octave-shogun-4.1.0-2.fc22$>,0C+0dc>9?d  6 \ `      # / I O T L  D H IMQ<U`U|XX4Y4]4(^8^ I9_0I:rIGH$ItXHYP\l]^= bdefltuHvwtxy-Coctave-shogun4.1.02.fc22Octave-plugin for shogunThis package contains the Octave-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.V!buildhw-04.phx2.fedoraproject.orgbFedora ProjectFedora ProjectGPLv3+ and BSD and GPLv2+ and (GPLv2+ or LGPLv2+) and GPLv3 and LGPLv2+ and MIT and (Public Domain or GPLv3+)Fedora ProjectUnspecifiedhttp://shogun-toolbox.orglinuxi686UvuI:fg"<,( y3 aC ,9X_{Lp vR +b%#mK&u+4 dPs@ lf W!& Kt? Y l}}VN}(MUJ]%+,#%$SN80kk%I!Xq[ >  hRWi`" D z$@dAAA큤A큤A큤A큤A큤A큤V3V3VVɧVɧVɣVȽVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȼVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVȽVɧVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾVȾ2eb5dccba35985e8c2cac9f86da5a23a7a80c33624e9c40202ea8b8b0fac31d72511095531cd46b2c3225dca29706d11cd4876708695aa8a978c2a6770444f1d282c657bf3f7a4c589056885afc7f754885cbf5c3b613762676235691ee551b1b4503469837f6e669d3e743b4c03fb0665325d7755ebe36e7e30155c1320707ae254ecc3052ef1f54e8911b2088bea83e5df50a40185f6ac865a686f98aa57df26fd95416d9c4eabc0e3790773291615b5a3c1dc04162ac6de5bdd6880b5372527f7eb4e0f087d8a8310b49abca81d8250683f2fd4792f72d24d6f4eee791c14bc0dbb4f8a0928edf06701a21565a7458ae81d15fdbaf9de55b181231730b21f567129eaba108a69f1b1bb2f78228950794fb88a34772758598cce1db2a46a10aa54d67d932585b33dc8c2ad7cb7b05b2d0ae288ab58e2e0a6ff2b7e7f0ca7195b7b43e1cefe4e286f9fec328d1f2a2a3968649c1790650db5aa1de13fa9858be0ee6ea7425201463866e571385d8ad5c81ffcc0815eb959e7fada67e2954164b1aff47eb586283ff7d67a48c768a6e93ef289a520a0949dacec95f463f95c020daa3f403d0900c1814c321a08c8c3296b3a154f0d5264186305ffce1d90e7d99a749c1cb0f9ca00ec39165ee6ab565b7e5c744b5c1150341665462b208f0c33c311a011ad2abae3a885694aef8a00b013072aa0e782c2303854464da7d4aaa1019d94b7b3f02a376ef8b943c85a656df902527f3a88a4c73e343ae1aee1c6749233a01084216c92cd016728b939e8472f6c3e61a86609c27d3e0c5b64668232290ef5ef1e29b37b6f8ac4a99cfca43bf60ec297b02ef53c516467a1e1262cbdf60d4bb05948457629bc0852fb85462f9990d3523cdb8ef44ac520481a590cfcb0534de1abcae1a2c0ad90dc40fce69bfd40191c584e0c4aa5760d7bf7bfd6048d61a2a528428938e989dca65d6b47a9fa4803ce3d42104f30d41fd81de1d86b90ce19dd70d331489ea3a86585a150c7ec8ace74d56ee3dd05a1dba4610445a866fc31b7fb3fcb53ed96a139d722b984bd84dfc683588d7ce9fbb9ae33102926c18de6656ac36b9efb4df47a5a2c9c37312c7bda54a3615380095223328329eec82be64560a040b3a67a10cfe71d82ed80aacaf455dfcb4c7918ac3a3ac80b82f71fba991af2e480852cd8357d3ff14185d2684bcc168bd70bd0d5ee63f7928d7779f96a60d2aac8e5d93749e53cb5e27143c890ca6884feb1a0a892f562ea8bcff047c4bb6a59ec5909906b894155c1df59485f9c06c2a2596a26784688b2dd5dd7279da1172f315028e2b888f628e01f7e419c6abd11ceca64103d2bd19053584bb391dfd5ee6ae048b74b355e969bd9f825f4c04ce48a710c32c81b4483cd0a1efdf9273a469d6b8222961db3d27d237efb3ce4142cedbb23aa437b2173ff3e445da4057c59c50c8b108b3264726bd7f2b7d8ffc983626bc720631215f7f7e7ab401d6401ca2995a2bc029b3e4f5efb243edf40605701ceff743dd71176d219566f76313ceea35d759a4fd1678c3a0f336cad22e0f5b83679e586ccd5c1c3c96f432ed534f92b10f9582621c0e9a622124ac6ac3d06a3d7e980d108c96e547a50686e6edb7b5b52e186c2c141098d9365d5f02ef0c578d14768f64d95c8fc9e466543102db8231e88e2df89da34b40806ff70a629ee58d9db3d20ec1a27ddc5d919c6c191d37cfc24862b24c521093fa08ffee55d09613f2a5a5ca04fe42755e7703e94c7213e6a5c20a790d282063876ad9d71b38483bf97520a8dfb29681789f6f1aa11598326298a26410087eae48e5e523c042b0a6955d39164c338507ea5d5c6f13f1bb7e23ceb8013017837d90572ce983dde3ae0734ae846387bfd225eaca1ab2515f02e40095673208023f655d3949f4507d95fba399c689a3025f6831b6c3b2fd36b5f656d2a3e7026d5a3344c06543f6a8623557c5ef04707ca1e2c569b149709f465e9787b3fc7785a67ffce78ff0031347b9effc773cde232c3dd2f1b7876af031123b7e784423cec3edb41d9b659b413ea9b12772d130c1c64a4f7356984726dec77b12460b0456e7e4c75320022a3bb2be31972b7ad170a79a36ae37dd53ed1e0fb6d2c68f574036ac38a7242a7dcc6e7a425d5cfec6450194a71dc9fa04999a283c8ba2fdf7fa97a27d6b0f3b0fc532c64895f4c951924544cbacd821d4305db5683cee394bf479f9c555ffc9a1fcf28eb5d5f8f3063a8bd45a727eab76b8affc7ac20573bd1e3310e45c354ad81fe224aebf1320eab6f51469d5e6bb3e049840e8ffd31e95fce7c708308f245e5291703ac907dbe26e13610afd9d24910be5b8b7db35c8165d03e4caf2137ce06befd4072ccc7