shogun-devel-4.1.0-2.fc22$><55y1r>90? d  9 l p     ( 7 C ] c laa %a .ta ?a Da IdaZapaaT(8I9I:mIGѨaH,aIaXY \@a] a^_Oabr=dsesfs ls ts,auav4waxayCshogun-devel4.1.02.fc22Development files for shogunThis package contains files needed for development with shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.V^arm04-builder15.arm.fedoraproject.orgMhFedora ProjectFedora ProjectGPLv3+ and BSD and GPLv2+ and (GPLv2+ or LGPLv2+) and GPLv3 and LGPLv2+ and MIT and (Public Domain or GPLv3+)Fedora ProjectUnspecifiedhttp://shogun-toolbox.orglinuxarmv7hl/S- \   n ' C 7~=<, M  v Q2N ?9   7 Rt J 0 7< _ Mj   #K H ( ," q  ,4 Y < j  z z ` o_b,ZK !!y ` J < b% | h B^;&p. p |(> r 5 8K^ Qsr8 6I)) < 9bJ47;z s5G]X0`<u U*bp   fZ>!wH#7 (+v E # + \ 6 U , [L" 2H m QO = h d . m? 4^   I | P L  3 F  rb @q9 ! [ x  iZ  f k@NF 0- E  1{  ?xD  *zA.  { WR1"~f},!   0 :X Zf o~" .  U* b GNe-Q7uGs!E<u 2  *e l X?C e! &Q w'A*V- #v)#5g )F>L.n 76 2 DkW @'6!" 1O+#8&6 ~& `*M ZWcp/ ~- 5]+x Hsr]JW T;.2 $ Ubk n 0 ' D P ,/ tG 0%R j h,]t b ue Y q5 v =$j VJ D '0 O y*g )n<<'M2V#5K !'?iVAk_!! a )l F K ZFT  :H  YF dQ%,9  j2!; `a   [  Y ,b4 t * ~@ | "GJ/( Q WJF'p+k) - c 8~)"$~+4 ` " K ]" 4: e " !jx)m:@ku90!P!aU0 a|  u##N ? % P|;Y[jB K )#  |   { |g A D( ]l b{ zY*2J (~ ^+< q9"hC"o 0#J 1 ' u ^ X s {0DFK;AAA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤A큤AA큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤VZV2V2VrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrV1VrVrVrVrVrVrVrV1VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV1VrVrVrVrVrV1VrVrVrVrV1VrVrVrVrVrVrVrV2VrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrV2VrVrV2VrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrV2VrVrVrVrVrVrVrVrVrV2VrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2V͸V͸V͸V2VrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV1VrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrV1VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV1VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV1V1VrVrVrV1VrVrV1VrV1VrVrVrV͸V1VrV1VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV1VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV1VrVrVrVrVrV1V1VrV1VrVrV1VrVrV1VrV1VrVrVrVrVrVrVrVrVrVrVrVrVrV1VrVrV1VrVrV͸V2VrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrV2V2VrVrVrV2VrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrV2VrV2VrVrVrVrVrVrVrVrV2VrVrVrVrV2VrVrVrVrVrVrVrVrVrV2V2VrV2V2VrV2VrVrVrV2VrVrVrV2VrVrV2VrVrVrVrV2VrVrV2VrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrV2VrVrV1VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2VrVrVrVrVrVrV2VrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV1VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrV2V2VrVrVrV2VrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVVrVrVrVrVrVrVrVrVrVrVrVrVrVrVrVVVVVpVpVpVpVpVpVpVpVVVVVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCVV54408f1c2421d8549ad976de46b50e7eb1be35cb5190fffb925fb3ac28e181f29b49cac88fd1e29f2d436f37c5384ac749062a256fe408695f0d09223c6d1324507662034cf9c54fe3d6a2ea5cab929b4963e1a3366b542057abf25ae339faae33ed9d30a54c15e31ba0f724376c7d9a549ce4c1ee54eaf9b88f2c6cdce6301e90c46ec38ed63b1d350fd0356f421756d0ffae0cd7a23f9854ad7edd942e342f511cf42a6f0e339e0261b5956ee0dbdf4d72d4ed4fc95e4d4df7db00fdd461572dd8debbbcd332b96b5c3877f393984cc95aa7b0a0dca0e6dd392134b8d4a6a9a31df6e05e2a486af27f249f044739a008743cae2302f3eca19dceca8ec3149bb89ae4d15da1e8e98a43b9f59b196aca8ec520214a6a9ff3d0e3e9ed22edae923a8f72cabde39b7b4