: replace deprecated json-c functions - add Patch8: obey $ENV{R_LIBS_USER} when running tests - add Patch9: reduce debuginfo of swig-generated bindings - add Patch10: make sure all modular interfaces are build single-threaded - add automatic CLASSPATH-export for java-shogun - add automatic MONO_PATH-export for mono-shogun - add pkg-config file for easier use with gcc - move headers to versioned include-subdir to avoid collisions - retiring octave-shogun on %{arm} - R-shogun is stable now (#1043885) - use atlas' clapack on <= fc20 and <= el7 - narrowed the list of failing tests and don't ignore fails anymore - remove obsolete sed-kludges - use temporary files instead of pipes to pass data between different gcc instances - builds are running multi-threaded again - use %__isa instead of %_arch for file / dir naming - add memory-tests to find reasons for possible segfaults - run memory- and unit-test multi-threaded - use %license when available - use %bconds instead of %global madness - spec-file cosmetics- Rebuilt for protobuf soname bump- rebuild for so-name bump in protobuf-2.6.1 (libprotobuf.so.9)- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.2 - Once reduce debuginfo verbosity on arm to reduce memory comsumption - And once mark -doc, -doc-cn arch dependent perhaps due to above- Rebuild for hdf5 1.8.14- updated to new snapshot git20141224.d71e19aa5a575b2b4e52c908a694eb1db7afc973 - reduced number of make-jobs on %{arm} - conditionalized and disabled OpenCV-integration- updated to new snapshot git20141223.c32937574df1c560ce7c10f1b8860679ce011a8b - added BR: ocl-icd-devel, opencl-headers - enabled OpenCV-features and R-shogun - purged light-scrubber.sh from repo, now shipped with tarball - updated documentation-files - build mono-shogun on %{mono_arches}, only - install documentation-files to %{_pkgdocdir}- updated to new snapshot git20140901.705b7dea7093cb094fe90fcebac20b7e7d1debcd- Rebuilt for https://fedoraproject.org/wiki/Fedora_21_22_Mass_Rebuild- updated to new snapshot git20140804.96f3cf3ce58514299f98e688b7c43e057ad4fa41- updated to new snapshot git20140721.81c00087da6f05d36aec410fef0fcef5be490f42 - enable SSE2 for %{ix86}, because dSFMT-build will fail otherwise - switch back to a monolithic build with limeted parallelization - temporarily discard errors from testsuite- updated to new snapshot git20140717.1ba29247b850adef1b866a6c2112a6483c88428e- updated to new snapshot git20140618.2f7681ed0c1849088ee5bcc48b91a1c970ff3a9b - excluded segfaulting tests- updated to new snapshot git20140616.31f5609f7a7345ca05b5c1f8c7425236da2270df- export additional C[XX]FLAGS on 32Bit-arches for SSE and SSE2 - fix typemapping for Mono (C#) with swig >= 3.0.0 - exclude testing python_modular on Fedora >= 21, segfaults related to swig3 - build libshogun with full parallelization, but the swig-bindings- updated to new snapshot git20140604.98900c2996ccc4509099a6a337a71d7ca9991bd6- updated to new snapshot git20140526.758757094c30ae249f5ddc84f3cdc11b4b4203c4 - dropped obsolete BR LaTeX from -doc-pkg- updated to new snapshot git20140523.681b5ec17c0ca9c98cb54047dcd679bec9171989- adapted the logic for finding rubygem-narray on Fedora >= 21- updated to new snapshot git20140516.96b815fd1fa9769a24122f9016ff5a685a8a6944- updated to new snapshot git20140423.68a5124bec8df5a013b2406e8c00d93ab83bf88d- updated to new snapshot git20140418.34f96727f343b7f7f5e0426dbbf579f5dbc0f51e- updated to new snapshot git20140414.b0146f8b7314a4de25273dab2d6da4a37044bbec- updated to new snapshot