b6e3e7b638fef369ad372ef2431b12aaadd4ad3868ad01bceca8cc1e46a39b97cea3f60d3fe4c373af42c11cb4b15109374974805d7fa5d03804cf8feacc8d1fb9bf0f57a5a4bbe1dc79bbabaa0ed02ca8fb7e50083d005982666e93bc4e08a43d7e53a094fc27491c7a6b7fafd69cb0f0e34ee7612249bcebf26c964b669055090339a4d8f0b41a4b654ca4dbf4fd85fd42d244ffbbcc3c171b7e0d1177d5aef632aac2860cdbe937ed810ca2429b37609cac74f128ce38b5ed6ac3c6f8d1c408ca1198ba32afd87ca1ed7d5255c22003296ef4d6b07be2743ddd7d644ef608670cb2bbae344c033c53b49a074b8fb67bee3b3ccfb67b4f6dc4d55716e49d04103eecf58e52c49608306c1b1e27541f76183eb9f8d85f2a12e72a73108d681c8eb97e23c8ab2c9c19ae43b57107ed2bfc086a0336caa3f3736fa9c452a228ce77303cd4bc7586b157c72f19601413f35db85f12520936b219c1f01cc39c62629a9f3ac29ef2112fb3fb8d8f44fb33778e9ea6d22b3220538fc3ce1593924bc9979e3f45751f8871ab6e129122373d70daca9bb44527d0761a3f318060a7ee9b27274008089d634438cc1b7b34f6221d696c0e8ac90116ce8fbe2ad8161ea629a43d317a88339ce16304113f9516254c1baeb99f8b3ede48801f0d37d7a9d340435e22b29f8303de2c3f59a17bb85f0490668d1253acb4f25977852ba0cbb525703e00271b3303f56465d45b8f6facfa6623a2792995ee1057d35a15614ee9190f2aff11d4d8df31c5d871154d039d36653b8cf7efb558c7b42d18075f7b913c2020cf122050f15aa18fcdb6820fab28a3a41566ac8e3488d4cbf2a56adb9ab54917bb9ff35302bbae9dff728556394ed74f0e11528cfebedc750c4345dea7ac2771514aee31f47310fbdb3dbbf85fc664f111685753046ae513c852a1cab7ec9f25b589c01c4cb6b6a6af0ab4575bfca006d5250d6f3a0687a6bd65f349c287630eb725f1667ffa922ea201723a468b13455aabe92c6b5f5c9a7346fd3ab27f89dcf0794c9cff7345721b5269407b623f0c7f43a76a0bb6dc1ed4ac9540cbf7ef467828ec011ad72f432cd6cb95d3f416b84e744678fa12dbdacbb7603d2302fafb05e131dae3790c8fadd5e4adbaa02075da641972b6084f1e452c51768afc6a7f973eb34389e4a87bfb4a192e1f090525f73ca169324dd0db9d56df6bc1eabca66b640a6fd07df45411e97597f24b3ce236db14fc5bf110e36e85c736b3674941e809f1595db0785fa380de9f0c19d1e133c4332f2ecd25e7154e06fec37ddb67cc273df0e6148c20b38dd519a7db768ae9eecbefb101a133b6a7f5e0539da3e8b4bf0f0d564b72b9f70134a83235010c3ae7f852d4bf4ec885238a2aac2d2ac4acf7015e01e1081a3cc9d361bf84b0e7a55c5e03d1af437bccd47a09e70f34dbc6964916ccd8cb6fb03052d60c3f1c91ccae86b214f746b3f054faa7b9f9d3dceda510c4ca54c332a62be7e896234385cba00ca31e20e0800b8e0c7cb83ebc6eb9118055f6f976b5e8d0ad4a0888f2a9dd1d3bdf818d9a5a3cc6c2b696091b5c716b8ac8dcbf9cd1d02729e669f09e02a33c4e985a3efda3fca32157147f17b9ddfd5d54c291f172ec17c48db2022ceacaa0a4d9273b385faf77375878780253219a28c5e5d84b4198b93e4964fa2bdf2979033d4f24f04e94d6308752e93d71a8fec2c540914235e81ffb4d704b50dd6780c3d22ce668e449c251b21692bafba89dca89a943beb1ac3bcce07abcf7e6be679caa41cd100697c56b379e8147d23469fa19c375905228eb4755f726c508194c1f97d4ccd423c8815e88a4f92338cae0c14e5416813307076e0153b2e4b308d2385f245dfb53d18c287c01d962629611a852c9253ebe33f514968c8b8e31ffcc9ad127154cdddb4f1ecf8a3657b7dcf3f5c5c7a9be20a5b3514125b4111cce6ba526bd20f505df91dd77d52038a62f562b36dfa1fd3a3575b56c3ec25e3cfde771cb5904d3b5aefc70bbbb4b1a1a93435b108afffd77c5bd789da0f35c1ad6e0250e69d8e690fbc9d1f42be9304fa3f3a810ff9d886b2c6be8c6be938300a5f4f1d6ce237d78f5fef94b56696d17070195f873c4b6520aa8731681a9e3ddd4d40f4709c5d70f96bd3f87711f66d6260ef2e41d4b4a35753f7e53d900e6133fcd1d32c1d07a5afada9138351fd8947599e8eeca207cffd66464c94f463f7099595553d6dd12f9385672f6584896316b3db7ea4fc58f05149e1cb24e63b9346aad2ac8d60c7026754396297d5345bae1ceb0a6537749e50819052ab67f7e9c16ee877c46fece9be14c969240907b28b1658c657aceb1280cad0658d592dcf3ce564895ca30f425da6b0950faa02ed4561ef1c8bb43687c53121bd1fb72af8aaef94f4a2df78dd73c995555686a2b9f00dbc705855a2ba87c7eb025ce251c09793a22975872705a451ec878f8a07f121c450936d1775a78148c67905335388be4ee19950fa1b7e6b8456b686e02efe59d857547015487d59823f78089a61ecc1bfe643b266903f68235dd65a120296eafce4143e2b64354f54cd16f2110b71af9b45fdc65b7409b5da99fa412403ab25cc269681322c558b31fd623168d2d974fe3903058b6afac8804f7f6e6f383dce78eae9af63041f8efdcd446f0eab235f96fd3155e76b95b0ab29d96b4a1f80db34fdf80911850750f2a14a7e36536c20cb38b102382e1192d90b3652d07c07bd24e32f2984803bc230b79ea13ed78395530c390adf30d9b3f1d7bbe7330ef806a0a961e89b09c289eef7575ec639311f97801ef399e4b68e01210c7e6bacaf70cbb7a557f22e9ac0f1281fd8c76f99b8bcc75f4d8f2196ac5459212f014674adedfebdb40a4d85384828bff0e6ad371bfffb2a0777130b7b9152dd14c8ba65459ecd5eb36eabef6f