fdd5a3449d2a25b7b8881f78db5efae9015ccb6742a0ddb149a304750528f2f8d3c1f581650e721018eea4d4ea2c998428c5df5cb3dca70be84e0ff1acd2588cca9c75109d2458a6ddf8b24c348b47304656f9fe46ab38e43a5c60b017e3dce4660ef3e2d7bed490cfa59829773c2a36a21184f370ad945b66ccccbeb69104d41d1ed9590fcb6240515332488731c2095ad9b60ab9a85c5de9c335f0bc2ff283299a2fd45ab3610e36a427ba6cc0a57c47c9af6dcd54795dafc0dc1774cf8846c81c3eab90e286216e648b4afa5c11b231975476df3e579f4ff745bfcc0022f24792c15b286f2dbea8758524e36b44de3da92f470f1ac4542fd0784289a1d877a99cc18322f27696364abe3f66c1c16704e30cad17496bf45eace7ebf9a6657c561a01746f4174be01b11bce5a7a2d8e049fd90aa72fed02b5d278c0569bb1aaa0fe18cd5d5092af00c260368d1c7428d50efab5204a28dc252126407f6e6ea66fb250287173ea5152f933595edcd3fe5cbdcddf80d1d7ede3d199a1779f9ffd1176a65aafa28ce3aa29210f8656bb68d09529a204427f9c4beed8f0d8ededb8995e621c6b77adcbdeb9175d6061c1edc4452ee86b7ce2ae1d82048bbdc715dd206a385e78e9fa9bbdef7459f5f9a5ea7e440647757e739d702021863d94bc7e09f4fc25499b9afead70ca9872b67a7c0e1a56b4fd35f596e19a5f7b0c83722b2bb0c4065f292924aa71648b053a97124cc81655965d2658bf0b051c2a7de67e5a04f40a2526f18b2289313ecd5ed31fcd31ef76f82e4eb80b27714391d26db44b3936035e42584db540b907336f193af91c429dd159b06d630c86e567aca8baf7d3d0fc4b7414f48ec5a09ab6c3315fcece598fe06320e16c011f579be39ba4cb8137feda33301b1d8441cac083739910299fe0d776bfa721ce70765f6d870ed620ddd2db1582e910236ff1add323c04a6f92c66cdc6064329d98b9ed0c146bd7d6da2df82dc03c0fc6beab11f3bac9f8dec4532aa54f1302a88f3e425eb876c87103fa18a3d5f14a4b677c560850884e674dd38848949493fdb52b7bd0a20ec0dbf54da89cdff0d9296037b254729ca58bc7be6d5b2fe34d841d66a15a942701d8a5c0df68450606767d3c5b2dd1a5fefba53516df105d1d1da16b555f06cbef6b0856637f80ef0ef9614a92d97232a350b8a0a81bb484adef8879d179d52b4716eeffd07d0432bc41be03daa1a419697b918383a4920d871bbcecaaf96939e9862ec9934dcb7551b526be87a8a5d7ff6f0dfefaeb1d72ee401d604a375d62296377cd518c8c9d7ceea8fc3f984745c933cc2547d9ed9f26bddd943da7acbbf8cec274ae54316dd22847457869c797164900a0739f42f68e329cbdfba28036534318a3bbdfc3ef55547cb766ea13db6aaafae12d0b8211e761592a69e046651970c933254d57b8ffeb974a30fbc5460b1c6e8974ef25ae3b3bb9d3c76ffe9a505d29898cf98af08d3a907deffd65f15c7f5cc41f80c3913187cf52889f5251a04f69ec83289e6a8d6aac836497f4cd4ec3c5802076b4cc7b7c14662f78587dcc8b6388c57ba7f598e9cc1ea2adf12a259cf1e58cd06e06f85b78a9b0c16e55bc50e86bd8addec4fd9f690c4b8313305b5198c5d52e1ae11c19def85c17a546fa54fe8d641a44e24d3f893f848798479475b6bcebd6e585eec780f36af8fa8912b710329a4f5f740e9f2a2171c3fa512be758d00b23a93c44935ff9d42a20a4e035e62b8c732d908f702f5e37df8e42c60725f5b29d3969871ed52f02f8a3fa0ef3248bfd17fc5b69ab6577308655e5bb546a7bb3b9ab3ebbe876c8facce8cf78928800b0b2c0414bbe467054a27070a6427a6ac7a46c02b7e6fa27696185b88530949bb4e80dafa0e6fde1f1055f7c1d47629f3f4e2a57ec50daa769b60f96e37a710defd676f6ef327107b4851d69a7a2d273dabf4cf0bff3e55832f93b245ae42d4c7d97ba089e457bc53253716142615080eb04e8641132e6177fe92b5bb83cf6a65d37792aee71de5961b3694e4591a68eddb8f48e033e54675611aa9ce951941b68fd3b67799e8b5f2b5d599bcd4f75eedb2b9095bbcd5d7170d60efbae26a5446df6b64a16f9e02c582add0ea330f141c8529a8e0f5d05f5374bd800e2a333483c4cc7b9915e9116558e0b92e0627f71f1c343e52620451980301d35dc137ef81e61c360b52697823834035126adf9fa4ca290ca13a0edda07676141642836521869414434cffb92498dbf55107f129734e200cb01ef56bf3e8a52cdcf1756522276acbe988f4519178c04cf06341de91a97a09a84532d28194b9505acbbdc30cef5d48144a6ee978c406bf133704f8c46937961b692804396b5e9d894ec60f93e1f1a7b9b23db2582cc2a952262806380af0cb56c0762ddcba7f