git20140318.6134bc2e1e721726102624b372c1f8e7a31816df- updated to new snapshot git20140317.6ee39918dc99e72c23a30419a608f11217146e26- updated to new snapshot git20140315.55912da6dd499632ab2371cbbde9fdafaa913cac- updated to new snapshot git20140313.9b6dcd2a077868259029ce2f28b306e56b30bf2f- updated to new snapshot git20140313.e380071f5a8a5d35c0b33ea0ab55810ef9845354- updated to new snapshot git20140312.d9c535e85ed8dc61d537052a9abce200782b87b2- updated to new snapshot git20140307.c281eaaf51f44c16c9a7ded0678cbbac265714f6- updated to new snapshot git20140305.9c67564278abd5a13efe9ae016f8b3e01bf209f9- use new macros provided by shogun-data-pkg- use `CMAKE_BUILD_TYPE=Release` for the Python3-version, too- fixed year in git-snapshot-date- updated to new snapshot git20130305.9b37dc1e630d54a9c16f2d19b6a10c34d8aef73a- updated to new snapshot git20130303.df06a0e1a7e3551b0bee218246cfc4bf1a4696d8- require java-headless on Fedora >= 20 or RHEL >= 7 - exclude some tests on %{arm} arches only- new upstream release: v3.2.0 (#1066944) - enabled build of Java-bindings (#1043882) - enabled build of Python3-bindings (#1043884) - dropped Patch0 for Octave 3.8.0 (#1047053) - bumped required data-version to 0.8 (#1068941) - split-off scrubber-script to seperate script - exclude some tests on 32-Bit arches only- Add patch for octave 3.8.0 support- new upstream release: v3.1.1 - data-files are now moved into a separate package - added example-applications to doc-pkg- rebuild for octave-3.8.0-rc2- updated to new snapshot git20131226.1c7fbaa732c8476b2df26bca2ae93de666959092 - updated to new testsuite-data git20131222.0bbb04f354a29ed3ab43ce002388b79bb274e886- rebuild for NLopt-2.4.1- rebuild for arprec-2.2.17 - added a line about `no-SVM^light-support` in %description - minor indention improvements for the list of bindings in %description - fixed `macro-in-comment %{mono_arches}` - added %ifarch %{mono_arches} for mono-shogun-pkg for building it on those arches, only- updated to new snapshot git20131219.207a70972e794df28f0fc67309f217f7fbf3b4e7- copying and packaging the prestine examples to another location is better and less error-prone then removing the clutter left by testsuite afterwards- remove more possible clutter from testsuite - re-enable mldata-based tests when there is internet connectivity- updated to new snapshot git20131217.70f26573a501791e11097615296127c1c36904d7- temporarily disabled mono-shogun on all arm-arches- enable build of mono-shogun, since it should be fixed in current checkout (#1043859)- updated to new snapshot git20131216.7230f074751a97842170b8a5f9c69fbd9b8287ca- remove cluttering *.map *.md5 in autodocs (#1043856) - remove possible clutter from testsuite- updated to latest git-snapshot (#1043283) - disabled shogun-mono, because it segfaults currently and has some severe problems on ARMv7hl- Initial rpm release (#1043283)  "#$$&'((*+,,./0023446788:;<<>?@@BCDDFGHHJKLLNOOQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~4.1.0-2.fc224.1.0-2.fc22      !!"""#$%&&''&&((()*+,,,_modshogun.somodshogun.pymodshogun.pycmodshogun.pyoshogunClassifier__init__.py__init__.pyc__init__.pyoClustering__init__.py__init__.pyc__init__.pyoConverter__init__.py__init__.pyc__init__.pyoDistance__init__.py__init__.pyc__init__.pyoDistribution__init__.py__init__.pyc__init__.pyoEvaluation__init__.py__init__.pyc__init__.pyoFeatures__init__.py__init__.pyc__init__.pyoIO__init__.py__init__.pyc__init__.pyoKernel__init__.py__init__.pyc__init__.pyoLatent__init__.py__init__.pyc__init__.pyoLibrary__init__.py__init__.pyc__init__.pyoLoss__init__.py__init__.pyc__init__.pyoMathematics__init__.py__init__.pyc__init__.pyoModelSelection__init__.py__init__.pyc__init__.pyoPreprocessor__init__.py__init__.pyc__init__.pyoRegression__init__.py__init__.pyc__init__.pyoStatistics__init__.py__init__.pyc__init__.pyoStructure__init__.py__init__.pyc__init__.pyo__init__.py__init__.pyc__init__.pyoshogunexamplesREADME.txtdatapython_modularclassifier_averaged_perceptron_modular.pyclassifier_custom_kernel_modular.pyclassifier_featureblock_logistic_regression.pyclassifier_gaussiannaivebayes_modular.pyclassifier_gmnpsvm_modular.pyclassifier_gpbtsvm_modular.pyclassifier_knn_modular.pyclassifier_larank_modular.pyclassifier_lda_modular.pyclassifier_liblinear_modular.pyclassifier_libsvm_minimal_modular.pyclassifier_libsvm_modular.pyclassifier_libsvmoneclass_modular.pyclassifier_mpdsvm_modular.pyclassifier_multiclass_ecoc.pyclassifier_multiclass_ecoc_discriminant.pyclassifier_multiclass_ecoc_ovr.pyclassifier_multiclass_ecoc_random.pyclassifier_multiclass_relaxedtree.pyclassifier_multiclass_shareboost.pyclassifier_multiclassliblinear_modular.pyclassifier_multiclasslibsvm_modular.pyclassifier_multiclasslinearmachine_modular.pyclassifier_multiclasslogisticregression_modular.pyclassifier_multiclassmachine_modular.pyclassifier_multiclassocas_modular.pyclassifier_multilabeloutputliblinear_modular.pyclassifier_perceptron_modular.pyclassifier_qda_modular.pyclassifier_ssk_modular.pyclassifier_svmlin_modular.pyclassifier_svmocas_modular.pyclassifier_svmsgd_modular.pyclustering_hierarchical_modular.pyclustering_kmeans_modular.pyconverter_diffusionmaps_modular.pyconverter_factoranalysis_modular.pyconverter_hasheddoc_modular.pyconverter_hessianlocallylinearembedding_modular.pyconverter_isomap_modular.pyconverter_kernellocallylinearembedding_modular.pyconverter_laplacianeigenmaps_modular.pyconverter_linearlocaltangentspacealignment_modular.pyconverter_localitypreservingprojections_modular.pyconverter_locallylinearembedding_modular.pyconverter_localtangentspacealignment_modular.pyconverter_multidimensionalscaling_modular.pyconverter_stochasticproximityembedding_modular.pyconverter_tdistributedstochasticneighborembedding_modular.pydistance_braycurtis_modular.pydistance_canberra_modular.pydistance_canberraword_modular.pydistance_chebyshew_modular.pydistance_chisquare_modular.pydistance_cosine_modular.pydistance_director_euclidean_modular.pydistance_euclidean_modular.pydistance_geodesic_modular.pydistance_hammingword_modular.pydistance_jensen_modular.pydistance_mahalanobis_modular.pydistance_manhatten_modular.pydistance_manhattenword_modular.pydistance_minkowski_modular.pydistance_normsquared_modular.pydistance_sparseeuclidean_modular.pydistance_tanimoto_modular.pydistribution_histogram_modular.pydistribution_hmm_modular.pydistribution_linearhmm_modular.pydistribution_ppwm_modular.pyevaluation_clustering.pyevaluation_clustering_simple.pyevaluation_contingencytableevaluation_modular.pyevaluation_cross_validation_classification.pyevaluation_cross_validation_mkl_weight_storage.pyevaluation_cross_validation_multiclass_storage.pyevaluation_cross_validation_regression.pyevaluation_director_contingencytableevaluation_modular.pyevaluation_meansquarederror_modular.pyevaluation_meansquaredlogerror_modular.pyevaluation_multiclassaccuracy_modular.pyevaluation_multiclassovrevaluation_modular.pyevaluation_prcevaluation_modular.pyevaluation_rocevaluation_modular.pyevaluation_thresholds_modular.pyfeatures_binned_dot_modular.pyfeatures_dense_byte_modular.pyfeatures