485973bb622b4970037e2cb5a07318e950c6de9911045a27e9590325beb2f3b312eb2f9d7f286c61f45dff0a9223141efd0897fc4ca802aa32b01f336b63e09c5d8166821bfc62ec6c0beb462d3bb4e02e275b859fb9b4fa87c4e324ab471890140e7c2c4db79b0feff5ece5ed40f93141289a60880bfc7b7df5547ff1ca83a203744d3770bf38a8d1b9147abf31dbe215b824f4a5f6bc55d05085aecd5c3e1357b67dbab3d507fdf4255e525527203b41e6cd95a36e2116202b90d1d2cf9c4b8f210409b34e469c0e51643f09d804be0d4014fb6f6b778bbb8420c2dd115181cecbf1e731c2ab8dc5b36dc76894eb07fd78c23835cda2b7251884148969a6b1fd1d1c286030689ca15a0b5e14ddd374e047928d56ade57ff0bacb0eab40e1ddaffa989e6c3adbce23369cb4eef4a82e98ee06d8c9fb7fbaee4c2b46d4e11e69ae24b6bc9eb3d2bb3623d6a70e851fdeddecd34e6703539ef699c9593b193c950483825c1df2f7245a0e9bed603ac62bd4dd4cbb8aa4e869bff6a801669557a4d8a7807fa871f08a87bdc956da0f0de921a59e852cbb87de46cb05d9030beefeb36f397594add47b25596ba791cd8582e343fdcf5ac61aef6a579aefaf73bf7eee2e9b3f247fbc6835b8d5a93f82160ba1c7109fec1edc66501159920d99b4c3797ae8b4e6b90cf4eeedba85e173ce66d26634cb2f7374847ad460f4b4be28785112107b37ddabb5f1857548bbe50043593c533cc3d7beaa1054efeb1f901796ba62bf99305e3c1c2d2da61be6de97fe232312a2f9322864d8aa6ec02425085b243ba3cfaa40a184ea7df20df2ec5f44c92440b2da829d4b1c73de972a25ac61d56317459a7258523c62e8efdcf52ebaf3b056876321c5521f825bbffa2efa1e6660510514cd1ad9bad159489a15f8192006667fa255c86e11fb142f1b92db05c538dc75bbd7fad2aad101a150f7b948d29530de3dd053e1c87620f3894d91958394f769c526713bd2ae4abc9cd8a8760ecb40937c6c1950a7cffeaba1f5d2f7e4a60bd16c9fb496fbd779e5d0e0b56a6024045de4a349780354d05aee154bf06c0143a3297342e9c06530f67715eaef91d2ffc48950e909dcd80986a9a2138c811048fa5079020fab7ce6810dd1dbbfb93b107f0e973c5b9d94b906de64dc7ab50b91e20497376a65ce0fa479c46b89ed14819ed7d24747274a10d97d7d312337d85fcc72985db9064186a834903cf2ea916e9708bc6a10cbc4b925038a279b133a1f0086122a7dd547790efcd476d7b3e5cdb707964df90e1ecf13ee7a9394842c8381fbafa1571393f1856026e053621932dc8927a21debf5a08b467efdee3adee180f53c97dc3fff86bb6bc4555d4e5ca80c9ffa17a5f42ffa6701cd382c543251ec26a58bff7b0deb63ac1b12f5bd7e7bae81fec4a3e3c436665f02a56860e1803425c2fd40a97486a7d9909ae0a3c08f8285d354f8046fa1090dd698f3717d26f28481863f060a70107f6579514c619c3a27116fd16169fce0cf87fe97a341bf08d1606c3041bd2692087bddace969769c774e8bdfeb283d2cd6866f3a1f8676e0472a0abd6b795a543688f5128e37664223a7f4c76e82e73a0a7dce4e7d9ed855afb4bae4db2aa5ff3895b8d5785a083ab10926d66cfe70501104fe9490b5a784dad08cf88716727161b445389c7dc6b5f23961f761238a8811fa09d636a0d63fed5b21c0d62dd5daa3846b8458cd361e94fb273addab674a02f2cdf88072b763fd679d2f669c5ede538739277766a2ed90e5b9f080fb616b5c232f3d3d37900909511ab291f35dc9ff3c486a749ad4ece0d436c8c3e30abd11e03768faad28abbc6287dbff84e224fa0d627ade161c2ddf399d112dc7aa8ac691d0e9f8bdf3ea07aed3567309849c44974abae17b36995c59448f7fd2bd3ab56d1a6ff851b8d428dc0632c14a37f4353c5e66bab256445fb70b3668f92fe414dae2db90d3fec0fae58a9dfe1e16847048628d28407ed9df0332d1355873810020a26145f8ba97e0f33b087a24e19ca39604d06f9bcea6f9161fbb330d5bf80c1522f9e5083742a660055cabee961c3781862d8e76587f5a834fc5e5a7b60f247d4c23c33672d6e4b1aa1b72db6f299294b9b0064010b5c479648b1bb5847d7d525663af0fe8161597dc094aa1709145f22a99c537baca3dfbc49b4fc3a6b3bb1b9f814ae000cf9c4318c459bc81a06a3a5f1c157a7ae863d88f65a73aeef649ff5b74ba4b578f01b27b13210088382caf87936480b8ec9096f772eac2d248b8ead670ddef2d3267553f74288c31144cc4df8702e5dadb0f04a8c8bddb72d1e1b13b3770cd1558f384d64aaaedcd49f0dc3ae80728adb9a1912dacfdf869383077c5cf206ca14d6130db5fa63ae8a025139226fc344f1d649920d03751fe8e5cbd7c3a8666f286d0e961f6c4868cbb017e2a2565f84f7e07ec30d700266c650bb913848d7c92b581c5fb40ade5c51ad33b92002c0624250b982aa57f8285024fb637b7705ff08fad44bcd57f005a7e4257c48ea1ab4335a31a44cf29ccf5f8e288f101f3a3ad68da2f30f42edc2d97e6b0208137f3877b1642dd8cf0eb087c08f598bfd3859bbcf62e142503c29b1e4e5d21c4a2941da01dfd94237ee6c77985bf5fa4af3da2a352ae32bd76046b53e0bb398a2ca9a835d27958b3f5c58d01bd16749e453495fd31f2c1dbea3d87525a733a1d20861e3922618ab85c4f38fd86968e5d1a7c12e38716b37da73e9e9bc41bb463dc961541cec731af3b2a071e7bcbe09f244a3ee0cb1039e78e170fa8c80edd5e7c30d427ca79d96b82d3e97aa26458ad8f4e85ea7fe73378784badfcb56b87b8f8626336a069859b6be859b6cb1aa0463abf4c9c2d303ded7e01fb7aa8b18af9b9b2f687fbd02af854f3e09d884493252863b7d04fb039aec28a0