3bb1fbd251f12842d627a29349422af9b18284f3bcef49f31bed1bd0b86d12caf9a9d3f688a54c92a9d62ab42e31ee870a909fa27ea26804946bbd6491dd1c76202a99d78663d6963b3a3499fd05f90df78b9120b1695558802e4833cf03c36498c5b599773e1c983ad76820c29b3c6d39985220952eb4f9b32b6d8e860c805354ba92d14c36056b56a35d094d6280bb7396c66a3cd3774c4a1a017b05131bf62519b700d1df66590beda457fe8a99a268dfdc45e577cda31820be1fb072bbcffe8af76d4052ab6027cb800babd6ce8550c8981d62913acc7ac4f092476c5a056386646f54311511cb2a33ac8a965cde74ae448e31df4a2f00e7b689c7498d0a53e418c3363e1254959e8aeffc8beb0dc4cb32b81be9c0a9075af87a79fc707ad99d2f1478a2a321477a452856ab4be8c8ab9847b258909e3b90b49edce9950c0f7a3d8f7c69fb7dc465f6e1691e199512680753472fcc871efc3d9d876dcc2d78690e56d6e67da7758f5d8980ff855a4b5509f839a21474f198c660eb19854ce1865ca4fc805d0a30eeab94dc931820d9097d065c642bbfcdaa436c9d627585d706b19be84b3fc8e5d45b9fb7224a6af25e04cd244930b5f4d78731a33f39bd60796c1b2eb01173adfe52fab1061a8df2a2cf0360e2d5e46b51809850a213c7c9d8edb7fe33c8544c869a809f832f67018ee198f3c47c2aa6b80ff1aa862ba1616159a9e5f8114c1b332514c7bbd3ad7bbc73623c979873c5c6be8a38ab39ebe175d7d28e331c69273d4cfd71309d07e70cde3d98ba15043d258cf59e647eac56f8c0c834f7918615c2af2f3c107a5acdaf56b9cb432db4089946f0fb1e34075b32c8b5dc8ec25bf865d25d27c991d598a39ea489fa35f8fa8152c9015b9a7c17930a7c8f7a756de11a05482af35eff2095636ddb8a88f208c0e09c717d59cbb2619dd935cfa670ac826202a3ccb592f18b4650f83a8c431f3b97ac034c7b4caf8b2d347a6ba1b0c52ee21750ca60d38f967c1f736742b0bd120f3a7102ebffb57de4664aa3d226c8dbdfa3da87b24370fe9d9735559d27296a398543378a1d228171534192b3b3542b93dd68c301a84ba9f6f3a725a63c1804478e48581dad3aff514ff283c034e43277630953d65c316a417a209b5d9a668272f0c090900fcdcd75d6818d662101cb0c93cb7d6e0fc46b7d4641104f914b6b006f3d2679f8754e94cad7edac62c8e7166a190f00040c08081842f299415dd2878d252892c3a8230f87711bc4da68d0a6ccb953ae68a7be1b5c86d5bae5f94fe2382c300e3e1ee53d35152a74e42456b4e4946bf0d01ee167cad2d62fb80f10623a1c95c29735c793a1364fc1a650a741f1ff2eeccbd62278801cedc33ffecb25360c0f8be97c86eea2b5859f1a83c24ab362da5e2f4bd189a16ac356d1aa414b4279c6b1887a925786057bf4169de90b25c29c55c5a346a705e1b42947f81c4877efdd611666624bdb70bb11955624888ebbf92326916b469c45d879971252f2caaedc7b978a113845e31ab70cc93b58a7614bd68159eb34266dc64193e702def6a1e697e6a62ddcea2c975661175e91db89a0b9d400dc95354dbeb4e9180b6ed2a967a1bd4f58d4f3efa0e6e16c3670a7a99e212179a704f8137b098fd11901b2b8cd5a8a786809edf25d6b1430da2074329fc55bfe02e2408e97de1b18bbe72b5aecd5e616afb043d476618a40495308696cf2eb82004ce1dd00ffd50207b70a302e95f47cd6df91c2df978717f5c8974d554b9fa94a1ed13ae6817b8d0e7aa15f97f161636f03b90e127d94952f111b40b5d94301305784be91a846a2e7f29e48d445a084daff791630d6831b14cd42735540db7aca6a1ec2bad5513c0a20530f97d635807c1248215a060e264b329a6650f8369e6c36a58eb81b022f4b70fb6b3622a93b526aef380b37ac6849c8ad4b970466b82112e49b1a3171cc1fd377afc71eef33bb15e69aaa5acd4613330ee0a92a7ef869cf1610b53499255344cf6e0cf8fa3dad4810ac42f6ab0fa984ff606018ed6a11a4a3f10a0112cd1028fd48c26d2e4aa5416408adb71ff225e2e0bf91352f677233aa8dea966378ddffe7b3f68212f64ca6695d02579e43367d890f1df542e73a6d505eed77e1f3f23eea25a0f29e1714a4776f6d14e1e15f2b9072e97fabbaf52ed2a88be6156f9f82157f51d75b2fb256580a01d5cb732b8d6555795e75e1a775c348706e86d8c81abfa80b14f12ab49bce606e15cb9a4d428b6688804249d257ea605e49ce8a20b9399a51269dfdef26b30811ef8c92ba165ecf534236faaded905e830254455ce412013ff2645b06bc99c79dedca6893cad6cf937cdc8dabf33c0a52e2d78f6b85ca037309c6c8583de7d1d2b6dc72348a7c74fe0399c2f880053c926298f92dc03681b6ec