_dense_io_modular.pyfeatures_dense_longint_modular.pyfeatures_dense_modular.pyfeatures_dense_protocols_modular.pyfeatures_dense_real_modular.pyfeatures_dense_zero_copy_modular.pyfeatures_director_dot_modular.pyfeatures_hasheddocdot_modular.pyfeatures_io_modular.pyfeatures_snp_modular.pyfeatures_sparse_modular.pyfeatures_string_char_compressed_modular.pyfeatures_string_char_modular.pyfeatures_string_file_char_modular.pyfeatures_string_file_modular.pyfeatures_string_hashed_wd_modular.pyfeatures_string_sliding_window_modular.pyfeatures_string_ulong_modular.pyfeatures_string_word_modular.pygraphicalclassifier_gaussian_process_binary_classification.pyclassifier_perceptron_graphical.pycluster_kmeans.pycluster_kpp.pyconverter_fastica_bss.pyconverter_ffsep_bss.pyconverter_jade_bss.pyconverter_jedi_bss.pyconverter_sobi_bss.pyconverter_spe_helix.pyconverter_uwedge_bss.pyeigenfaces.pyem_1d_gmm.pyem_2d_gmm.pygroup_lasso.pyinteractive_clustering_demo.pyinteractive_gp_demo.pyinteractive_kmm_demo.pyinteractive_svm_demo.pyinteractive_svr_demo.pyinverse_covariance_estimation_demo.pykernel_ridge_regression.pykernel_ridge_regression_sinc.pylatex_plot_inits.pylda.pymclda.pymetric_lmnn_objective.pymulticlass_qda.pymultiple_smvs.pyprc.pypreprocessor_kpca_graphical.pyqda.pyregression_gaussian_process_demo.pyregression_gaussian_process_modelselection.pyregression_lars.pyroc.pysmem_1d_gmm.pysmem_2d_gmm.pyso_multiclass_BMRM.pyso_multiclass_director_BMRM.pystatistics_hsic.pystatistics_linear_time_mmd.pystatistics_quadratic_time_mmd.pysvm.pysvmlin.pysvr_sinc.pyutil.pykernel_anova_modular.pykernel_auc_modular.pykernel_cauchy_modular.pykernel_chi2_modular.pykernel_circular_modular.pykernel_combined_custom_poly_modular.pykernel_combined_modular.pykernel_comm_ulong_string_modular.pykernel_comm_word_string_modular.pykernel_const_modular.pykernel_custom_modular.pykernel_diag_modular.pykernel_director_linear_modular.pykernel_distance_modular.pykernel_distantsegments_modular.pykernel_exponential_modular.pykernel_fisher_modular.pykernel_fixed_degree_string_modular.pykernel_gaussian_modular.pykernel_gaussian_shift_modular.pykernel_histogram_word_string_modular.pykernel_inversemultiquadric_modular.pykernel_io_modular.pykernel_linear_byte_modular.pykernel_linear_modular.pykernel_linear_string_modular.pykernel_linear_word_modular.pykernel_local_alignment_string_modular.pykernel_locality_improved_string_modular.pykernel_log_modular.pykernel_match_word_string_modular.pykernel_multiquadric_modular.pykernel_oligo_string_modular.pykernel_poly_match_string_modular.pykernel_poly_match_word_string_modular.pykernel_poly_modular.pykernel_power_modular.pykernel_rationalquadratic_modular.pykernel_salzberg_word_string_modular.pykernel_sigmoid_modular.pykernel_simple_locality_improved_string_modular.pykernel_sparse_gaussian_modular.pykernel_sparse_linear_modular.pykernel_sparse_poly_modular.pykernel_spherical_modular.pykernel_spline_modular.pykernel_ssk_string_modular.pykernel_top_modular.pykernel_tstudent_modular.pykernel_wave_modular.pykernel_wavelet_modular.pykernel_weighted_comm_word_string_modular.pykernel_weighted_degree_position_string_modular.pykernel_weighted_degree_string_modular.pylabels_io_modular.pylibrary_fisher2x3_modular.pylibrary_time.pymathematics_linsolver_cg.pymathematics_logdet.pymathematics_sparseinversecovariance_modular.pymetric_lmnn_modular.pymkl_binclass_modular.pymkl_multiclass_modular.pymkl_regression_modular.pymodelselection_grid_search_kernel.pymodelselection_grid_search_krr_modular.pymodelselection