245e1330a305416ae7bf9cd03b927e57d1ba7645798342c09ba926adc05a42a0ad42661bec52ca5d282a4129d44823ce5e86dccad11ee73d42c2d83e50a4f0792d1486c777c942c84b336b20f11d7f0d6cff4da73b7f5b16fe4deb3121a92b528539b23598ef9c9e23261faded7a43363642faef6774e6dd44bfe924c0420135c2761c1fbf4c9763d9d98820958b8a0a058965adc2d0662dc37156df40ce012636fe84b4c9ec8e4b86993bc4b88fe23a9505218f339b2c66b50167c4aa63e272a95fad5ab6acc19756f78df08a413187abd7238bd5f2b5ba8e41b0aa34f7e7c5edcdcd466879562c7e9ff735181bef53bb45caf33b03a52ab7b4413f29b985c09f016adc407e5ca0040980b856b38b39c38be4e889cecffba07a55e23ee8afc87f9c141c8103d05a982f97a7a2faae06ccf56c396b059aa4945eb82d8f87ddce445b7c40570cf19e66c5c32ce5362f862a6648e62101f8a11c69d45b5a823106e57d139c9647146d2792287e6a7765a2ae3f52cde203deaa90ed0622b9d581d5dcecf3d75b4a3c8548e352b519a21c64eabd7b566359c256deea6654b6381f9d26e6fc61039a711d3cbeefe0b661a3209668262b9ac224db683bf8caf57c238b5544ab601946889e540acce274059c6e40098d9990d42d3b05c6cde367ba3aac8e6b00d28c70aff27335e0ad7fa749d8df8f938bff24466fc9e675f61965b4fd6f80da2de2732bce858ee7823f0d311b9e1f4fcee817b60bae8c406702174979a8b1cc1ba316c1177ef91738a1ad63ef576dd5870ee4d76604eefb2eccc8fae3f618eae4206f612cec6914e49abcecd5eb36eabef6f485973bb622b4970037e2cb5a07318e950c6de9911045a27e/usr/share/shogun/data/toyrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootshogun-4.1.0-2.fc22.src.rpmoctave-shogunoctave-shogun(x86-32)@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@     @libColPack.so.0libarpack.so.2libarprec.so.0libbz2.so.1libc.so.6libc.so.6(GLIBC_2.0)libc.so.6(GLIBC_2.1)libc.so.6(GLIBC_2.1.3)libc.so.6(GLIBC_2.3.4)libc.so.6(GLIBC_2.4)libcurl.so.4libdl.so.2libgcc_s.so.1libgcc_s.so.1(GCC_3.0)libgcc_s.so.1(GCC_4.0.0)libgcc_s.so.1(GLIBC_2.0)libglpk.so.36libhdf5.so.9libjson-c.so.2liblpsolve55.soliblzma.so.5liblzo2.so.2libm.so.6libm.so.6(GLIBC_2.0)libm.so.6(GLIBC_2.1)libnlopt_cxx.so.0libprotobuf.so.8libpthread.so.0libpthread.so.0(GLIBC_2.0)libshogun.so.17libsnappy.so.1libstdc++.so.6libstdc++.so.6(CXXABI_1.3)libstdc++.so.6(CXXABI_1.3.1)libstdc++.so.6(CXXABI_1.3.8)libstdc++.so.6(GLIBCXX_3.4)libstdc++.so.6(GLIBCXX_3.4.15)libstdc++.so.6(GLIBCXX_3.4.20)libstdc++.so.6(GLIBCXX_3.4.21)libstdc++.so.6(GLIBCXX_3.4.9)libtatlas.so.3libutil.so.1libxml2.so.2libz.so.1octave(api)octave(x86-32)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)rtld(GNU_HASH)shogun(x86-32)api-v49+3.63.0.4-14.6.0-14.0-15.2-14.1.0-2.fc224.12.0.1V͛@V&@V=@VHV_V@V0VwVrVf@VP\VA@U@UĝUĝU@U`kU[%UXU@U@U8T@TTTY@T_SSuSSǺS@S-S[S[S,S,SwO@SwO@SXSQSKS(5@S&S$@S"@S!S!SSSSSSS@S@S R=RʚR@R@R1@R1@RR - 4.1.0-2Björn Esser - 4.1.0-1Fedora Release Engineering - 4.0.1-0.11.git20160201.03b8c1cBjörn Esser - 4.0.1-0.10.git20160201.03b8c1cBjörn Esser - 4.0.1-0.9.git20160125.0382808Orion Poplawski - 4.0.1-0.8.git20151219.af8c1dfMamoru TASAKA -4.0.1-0.7.git20151219.af8c1dfBjörn Esser - 4.0.1-0.6.git20151219.af8c1dfBjörn Esser - 4.0.0-0.5.git20151217.7e4ac13Björn Esser - 4.0.1-0.4.git20150913.d8eb73dBjörn Esser - 4.0.1-0.3.git20150913.d8eb73dFedora Release Engineering - 4.0.1-0.2.git20150808.779c3adBjörn Esser - 4.0.1-0.1.git20150808.779c3adBjörn Esser - 4.0.0-7Björn Esser - 4.0.0-6Fedora Release Engineering - 4.0.0-5Björn Esser - 4.0.0-4Peter Robinson 4.0.0-3Orion Poplawski - 4.0.0-2Björn Esser - 4.0.0-1Kalev Lember - 3.2.0.1-0.35.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.34.git20141224.d71e19aMamoru TASAKA - 3.2.0.1-0.33.git20141224.d71e19aOrion Poplawski - 3.2.0.1-0.32.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.31.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.30.git20141223.c329375Björn Esser - 3.2.0.1-0.29.git20140901.705b7deFedora Release Engineering - 3.2.0.1-0.28.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.27.