0502dabf2bd56e727598b2f5a4f35e9603e57e8f52c305dde8dd61433c4799d21153a0da2e68c1e58357f1845e4672838b2cd0d2cf7493d7e169d0ac73ddb09c41b81ae2f46c027fadd7e738fe2c0d9810cb71ec2e1f5dc50a15c5f7f7aa811dd7a2979796c63a6c0de161a810879df603955847b57bfdd9ae318b24b4012feb6915c5c3924be0c1cdc793b491ce1c20f17439637059c8a9a406ad65decf05fa26e594aae36161f79be175c47e6d6f2eb640f3a16af50ad57c51d0690e6251f618a6632a4695c88bd43ffbbfee44f289962aacd046af2cdb8b56bcd6b668c04515aa6f2be44f1efd6650d3829d0ea19aa52e883ce1ec6007d18e52d71efe095de6cdc19701ea5ea05b3b8af660e5fe396e0f66c94a81b37aad23f78a700b1bfe4e2ec6be36acf2271b09e47eff1fcf95c26cd5c26e10d4c291e62404e621650211fb8b482c51818f43cfa2d3394dada20e5240e571e8f9f238f2b5d90eeedc13aeb852a52adf5e357391afe97c0f7ea47b8c89d6985ce106ee0c71e78b18d63b8c26330c087d7696b58cc03854567183bee0d4547d30cd44879c6383801f46d775311ea89ddf6f508b52720e0b0719dd2905ecf9a438a8a5349c3ae0ee855f6179e5ccfd1b21b7337c6bf18a7f5b3197516ae314261eb524d7ba8a733d7aa271c339809bcb66b2df5b8e283566a5c98e140b6f45dd13415e6e6baac9b3a9b1047ff067330532a1c08ddf0a13bb8767583bfb56f064163e070871e01d9e5dd12d3e2aa0dbbbe148efc872f5d318928f533516e5700b6d02c41b82511214fd1b9c5f09f3f17af61bf5d6b5e70a4471b7a90a38339e86bff90b19f346815d20e3a386552cd54bf49ad4081bce1f8393054d4b6f075dae71b93acc5706860e4df67a8250acc5e82e994234d14cb340cd55fe7d7740e0d7e8023234db5708ea4a090a6e6541ad974135c7986f493c7d5e7f065f020154c8bf1074456c0525510051384d79514164d83bec32afaafec22375fe195bdb1e5a678bd9b736075f0ebc4cc8c633a6df2c197af0ee12babc899add7050424a12027a1decc34c4cdaf83aaca4406d3b7ff3732591b174c4083fc23b57739ac4b028a696974dee4c843bcbadcb345288e84c14bab6a24c3a64fa65e7c954cc055cdcdf4b5285945b585afb605bf8c4004be1dcca4ec547f2665b0e64762bedccad5dea5737ad57c08ffc420640ae63a2094004953915ab1419ebf78c48bbc7b5d65388917a0ed377fdd00a050d6dedf3f0c8713a2d040cb2bf7259b011531efaafbbf31c6acd46e3c23ed827ec9243860ee40e356546eadceddfde26b7598426aff6c7be7a6315914e07a61d7fb854202094669059cc63313a161ebb180f6b90e2e05449c9a5d7323bc62979f0702406eff4bcd23727d0c2c9cd512a46cfb0d5c4237927702f8b601f379837e1dd59f6c62741dc1dc1c4979c3d059b9207f0d76b40512a1da9f2fee30da734164c54b1fda9fd3beb2b732adab1a06a783b56737635122e6448557b552dd2210b6c1cd4034ad22b56c5a3c47d53a6d21debf90f987df3e9f1869691f70328f57142f9a26713ebb750f8c83654c3de5032e7f7cfd6ad93e90beec126a4715d312c30098a3971b546f052ba6ed0c16762383576a07d748d3dfcc5390f2941affcb08f581ca544c75dbb35f007562891b2b27ca9b702c63340d9e45050ac6090b46ce8628cff66480c2eca96c9a09a11730b2890c8ec0d7170a77f145361fc7eaccf38e07d456ecc969e11b429077f50b5fddd97b0392e84f78c74ce12c8319e2ee51b9cb851cb5b22231f1deaad207a85eb72e6f0dfb2924e70fe6b0b372a714f5c8b99eec785b7c0c74daeb4936e9051362bbacd472c2acb2683a7cab02275640eb72aa7dfcfc3eaa4bc5d7165a835b76a00ee4ffb6d55af967e4ad9cfb57f707196303b030e52fad9d1c17c3e43ad78e330ca8596442e2ec6c9b26dd7592e04e924b513dcae2e475f0b5cf0037488428220e7bbb57911e6124850ec91e77ae36812b45823087b1808471928e1fdc86593033516fc7a4896285c35193cf57094fc75bd05ecacc87c3343cffd36fb1f959b65d395640f518005f4677acca371a4b54903a96a8d56859b9905be16dbf98663735f55beabec9bd56b1f6b266ee64080d7c483ea985f8e57e2314b20f7180bc717be778d2ae12b01f13a42c7ee924dacad5a160c9224f305adb154157bb3efde4fbde4c83296fb84a3e244b5abf9bee9ac858ce813e337280fd1ae0e3592af7a69d09d0de91a57af0fe0c3aae81f0dddd9ddc9f2ca9fa4ddec55ee8482039bdfd25955350c65db5003e9bf50a9a17172cddddb0575b21894c79468283c3dfa687790133370b825ce7019983485f980cbe89b78cd2d60a2416dc6c5985624ac43db44d12eb515e7e6e428bdb7436d9