_grid_search_liblinear_modular.pymodelselection_grid_search_libsvr_modular.pymodelselection_parameter_tree_modular.pymodelselection_random_search_liblinear_modular.pymulticlass_c45classifiertree_modular.pymulticlass_cartree_modular.pymulticlass_chaidtree_modular.pymulticlass_gp_modular.pymulticlass_id3classifiertree_modular.pymulticlass_randomforest_modular.pyneuralnets_simple_modular.pypreprocessor_dimensionreductionpreprocessor_modular.pypreprocessor_fisherlda_modular.pypreprocessor_kernelpca_modular.pypreprocessor_logplusone_modular.pypreprocessor_normone_modular.pypreprocessor_pca_modular.pypreprocessor_prunevarsubmean_modular.pypreprocessor_randomfouriergausspreproc_modular.pypreprocessor_sortulongstring_modular.pypreprocessor_sortwordstring_modular.pyregression_cartree_modular.pyregression_chaidtree_modular.pyregression_gaussian_process_modular.pyregression_kernel_ridge_modular.pyregression_least_squares_modular.pyregression_libsvr_modular.pyregression_linear_ridge_modular.pyregression_randomforest_modular.pyserialization_complex_example.pyserialization_matrix_modular.pyserialization_string_kernels_modular.pyso_multiclass.pystatistics_hsic.pystatistics_kmm.pystatistics_linear_time_mmd.pystatistics_mmd_kernel_selection_combined.pystatistics_mmd_kernel_selection_single.pystatistics_quadratic_time_mmd.pystochasticgbmachine_modular.pystreaming_vw_createcache_modular.pystreaming_vw_modular.pystructure_discrete_hmsvm_bmrm.pystructure_discrete_hmsvm_mosek.pystructure_dynprog_modular.pystructure_factor_graph_model.pystructure_graphcuts.pystructure_hierarchical_multilabel_classification.pystructure_multiclass_bmrm.pystructure_plif_hmsvm_bmrm.pystructure_plif_hmsvm_mosek.pytests_check_commwordkernel_memleak_modular.pytools__init__.pygenerate_circle_data.pyload.pymulticlass_shared.pytransfer_multitask_clustered_logistic_regression.pytransfer_multitask_l12_logistic_regression.pytransfer_multitask_leastsquares_regression.pytransfer_multitask_logistic_regression.pytransfer_multitask_trace_logistic_regression.pyvariational_classifier_modular.pyipython-notebooksclassificationHashedDocDotFeatures.ipynbMKL.ipynbSupportVectorMachines.ipynbclusteringGMM.ipynbKMeans.ipynbcomputer_visionScene_classification.ipynbSudoku_recognizer.ipynbconverterTapkee.ipynbdistributionsKernelDensity.ipynbevaluationxval_modelselection.ipynbgaussian_processgaussian_processes.ipynbvariational_classifier.ipynbicabss_audio.ipynbbss_image.ipynbecg_sep.ipynbintroIntroduction.ipynblogdetlogdet.ipynbmetricLMNN.ipynbmulticlassKNN.ipynbTreeDecisionTrees.ipynbTreeEnsemble.ipynbmulticlass_reduction.ipynbnaive_bayes.ipynbneuralnetsautoencoders.ipynbneuralnets_digits.ipynbrbms_dbns.ipynbpcapca_notebook.ipynbregressionRegression.ipynbstatisticsmmd_two_sample_testing.ipynbstructureBinary_Denoising.ipynbFGM.ipynbmultilabel_structured_prediction.ipynbtemplate.ipynb/usr/lib/python2.7/site-packages//usr/lib/python2.7/site-packages/shogun//usr/lib/python2.7/site-packages/shogun/Classifier//usr/lib/python2.7/site-packages/shogun/Clustering//usr/lib/python2.7/site-packages/shogun/Converter//usr/lib/python2.7/site-packages/shogun/Distance//usr/lib/python2.7/site-packages/shogun/Distribution//usr/lib/python2.7/site-packages/shogun/Evaluation//usr/lib/python2.7/site-packages/shogun/Features//usr/lib/python2.7/site-packages/shogun/IO//usr/lib/python2.7/site-packages/shogun/Kernel//usr/lib/python2.7/site-packages/shogun/Latent//usr/lib/python2.7/site-packages/shogun/Library//usr/lib/python2.7/site-packages/shogun/Loss//usr/lib/python