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.26.git20140721.81c0008Björn Esser - 3.2.0.1-0.25.git20140717.1ba2924Björn Esser - 3.2.0.1-0.24.git20140618.2f7681eBjörn Esser - 3.2.0.1-0.23.git20140616.31f5609Björn Esser - 3.2.0.1-0.22.git20140604.98900c2Björn Esser - 3.2.0.1-0.21.git20140604.98900c2Björn Esser - 3.2.0.1-0.20.git20140526.7587570Björn Esser - 3.2.0.1-0.19.git20140523.681b5ecBjörn Esser - 3.2.0.1-0.18.git20140516.96b815fBjörn Esser - 3.2.0.1-0.17.git20140516.96b815fBjörn Esser - 3.2.0.1-0.16.git20140423.68a5124Björn Esser - 3.2.0.1-0.15.git20140418.34f9672Björn Esser - 3.2.0.1-0.14.git20140414.b0146f8Björn Esser - 3.2.0.1-0.13.git20140318.6134bc2Björn Esser - 3.2.0.1-0.12.git20140317.6ee3991Björn Esser - 3.2.0.1-0.11.git20140315.55912daBjörn Esser - 3.2.0.1-0.10.git20140313.9b6dcd2Björn Esser - 3.2.0.1-0.9.git20140313.e380071Björn Esser - 3.2.0.1-0.8.git20140312.d9c535eBjörn Esser - 3.2.0.1-0.7.git20140307.c281eaaBjörn Esser - 3.2.0.1-0.6.git20140305.9c67564Björn Esser - 3.2.0.1-0.5.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.4.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.3.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.2.git20130305.9b37dc1Björn Esser - 3.2.0.1-0.1.git20130303.df06a0eBjörn Esser - 3.2.0-2Björn Esser - 3.2.0-1Orion Poplawski - 3.1.1-2Björn Esser - 3.1.1-1Björn Esser - 3.1.0-0.13.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.12.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.11.git20131219.207a709Björn Esser - 3.1.0-0.10.git20131219.207a709Björn Esser - 3.1.0-0.9.git20131219.207a709Björn Esser - 3.1.0-0.8.git20131217.70f2657Björn Esser - 3.1.0-0.7.git20131217.70f2657Björn Esser - 3.1.0-0.6.git20131217.70f2657Björn Esser - 3.1.0-0.5.git20131216.7230f07Björn Esser - 3.1.0-0.4.git20131216.7230f07Björn Esser - 3.1.0-0.3.git20131216.7230f07Björn Esser - 3.1.0-0.2.git20131212.70e774dBjörn Esser - 3.1.0-0.1.git20131212.70e774dBjörn Esser - 3.0.0-1- fix serialization with JSON-C >= 0.12- new upstream release (#1306079) - fix build/testsuite with gcc 6.0.0 (#1308270)- Rebuilt for https://fedoraproject.org/wiki/Fedora_24_Mass_Rebuild- udpated to new snapshot git20160201.03b8c1cc3b8f4426a2fe80055fdfdc9e156953b6- updated to new snapshot git20160125.038280845fd7fb886f4459996f1405f8ca8c1612 - re-enable mono, issues with mono >= 4 are fixed upstream (#1223446)- Rebuild for hdf5 1.8.16- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.3- updated to new snapshot git20151219.af8c1df859ed3d5780bbea5615a5c523e5651db9 - remove Patch0001, fixed in upstream-tarball- updated to new snapshot git20151217.7e4ac1327cc3ee4b09f498c1b778d13f37ff0956 - updated %description - add modshogun.rb to ruby-shogun - add Patch0001: revert removal of migration-framework- changing name of python2-subpkg- updated to new snapshot git20150913.d8eb73dd89f47e0da28f07163c4f635b96d0ec00 - removed ChangeLog from package, deleted in upstream tarball- Rebuilt for https://fedoraproject.org/wiki/Changes/python3.5- updated to new snapshot git20150808.779c3ada68ae535062346ef71e6c1c39e482a8ca - drop all patches, applied in upstream tarball - add more testsuite-excludes for ix86 - disable memtests on %arm- rebuilt with full hardening - add Patch11-13: enable CMake-policy CMP0056 - add Patch14: fix handling of C[XX]FLAGS- temporarily disabling Mono-bindings on Fedora 23+- Rebuilt for https://fedoraproject.org/wiki/Fedora_23_Mass_Rebuild- fix: Build fails on fc23+ because of hardening - fix: BR: mono >= 4.0.0 - exclude tests, which are failing on aarch64 (#1222401)- Rebuild (mono4)- Rebuild for hdf5 1.8.15- new release v4.0.0 (#1105909, #1183622) - add Patch0: fixes double delete[] and tests with swig 3.x - add Patch1: fixes to CMake-buildsys - add Patch2,3: enable python-debugging in testsuite - add Patch4: optionally disabling sse and sse2 features - add Patch5: requiring 'rubygems' in testsuite - add Patch6: testing Py structure hierarchical multilabel classification - add Patch7: replace deprecated json-c functions - add Patch8: obey $ENV{R_LIBS_USER} when running tests - add Patch9: reduce debuginfo of swig-generated bindings - add Patch10: make sure all modular interfaces are build single-threaded - add automatic CLASSPATH-export for java-shogun - add automatic MONO_PATH-export for mono-shogun - add pkg-config file for easier use with gcc - move headers to versioned include-subdir to avoid collisions - retiring octave-shogun on %{arm} - R-shogun is stable now (#1043885) - use atlas' clapack on <= fc20 and <= el7 - narrowed the list of failing tests and don't ignore fails anymore - remove obsolete sed-kludges - use temporary files instead of