c8702d312d377ec05e40226dd38c82569f0c7eb2c018be2379feb33d05111300cc6598326134c5ee0b83987e35970e08cda16087db0cca1dc1efe2f64887499773819fe11f85b74baa8eacc835a998ca1931965a6b222003927b78df991ecad6b5845e10e953314a1359cc06bf2b8758d66fddc448d2b3bf5b9600ecf2ccc65ae80982f6a8fb67c12855473d74b8e1add34ca40fafc9f6355a98bb7415620a734e917d28483ac8989d83728973d5515a8c8bcee394cb6eab1d977a597d36111742ef7fe934b8d220ca9bcc94fb04700251c8dda11a9ddc13dcbf1eb5d57ea1ac834b14181a46f29b7a95095083e42d7497591a8e2d76b58c3b5c27f54acc315a6f1fd7d1064ff1eaff2f48baccbe0f4a136a9de62a92c34a176e96a048c8f7730a5f4742f1ae9ebdfc04209bdbbdc9308c6e62ce010a30e2c41e02eab0fdd532fd90b4eff29d0d63f3afcc6ac1208216a2fff536f7dc7f449eea36f6978bf6e609abe199595cefe8094f6458a088d6f01f0328c786fa3ccbc419c7f4c934da6369855c4032177cad6ed72ded3ce5239a6c03947c35fa7c413b0750ed2619c0d13cf5747a4377747ffcc39b222f7689edc0f792705cd5c8c81ebee43ccafa3ff664cfdf762d94594a1180e7acdeecd845a3839a7a3e7aaf991ede014021b23e7be81b405521392c3625e817c2d4c6fff525e0a1d18331c0de01ff04271b2e1a60ac51a2167061e33c6b75c2f4cff7962f535bc68266f91a7a1c3417e46dac38d5e57d576befd382cf8846976994ef43420d6aba7e7b23bdedb2c311d62844f082531fdcef280583349c2854fd4f450bd8259839c423f1f5797cff091425a29e35827c77bc2c52c3c01db6e1ce26ecd91826adfd9cacb74183d2ea1415991a814428330012a8e12e675a5da830fe1d215c3388fd5c0aaf8d2144a46ae865d328785f9d48368aa25d6256bbebeb1cbe1bacb127f0bc843f0369ef1ca6cb4d3c427866d3bed99a873932c750b052f3ea6c82c79d720a7d586e65990d6c159e4f69e0391455b0e38d09c46bb13a95dacd8a8df19bdb6cc92c8a334de0bcbb4e45a96424765efaae564cd8800b9c66d60458c9ad87fbec34e04b05b54c7b74b062a965afac559da54b1be9255af896a11cde89b48859a543967a6d445b472da38756487a1457f526f5915deaa8d2b92d45f7d6bf44fc7e0a15699787b5bbe202f720345ebd6f8e3ae67777700ac69cba3f7414b8417c4adf9b8b426fdcf25917e807b6675496d81a4339ae2babdb55b56a36da20365d0287fef5b87cdcd6477984c1521311b1eda460733b67eed13ad98690c0acba3e5a32da94a5019dabc3ccca69874b2e74dc3fe2b05dbc8d78a00c6e87710f95e461b4a20d4245ddd3823dfcad51906b063184ad71ef0a573d1e4ff36e21edd14735aac530eb0cd9ad66526ef554d164a8b042b78f65d9a7d0bf8fa7b85f6f521a2f4bccceb788c2ac25afaff4d39547819f8469d4de002acdf8046e6b957c218e95affeded1765632a95ad761029177746529abd8bd4d9dcd7120d2302b5a3b384d485fe15f175cba36221a24068cd29ac6fe0c033fe7855125d7fed2c3fa68da587e4255463340a3e5ad3a6770a26610646297ab7cc5dfbea29b71df6e9732fb814439ef69458d1adc19d27ad4a66dbbcbf40eeb731a0b7fd6c460f5f6d9df7c6bd2e5f0b5da512912e71c62592d9ee035e04ad70374876c4970686c97dd81f0debcac165a50dd383baefa2931122a7042e92151cc36f8fc2fa22a9e4bff352f1877b7b1c611202770b96765a009718ed52ec6074b959d4860a87d4a19f58691063250c7bd0fe1cac93ec3714afbdd4ad8976ed87af1eb16e890afaf17f499886e64b3e92dc944aaf83300dedfbbb6d6267198d9699f49da4d340c90072c815e20de640dcef21ee49c1b8cbf9b9ba9a861b3bfd34ca6d149e1412cab4499d32d7c7be27b72394afe03070fd0129cb495990b2ab6fb070ad4755d298f099a5938a60da4f4d7c86bf7a3b6f821dfc6cf84aa6f9c441c0836485700dca3347fddae93f897de2399af1e35f141c93ec4dd73ae9cc521a3ee2998e2809ddb81feda4a1046b7899e914e13d4ead8ffc2d06a1a808909629a5ca20ba3be060d55635c8c5dcc0c6d09d75aa03780b8d5340e560d46f16f229b942a51d11fbcf2825a30db4a9d1a93f6670f195d8aa9b434df8885c196d5471d1802e15a5d079664293bde9b80f76ffd551808f2e1cb49343afe1db285f63a08d1ddb57aa5853370b8dcbfc5679e294a38e6d0d8ba5038c45655b37932942baeff91fa9fa19d2e6e6f41f38697982d7091676828ce1c462bb7d1903c6686f50de6f63698a77638ba34b7489d9676552d540d2d24784b4a6d712aea50c9bbbfad3deee2d3474987d1551487a31434557480d3ed7ceb357a