2.7/site-packages/shogun/Mathematics//usr/lib/python2.7/site-packages/shogun/ModelSelection//usr/lib/python2.7/site-packages/shogun/Preprocessor//usr/lib/python2.7/site-packages/shogun/Regression//usr/lib/python2.7/site-packages/shogun/Statistics//usr/lib/python2.7/site-packages/shogun/Structure//usr/share/doc//usr/share/doc/shogun//usr/share/doc/shogun/examples//usr/share/doc/shogun/examples/python_modular//usr/share/doc/shogun/examples/python_modular/graphical//usr/share/doc/shogun/examples/python_modular/tools//usr/share/doc/shogun/ipython-notebooks//usr/share/doc/shogun/ipython-notebooks/classification//usr/share/doc/shogun/ipython-notebooks/clustering//usr/share/doc/shogun/ipython-notebooks/computer_vision//usr/share/doc/shogun/ipython-notebooks/converter//usr/share/doc/shogun/ipython-notebooks/distributions//usr/share/doc/shogun/ipython-notebooks/evaluation//usr/share/doc/shogun/ipython-notebooks/gaussian_process//usr/share/doc/shogun/ipython-notebooks/ica//usr/share/doc/shogun/ipython-notebooks/intro//usr/share/doc/shogun/ipython-notebooks/logdet//usr/share/doc/shogun/ipython-notebooks/metric//usr/share/doc/shogun/ipython-notebooks/multiclass//usr/share/doc/shogun/ipython-notebooks/multiclass/Tree//usr/share/doc/shogun/ipython-notebooks/neuralnets//usr/share/doc/shogun/ipython-notebooks/pca//usr/share/doc/shogun/ipython-notebooks/regression//usr/share/doc/shogun/ipython-notebooks/statistics//usr/share/doc/shogun/ipython-notebooks/structure/-O2 -g -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong --param=ssp-buffer-size=4 -grecord-gcc-switches -m32 -march=i686 -mtune=atom -fasynchronous-unwind-tablesdrpmxz2i686-redhat-linux-gnu                  ELF 32-bit LSB shared object, Intel 80386, version 1 (GNU/Linux), dynamically linked, BuildID[sha1]=e61c6eebd4c7892911429c344b4e445f66146109, strippedPython script, ASCII text executablepython 2.7 byte-compileddirectoryPython script, ASCII text executable, with no line terminatorsASCII textUTF-8 Unicode textPython script, UTF-8 Unicode text executableHTML document, ASCII text, with very long linesASCII text, with very long linesC source, ASCII text, with very long lines*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcde*RRR RRRR RRRRR"R$R#R!RRRR%RRRRRRRR&RR'R R RRRRRRR R RR/R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)R)?p7zXZ !#,"#]"k%w#) SΚ5(LkH.⧛,Gpw^}W bd<>kkpςȞ0`?\?@er(O/<wzъjې]\QA<2 DP~ H~ =:}فoo$#tcHQ`k_%.@BG7`rOe~_HoXo?Jg_ٗ\{=+5ΈGÐ>wʕxW[P;q3v"KpmJO`k37!#3r%Dg%rv.df "Ѳ4aߡ: `g&c/%dJvr։93 `|SѬyV'Xub!WQ<Ӯ}VA H1@KO 5YNN>OSڇc2ث '4D8y>dzK߸7ԾT϶ļ+\/hA7<ט rtghz߂<;R| b٪Lt3H:p㗌$={Q>:tپ]07D<16u$"Ž~ S?\o^-OT?&07#CeSLhV7۬Hcq9)Z.3F1'0/2NG+5\Hw2dKMB;߁e[Q]nd+1%5 3;.AAm/Rܘn.N+F2CDxECF >I•]%S×Gѝ|fhGPas ̢Y_e¨@ayc4lX(F Z?.>BXy*=|ԪE$^|?L$i6:z MFPz#Gd0w <7Iu2P>vo8LPj;u u#mٳ.,61~@*E@[H|Q]N6v}z$/4j=y)z(mllj,MѢuEfIhdXVR3_[}u;Rxolv|b_q;cЕ-'a ZÉV`XDc1^[E3I[֥gtsD2[$à 4 t# aܖs/ΐCsר2>oMd J9=JKޣQ>؎ P }cM${VZtueN)^D cf +]dQ49Ju[rk>$PC/ `\{Qp-FOfwo2np\T< ~ $l+=5CN`-Z V/h<o;1XNx=l0sa9V<59LB-DcwARu2UCS>O܃rkÈٺѿEɎz؅8^d3ܿ˽d^,0gF^M:z6+ _n&f{ժk`sRZT7$%9=0/= rOb.rx oOmʹ'%I;b A`02VkL_e4 ӌ_Bvxq +;' 2q):']b.Nma,:B֬{9,UTuŁÙ# A|״Ɏ[ Am3#s7՟Н!#ExR:Rȍf\n΀Q!'85~ԋ~-Qq[9DbRWaFoQCXl}tVzy $* 8/2n|xlnKӃn鰶Xs~3ԢKVq`C,h1MvɕĦ݇K峞u6Fy s“Gt%~J] O Rq c9FzesT$&XtHCf{{ $ï~Dw|Z(fmQ/=%e<|9ٺ+BuBH`=T&̓Xm䢎sޟԢfN/ YU?DN?[Ճ$x23%7z$ܪEP~o%">Gv 0eXTSBhGVeG 3&Ekb5Hgdm>3%0BNV.3.?˪J{)70R(x'A'q\GM//$PƝO+OeهJ,Ҝ8/>-EqSR'L̸]Vy)]\}&%udEːv7(HL%l0u=Zkx)NByW-}i ٥ߞoBd$z]'*2lFa̛ڇZDΩ-2 mXQ.` # +ǐ3Nʽ,2K̈́AR`&OGja%%-YB tV Z)`E{DjʪA ~! A2Mdr ){y&^(dB{l9|riNB,c$7OHޏ0Kjg+O ߋ㱊@|D4Kqd5]Y}7