pipes to pass data between different gcc instances - builds are running multi-threaded again - use %__isa instead of %_arch for file / dir naming - add memory-tests to find reasons for possible segfaults - run memory- and unit-test multi-threaded - use %license when available - use %bconds instead of %global madness - spec-file cosmetics- Rebuilt for protobuf soname bump- rebuild for so-name bump in protobuf-2.6.1 (libprotobuf.so.9)- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.2 - Once reduce debuginfo verbosity on arm to reduce memory comsumption - And once mark -doc, -doc-cn arch dependent perhaps due to above- Rebuild for hdf5 1.8.14- updated to new snapshot git20141224.d71e19aa5a575b2b4e52c908a694eb1db7afc973 - reduced number of make-jobs on %{arm} - conditionalized and disabled OpenCV-integration- updated to new snapshot git20141223.c32937574df1c560ce7c10f1b8860679ce011a8b - added BR: ocl-icd-devel, opencl-headers - enabled OpenCV-features and R-shogun - purged light-scrubber.sh from repo, now shipped with tarball - updated documentation-files - build mono-shogun on %{mono_arches}, only - install documentation-files to %{_pkgdocdir}- updated to new snapshot git20140901.705b7dea7093cb094fe90fcebac20b7e7d1debcd- Rebuilt for https://fedoraproject.org/wiki/Fedora_21_22_Mass_Rebuild- updated to new snapshot git20140804.96f3cf3ce58514299f98e688b7c43e057ad4fa41- updated to new snapshot git20140721.81c00087da6f05d36aec410fef0fcef5be490f42 - enable SSE2 for %{ix86}, because dSFMT-build will fail otherwise - switch back to a monolithic build with limeted parallelization - temporarily discard errors from testsuite- updated to new snapshot git20140717.1ba29247b850adef1b866a6c2112a6483c88428e- updated to new snapshot git20140618.2f7681ed0c1849088ee5bcc48b91a1c970ff3a9b - excluded segfaulting tests- updated to new snapshot git20140616.31f5609f7a7345ca05b5c1f8c7425236da2270df- export additional C[XX]FLAGS on 32Bit-arches for SSE and SSE2 - fix typemapping for Mono (C#) with swig >= 3.0.0 - exclude testing python_modular on Fedora >= 21, segfaults related to swig3 - build libshogun with full parallelization, but the swig-bindings- updated to new snapshot git20140604.98900c2996ccc4509099a6a337a71d7ca9991bd6- updated to new snapshot git20140526.758757094c30ae249f5ddc84f3cdc11b4b4203c4 - dropped obsolete BR LaTeX from -doc-pkg- updated to new snapshot git20140523.681b5ec17c0ca9c98cb54047dcd679bec9171989- adapted the logic for finding rubygem-narray on Fedora >= 21- updated to new snapshot git20140516.96b815fd1fa9769a24122f9016ff5a685a8a6944- updated to new snapshot git20140423.68a5124bec8df5a013b2406e8c00d93ab83bf88d- updated to new snapshot git20140418.34f96727f343b7f7f5e0426dbbf579f5dbc0f51e- updated to new snapshot git20140414.b0146f8b7314a4de25273dab2d6da4a37044bbec- updated to new snapshot git20140318.6134bc2e1e721726102624b372c1f8e7a31816df- updated to new snapshot git20140317.6ee39918dc99e72c23a30419a608f11217146e26- updated to new snapshot git20140315.55912da6dd499632ab2371cbbde9fdafaa913cac- updated to new snapshot git20140313.9b6dcd2a077868259029ce2f28b306e56b30bf2f- updated to new snapshot git20140313.e380071f5a8a5d35c0b33ea0ab55810ef9845354- updated to new snapshot git20140312.d9c535e85ed8dc61d537052a9abce200782b87b2- updated to new snapshot git20140307.c281eaaf51f44c16c9a7ded0678cbbac265714f6- updated to new snapshot git20140305.9c67564278abd5a13efe9ae016f8b3e01bf209f9- use new macros provided by shogun-data-pkg- use `CMAKE_BUILD_TYPE=Release` for the Python3-version, too- fixed year in git-snapshot-date- updated to new snapshot git20130305.9b37dc1e630d54a9c16f2d19b6a10c34d8aef73a- updated to new snapshot git20130303.df06a0e1a7e3551b0bee218246cfc4bf1a4696d8- require java-headless on Fedora >= 20 or RHEL >= 7 - exclude some tests on %{arm} arches only- new upstream release: v3.2.0 (#1066944) - enabled build of Java-bindings (#1043882) - enabled build of Python3-bindings (#1043884) - dropped Patch0 for Octave 3.8.0 (#1047053) - bumped required data-version to 0.8 (#1068941) - split-off scrubber-script to seperate script - exclude some tests on 32-Bit arches only- Add patch for octave 3.8.0 support- new