6ce3338a8e0ca328fb970039fadaed734e5b1b0963fe6ab60036f1dc482f2ad773e95db397579d029c20bbae0f96acaab4e0dfdcf87a6669b27176e3e57aca92068ca1e2c78df13e8c2e2c945c7402990503c4a0ab7757e4043056e5e2f0702b4998b6e72e0450ae8709d3c5a2b96f6e83e39fbcf46c5b47c17394ae71737d835655710861875bf6adee369b1ab945e138afd4dae00288669063f08d07e34a31ac4f9b0a82c09f3953a3c5557afee07f2cff49a148e63148f7bb0f6561f98c25b1c9f017f77286feca7632895c867939968e0287a568f922400ba607fafca60ca886b73dfea66004d0c70858c296153d851233832a1ad0d83caa75d80fc1ef59f7f0c276d171f9d35ee4b15355b2f2babf6520c9bb54b8e6b6203e11925ae3523a10fb52336b63997055b7be0ede5192c70993b2db8fbd68e554f3976f3f7ac912b4963ae76803e6c94bb7f2a12791c48083128d711e8b981b25136a78458d3f8cb0e0a56c880262c96bba84f9a7819d93c03a8317caca8d3e93f4795376e086b2a501c8a03fef74519d62c2515842206b427b3654374731454328389bccef6b486205b11b17a96be5c5fbd9b0671f3e344801c66cd126c4b84681dc37e1d413fba710d59ca1fac21f3f1ad9d7efadc837c41583170615bbea5c4b2ded662a148f8e115ee5e75575118a157f9564e9f806d3f7bb6fd05b1aa5dd56d9a9d6840c0dd5d705039734240affade07f3c6ea1133ec04ef9e72f47a195438433b2c0f414ff923fa381c8a89caa2297c6969acfbf6a689c01d40bb5052c22a08a2c039cfcfd7082ed107abc420c27b8ee57088b4b24914f28e552ee545eef6066875ee0437bf4590a0e5dfcab59e7c8f30c67a1cda59b208fafb73ec0c7845db4065d1d617bf113b8535b2e962e782e3793e7cf677a0156bd923ddf6f20ecb4a61f5411f98746e1a676e95d78c8cee458faf49c82291267d0fcdd2b9ac7e12dd248b95e84ea29d13ce06c85a3f6c8a631f41165071b968e7da1acd6a97c6dcdd1285c90c418ccd3f4b01846e15333f6f617ea9e5eff23719c6351ab576b1d7424e739ce50b1c1d53adfef3be256eada78d6f29906c775218582f482d04773b3d3e7068dc8126bf138fe9e8a2804c01f0d63ac1a3aa7c6629a1983d65750697db80d162c24eb0412cee1304166fa28a7e763b4484f62c6a633532fbab68248ea37bf390eab471f8faf5b28adc7a70dd960acf87d4f8d85ad60d71c7f30393eb4fcbca3cdf223d867409f1eb0598eaa71f0f14d899dae93080fb487b1df355fb3eefe8a97f5963b2fdb4bd037f153e247aab11f85237284ee4dc1774c8c1e89db9e5e3a0a790fcf34fbd317808a5e9f24f0782fecb5905d36ba92e4d9478b6bd47bc0f1af496545f0a27eb0d888f90b863bc932839aee1ad5cc878bed1ddc594e6d767017899ef30ea4bbb7b8218281bfe241e6d5a24d9c64ff73d4348003098ae4505afdaa911122e79594696f5e36f7271e4abda0b2a3b921b46b6211732ad856949d1a324408de1c10d9c3452e1af4418d8fc320a959a5b874d3918f4b5f68c4e4d3847acc804d841119fcec19dd969f4248480d2325d465038579f60acba4d952ebe51d8c08688dd362dc7cacccca3a51b8fdb140d0d010faad6d81be02b21c61a97f0b5eb645288598d8dbc7300e0097d7805a29cdcefec616438b9b070af1c0924627bdb2d3b18f811ce7b0f8daca0abafd7c15b74073a5fd7a0043ba812a8458e66133267fce816d82d355f7d7065ffc66bb45c9f708a0c75ab631ff5118771ad258299d2e36d7d62780c426fe2c4d3477d28cbf25c59b4a106f021128bd6b17c959a044c643bcb065d14b723f0fa17fffbb32aaf6283e77f66b2dac07853a9f5a060b7325bb99dd949dd88240333757febdb8ac07fc16d90f7d606626c04a3bfd5dbc58fc1e56d26b1c60f7f3a8d3bc16d7844a9621d7bf8d67802627c14182a5804ee0f44322e8d7cda2ce4042b9cf29bc9bef631f2a56bb100ab4f0cbde3d87c22d8c25260dae5752cab0ffe6fde2e024d00c77d96a1a6e1787c6c41aa56cd6166e5cafa4c418b51a91ce7f43d93f847064cb268d34741bd55973a7e6539db4f69cd77874aa1989adb8f673255e3fe4b69657f9e4454e066842e35e8081b012ff45bbc49d5be235689ba3f6ec9477e9bb4becacb0b8703c86e7c5789887512e63bccf44cd8d85b93c37b1b6e696d069072abba592dc247cdf9e30e9d4fd624f7e195897f31545af986498de4831dc71f1daf8279b37aef19462f46fca43a01cb1a363bb311e204a55cb047769a1ae707ed90a492dfb8d16567a3619f40cc8de8c4e64acb9b65b1a1b822bdc34b05db3031f488bb98f58388df31449cf31c6220b2976ef0b600eae6b9d67e2f6c8abe252a86bc4bf48cf0d46355d02f12d4baa3078ba2fc11d36c8fdd6f27baed112f5bd17b745da6b8ff67b13d126d86ce75dd56afd33719139884028390c1d2fa9549b6db28bb35b7914ca9c2b59d15c7352280d247f6638debfe332158b52543a18d93d2445f3de9fd6f4bf05a42f7b97731f84f5c18dc4e4b2162f06c12989dbc9cacdc4c4a33fe0545413e13098719a79ca6a15153b43e01a14da787c619d7af883923a3ecc54cf0ac770bae0f06a2b449540372b2c26aede68b08b41affd243932a532f64aad48be4a9a3264cf2fd20de4a97352e7ab32b933e5f508b4423f2da2147dbf93f193b69f69614cdcea0099f4b1cc4232f5250ab5ef9d1e90bcd2ffe26685d532b40450a47d7b7b30a38bb2dbf01b50ad23f98f15faf98a781fca24c9a8970dc5909c5e1ce1b4b7248920e07ba7a5f212395fb219fbdf9f43d78eceee310aa0d10b0589afb7373f2638b39239feaccec90243ba5b06319d01a2da195d576ce2e01fbe64cfc1a12b8780bc1021627df0e4730a1f67f82e6e56ba7426b42265ee8ac84957b681ab46d28dce8251c0c53f932d144f6f779123671728d8b2ae420196d50f7b1c394d1cb236baca3d72f1ee3188f618ef64768976ad9bdaf370effb1c5550280cccef34f74d1fc746af4853636a5ddfc4078171d36c7862176dfd327dda889d2f8f8d910606c831c6262140c6004e15847db3181bc1bf4ad81085eaa6441b1947b0995b41ccb72833afc8c3cf3b39d451c916fa096d13375d9fd8ae146eeced4d7e7ed267069160e4ac5812c89a9519791c5ecc3d6f8e0362acd8ed66d286de33b25a14ccd8f00fa5f7ab7abc86979420fe6ae054c6bbbc10bcf8ec1a89d37f2c7ed7636e2aac09e1bb9d8ddd82b836804ca783c326227295cf8f6baaa63e9281c7576abd07f00b7896953f011d9524ec291b0973064651b0d503244f5c23bb4cc0c5be7d691a33f9874dd31b1acbd7b5124893e5af8073c81b7a943aae41b0d855bd43877d6f87793edc9a625023de9c616a4b413365caca095cd145f4f0ace6adf4adcababf93176bcb62dad8a0b1b50b975798b808e978ada0144dd01fa1a7f0163a6f5edc13c37d51fa8609f4920bf0f3e3f070086244132275badc21a28e4db47b379d03a28813eb8298b0d6314a0c828a7bc2d9e748e3ae65482dbcb4edecebd04dc5b5b84e5a4e54281f5517446a5d053c02a6506a7ced81aad45b68bc62ebadbf78af77830672856d098549f30172501a58c598fb81b91ad249f201fd5240e8c3139863bb83e329297b3560e778565a2bb294798a1818d06ce881b076cc67e5a2a59792b6c7302dd4a0a25612f311ccc06e356979a27c0c2580b5187ac9e0dc20b3e904ec8ff3952550b83761b6d95948f3765ef0fe1160a67bab43bf13071b5fda2333d7f30f42122f9186bbad9542c12271fd027d581d3fb3c2631787f978a260a4abcec67319bd767c93601f5060a456138cd07b8e6dc166099df377b8a34caab068c8564dd3a2a97ebb15965396a0c483b5d188bde55d78f6007081bf42920699714389e35b36f51bbcb1db8914274446c9f43ba4e719ca6159abef09598a92d1ea52fe31b13f665bbe6af8333f7f4c8edd46957258ab90a2be494bc3e8d2b6e901cc589456684b9a9d3700284ef2c7bec17499c8e7b5e1fe5a27e71e14ddb836e6896b8048cdb9b457e01c4ce2eaf47d09100805905d998a45d403b1492994aa8ab55c719e1cdb296a2d63ec852dee73eb29f67f8ee30fe8d3f3561695da95ab1b122ce60951ec63ea39d882ef211610af0b301540417fab69ecbb82228d44c08df6b1934f3b6028e0ed3d7a5ac4b845921b127269731ffe5a28cbe16fd88a8d5819dc091ff22863fd0f96160d8d72df9babac85e6f9f4ebc7e5469e942ef814183802f268d6f9bf78e8fef1a288c899129bc99efbbe3f0f7c1c5fb0bc6b6656fa7e7e7f883a66ecf4de4f949067fd0ca75dfaa6bd1caff9bbf883a9012e75f7be19160343787bab3dc6ca216811fe7cfbfcfc1d873e0dbdc23b5b89b7d67395eadb864da96851501583640fccf022e496c6827a2dd708bc62011e835e1d4b397d0bccfbf58c32fd5d78cd93bab5fb86433b78c87a875efb9bd153f1230b353fb0981b30546cbe8c7f087b31208e841ed76f091eefff226327605cd74f6c1839e9f4fe192524cb4ad20de1104e00620059de0d688a0409a61fdfa19684e1bcec436c619c3b3c844646d5fab0819c29c9370118007083fae606d83f8f7c56eb625530ee5da7e83d4af6dadb83237f4b4f2ad25968bb2f29c9125ef90bbd54148093a2b0d9870a17ad9434ef1b57371ec0c0baea75371f4164cbebfe1536b46b136826935e7f7f64ff2212142d35dcf5c24e4d6df2702ac0de8c4b328eed363cee020efc61e5397476679d64313789f31216d06f74316ce0526ad6c018561f7