upstream release: v3.1.1 - data-files are now moved into a separate package - added example-applications to doc-pkg- rebuild for octave-3.8.0-rc2- updated to new snapshot git20131226.1c7fbaa732c8476b2df26bca2ae93de666959092 - updated to new testsuite-data git20131222.0bbb04f354a29ed3ab43ce002388b79bb274e886- rebuild for NLopt-2.4.1- rebuild for arprec-2.2.17 - added a line about `no-SVM^light-support` in %description - minor indention improvements for the list of bindings in %description - fixed `macro-in-comment %{mono_arches}` - added %ifarch %{mono_arches} for mono-shogun-pkg for building it on those arches, only- updated to new snapshot git20131219.207a70972e794df28f0fc67309f217f7fbf3b4e7- copying and packaging the prestine examples to another location is better and less error-prone then removing the clutter left by testsuite afterwards- remove more possible clutter from testsuite - re-enable mldata-based tests when there is internet connectivity- updated to new snapshot git20131217.70f26573a501791e11097615296127c1c36904d7- temporarily disabled mono-shogun on all arm-arches- enable build of mono-shogun, since it should be fixed in current checkout (#1043859)- updated to new snapshot git20131216.7230f074751a97842170b8a5f9c69fbd9b8287ca- remove cluttering *.map *.md5 in autodocs (#1043856) - remove possible clutter from testsuite- updated to latest git-snapshot (#1043283) - disabled shogun-mono, because it segfaults currently and has some severe problems on ARMv7hl- Initial rpm release (#1043283)  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~4.1.0-2.fc224.1.0-2.fc22 shogunmodshogun.octshogunexamplesREADME.txtdatamatlab_and_octaveclassifier_gmnpsvm.mclassifier_gpbtsvm.mclassifier_knn.mclassifier_lda.mclassifier_liblinear.mclassifier_liblinear_objective.mclassifier_libsvm.mclassifier_libsvmmulticlass.mclassifier_libsvmoneclass.mclassifier_lpboost.mclassifier_lpm.mclassifier_mpdsvm.mclassifier_perceptron.mclassifier_svmlin.mclassifier_svmocas.mclassifier_svmocas_objective.mclassifier_svmsgd.mclassifier_svmsgd_objective.mclustering_hierarchical.mclustering_kmeans.mdistance_braycurtis.mdistance_canberra.mdistance_canberraword.mdistance_chebyshew.mdistance_chisquare.mdistance_cosine.mdistance_euclidian.mdistance_geodesic.mdistance_hammingword.mdistance_jensen.mdistance_manhatten.mdistance_manhattenword.mdistance_minkowski.mdistance_tanimoto.mdistribution_histogram.mdistribution_hmm.mdistribution_linearhmm.mdistribution_markovchain.mfeatures_dot_polynomial.mfeatures_dot_wdfeatures.mfeatures_dot_weightedspec.mfeatures_string.mgraphicalcluster_hierarchical.mcluster_kmeans.mconverter_jade_bss.mentropy.mhmm.mlda_classification.mlocal_alignment_kernel.mmkl_pseudo_dna.mspec_interp.msvm_classification.msvm_multiclass.msvr_regression.mtest_gnpp_svm.mtest_poim_wds.mtest_regression.mtest_regression_mkl.mtest_spec_interp.mtest_svm_multiclass.mtest_wd_wds_parallel.mwds_consensus.mwds_shift_interp.mkernel_chi2.mkernel_combined.mkernel_commulongstring.mkernel_commwordstring.mkernel_const.mkernel_custom.mkernel_diag.mkernel_distance.mkernel_fixeddegreestring.mkernel_gaussian.mkernel_gaussianshift.mkernel_histogramword.mkernel_lik.mkernel_linear.mkernel_linearbyte.mkernel_linearstring.mkernel_linearword.mkernel_localalignmentstring.mkernel_localityimprovedstring.mkernel_oligostring.mkernel_poly.mkernel_polymatchstring.mkernel_polymatchword.mkernel_sigmoid.mkernel_simplelocalityimprovedstring.mkernel_sparsegaussian.mkernel_sparselinear.mkernel_sparsepoly.mkernel_spectrum.mkernel_weighted_spec.mkernel_weightedcommwordstring.mkernel_weighteddegreepositionstring.mkernel_weighteddegreestring.mmisc_pr_loqo.mmkl_classify_christmas_star.mmkl_multiclass.mmkl_regression_3sine_waves.mmkl_regression_sine.mpreproc_logplusone.mpreproc_normone.mpreproc_prunevarsubmean.mpreproc_sortulongstring.mpreproc_sortwordstring.mregression_krr.mregression_libsvr.mstructure_dynprog.mtoolsContents.mPCACut.mREADMEcalcroc.mcalcrocscore.mgraph_hmm.mgraph_hmm2.mload_matrix.mmodel_to_graph.mplotroc.mreadroc.msave_as_ascii.msave_as_double.moctave_modularclassifier_gmnpsvm_modular.mclassifier_gpbtsvm_modular.mclassifier_knn_modular.mclassifier_lda_modular.mclassifier_liblinear_modular.mclassifier_libsvm_minimal_modular.mclassifier_libsvm_modular.mclassifier_libsvmoneclass_modular.mclassifier_mpdsvm_modular.mclassifier_multiclasslibsvm_modular.mclassifier_newtonsvm_modular.mclassifier_perceptron_modular.mclassifier_svm_serialize_modular.mclassifier_svmlin_modular.mclassifier_svmocas_modular.mclassifier_svmsgd_modular.mclustering_hierarchical_modular.mclustering_kmeans_modular.mconverter_jade_bss.mdistance_braycurtis_modular.mdistance_canberra_modular.mdistance_canberraword_modular.mdistance_chebyshew_modular.mdistance_chisquare_modular.mdistance_cosine_modular.mdistance_euclidian_modular.mdistance_geodesic_modular.mdistance_hammingword_modular.mdistance_jensen_modular.mdistance_manhatten_modular.mdistance_manhattenword_modular.mdistance_minkowski_modular.mdistance_sparseeuclidian_modular.mdistance_tanimoto_modular.mdistribution_histogram_modular.mdistribution_hmm_modular.mdistribution_linearhmm_modular.mfeatures_sparse_modular.mkernel_auc_modular.mkernel_chi2_modular.mkernel_combined_modular.mkernel_comm_ulong_string_modular.mkernel_comm_word_string_modular.mkernel_const_modular.mkernel_custom_modular.mkernel_diag_modular.mkernel_distance_modular.mkernel_fixed_degree_string_modular.mkernel_gaussian_modular.mkernel_gaussian_shift_modular.mkernel_histogramword_modular.mkernel_linear_byte_modular.mkernel_linear_modular.mkernel_linear_string_modular.mkernel_linear_word_modular.mkernel_local_alignment_string_modular.mkernel_localityimprovedstring_modular.mkernel_matchwordstring_modular.mkernel_oligo_string_modular.mkernel_poly_match_word_string.mkernel_poly_modular.mkernel_polymatchstring_modular.mkernel_sigmoid_modular.mkernel_simple_locality_improved_string_modular.mkernel_sparsegaussian_modular.mkernel_sparselinear_modular.mkernel_sparsepoly_modular.mkernel_top_modular.mkernel_weighted_comm_word_string_modular.mkernel_weighted_degree_position_string_modular.mkernel_weighteddegreestring_modular.mmetric_lmnn_modular.mmkl_multiclass_modular.mpreprocessor_logplusone_modular.mpreprocessor_normone_modular.mpreprocessor_prunevarsubmean_modular.mregression_kernel_ridge_modular.mregression_libsvr_modular.mtoolsload_matrix.m/usr/lib/octave/site/oct/api-v49+/i686-redhat-linux-gnu//usr/lib/octave/site/oct/api-v49+/i686-redhat-linux-gnu/shogun//usr/share/doc//usr/share/doc/shogun//usr/share/doc/shogun/examples//usr/share/doc/shogun/examples/matlab_and_octave//usr/share/doc/shogun/examples/matlab_and_octave/graphical//usr/share/doc/shogun/examples/matlab_and_octave/tools//usr/share/doc/shogun/examples/octave_modular//usr/share/doc/shogun/examples/octave_modular/tools/-O2 -g -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong --param=ssp-buffer-size=4 -grecord-gcc-switches -m32 -march=i686 -mtune=atom -fasynchronous-unwind-tablesdrpmxz2i686-redhat-linux-gnudirectoryELF 32-bit LSB shared object, Intel 80386, version 1 (GNU/Linux), dynamically linked, BuildID[sha1]=4a0b67ac9b61e509a6a94e797985503ee6ab5496, strippedASCII textUTF-8 Unicode textFORTRAN program, ASCII text-RRRR RRR RRRRR!R"R'R$R&R R#R%RR)RR(RRRRRRRR*RR+R R RRRRRRRR RR1?p7zXZ !#," X]"k%w!` 6.zH_uBWʆ2Jȣ ZY @ iA9R2L=}^2@ dRhfcJG3?!bfez?0YnmaRmxO$K'jdgʹJ 3qFoycV>Wzv[v#>mt ]h^CCϑ\s. ߶[(i<(o iybU-Y+BFuf 2hPKȼsR\駻2ݗ!OJb\#-X|ayUVEZp %~ݑd8h_I%(`M9 ; \n̷.ńI+a@C Qw*݀Ws)Cݏn?LxڒQUQ!/ %A:^y, )rL 0C rEq v_趴XC.A97<)rL5׏wMIJO|ƄOzRB騸$eea[6 Z4 [ȡf! =Z'6;ׅ$ Umfrs;;gիS4Z<12HEI/=jƮ"Ij?Dͬ7DRkNSH/|&#)MW7TGk~Ώz`Pō0moq<Դ񒏤0@jC$/0uoWdP[FZxY eQ D-?巤 [<2 ˳8?8SFVT2 QF/"KCMV5i+,;*oV!Ցi>i,GW)(9{_z7)#\J it]e-P. ~J#A~)R# ~΢sBh[ݻeTW 8 @Bd\0Y#al'+Wi;YPR VuYba^үCT OFX*'_3.J͟IA%Җ 2pIJ47fSS›v2n[$ XRLl]0L}ݔ@W"z"i,1F<,1yfb wIJoXQLFr鳴}؃f=n0 0,he϶Ϫw`~~'9=U>fu@仩yG:/7@x#عzϟm|dұe=X5,'>E%j6z<)z#b;n/[  =iХ ]rKۆ:YBF a^sDvշc G4(4Iz~};y`3p[Z &!"u\~7%0` Bx9lMMOHW(90>8$U{1$EO;T4% g| aFr*Q\q2\Zqr(,UZg P 7|'ۛn.^F+&|ٮ + Q\@ZpP24YKy gLO2$Bxy 앎z@.`ہ@L!zMφq9> l:8)9K[]5Q;ot #q2.1g1@nZ}^/;~X1qZ *ב& [l@UF?}h1m@|l0fjCɾE|$mA݇:`}[VwKΟLc&x]ٓqWǕb@ēeٯ{óy=uyx=Y>g>~;W/w'CCvo=W߼@#Kgq"=Q#e6D S((Zrox Nv!G뵊~(b=%cjzv>G>=z0e:-)}5;OB.ig?Z%2a;/#A@tl6ǹWMB|hz^$[*r >¸镤 |مIq2'S> vv|o3q-w-VU.7ۙ 0}X$@/I!^_Hܬ Jh\~HUBqeH&g DhV=n 5g]ξ*&$VPIܸXYs-fFTƟ`}QQ\{:/?w1l#T/"j#3UlI.hP!jN71"!4 YZ