d8ade126305e863f31c14d83e2f98b9ee841f13a82a51b398990c84b374b68c04a355b82d3cf845978cb84e5670389b81a5013ceaf2c8b404b2aa8db4eadb219caf0c8eaa9c6bbc8bf08404f84dc7c5db746cabeef7ca2f4e5a6ffa362fa54ba670194ddb255aff89420d06131b080d873447e59d99d48f68cf61940b2e37e7b454c1905784b6cdbeb689a1acfa71f8a9325fcb1b192b5920f1daab2d35925744036dc054ddafce5c937a6ffeb74f9becab7a592b7749dfaa8a138ef584ccac42bf67e69fa15d9c90c33269eb5e52bfd58768089f480802133a0f7a82fe50b69f2e56142273825b7b84243013f811fc31e0896df93ac1b0085f19ba3d1457f1c5044c7bf67cb78530a30e44d4c06cd4a664dba31997ab8d4ef5e59905a836bb4cc2366296f4b5675af36a008a85d4b19a6a3ad77577f7c78652f5cd1680f9ce9276b1796bae9a158f125298c46eda497b1c053794dc254ac8c10ab5b00a01c53a13bcdfa8b7fe82813af989e74b2c38866230ff33ff63518c94b13cca7ceaf4fcdc6d614415eccb94361be4c406feb0f25ee7437a57b1efd98311a3c1843eeb13bb4f01be672ba8ea7e6c44196096098d1e6aacc1599aee7ecd6c9be81cb56dfa285dd5ef34f0f1ea84f1962902e8969397b2e3309a36192f1af8b0431f0c018fe5f5f537b5fe459a1398080a8fea4ffdcc3382431f6ec6e548380723db5d8bf77939a321db38bb01b74b6e055369c1f9d9ce49edf343a696b964e680c0c94ab76566d9b09b51ef3a93caea471aa55335cfcb56fd48c21eff000fecefcceb89b00bbd63f40f0984ef428631daed446030685186bf2078903b935714e0b444d3d99676a2ca3e8af114a7391416e085f05fc24667502c13b07b67e8292d2a2a3ba8d570e086850ef758a804ed2aea700b0ac9f0efc92865c674b2c9e6d02ef9243b134d8c5af97942b864e312f14262f099416122ae8c354943913be37f7b952ced1d6201a8959a83e918389a0f948b47afc702b030c7893e6a09359e599d4ad972e156667f14ae6e7c59990e082d82b105faa17db98b761ad3eabe9a50b1fbcee5775fd86bfeb4af3c013af24f05f9d8f047c7e95b5d0cb295760d8e859454277c6e6b6514483ad7a984cb5f478803acaf128c3a9d44320a9778eaab39f9a2e2594b32d375ffcba009989f584920b26c6904e012b04417f252dd94139b32b6b72d614ce66bd5668dbf95977c9000f2da7759c6bf57fd8afeebf58492ef06889c81e28bb6ce39b0cddeb70a8b79eda84f82b42c1b12068badda25be7302eb86cc7e079017684ac25b285beec0253a72730767ca6b5f500de2ee7909b5a850fc6d01beb14d228297f57e74bf6e462d72c9d33bd6974da3cdd5b7c01129b46f362a3302329f73687b324dbc3a319d35505d74d91e621e01cf00da9932ae8008723b0e1386c2d955c227a638e5bfa07b8c80b8a91bea1bc46a1341dfe687074b9bc4e313e2fc6860a7aa5a82c800b99b1f56c358c849642a0ea4035883a5f8b205ee28e28ade73854cc36f70d83ddabcae57a2d5a89d6b7593617f2eb7598a380dcd23cc272519d5220854dd45fb70f17f80987753174ccfd3633efdf77a11af6c3ece983c8bf96f5dbae315bf3975174ee080e2f03bde62b69f095627d168a787744d1f505b4bcc020453bf1dc1c1068ee3e139c0b4df885c727db3807a1ea13310da4f4b0c56e3153a330d882bfd4dcfb6773b35d63c4fceb8a3b8ade3f4bcb0317ae6a94c8054f5c3e2d2afa7abe1a8160cc9a3e1f64df1ed2261f14f113a954d0999c23ce936702217d1402c522aa1805ab6c32721a3ac6bee69a99062f593659a2756e521ecefdfc1d6e87a47ba16f0a7a6d0d9c92533fc64f32ea7baf18761e1641f969a4ae028d92a4d5f96628ae25db7cd6da24fc2ea15c5bfc13f9cc76bb65f47f222d8e04e61aa871c450ddc556602925dfb9ce3df27258c319f3cbcfed407e20d1d30a31dcf8c3005861c1bbdbd6ca33abbbd33690986af832d43fb55bacd34580a980be1fe3b501208064037bdbbc546fe7d919c90b48f9830f032669f9841b9d45a84334f4a86ff2a6c5b4674236fda0a47e1f46b859cbc78d85287f259a0b75b8da925c006806842f0bd12dd77dbc5546f7154bb82e8f84ac178a6a0e97b04501d650acf2316576e953866bcaa7ff57b7fa33745f763516a12c16fdd2311d8bb374e51e9c79b4510543481550081045560f7bcf923cb6c8ccefc40a9fa3c275111086c4a7760e10cf67fd45f1cfc8a737d894d8b1474abadf5d72eed576e9cd6fa1470f47482ac5a4fb89ef87d20b9c7dc94327befbb20fb3af0864859a317db4f02ec3615a444482d2e26617b735a2d7a9ca523fe3d080e5906909d8719362ccf5edf5e1827939c362b6d70326b87917752f89e10ab207ed0901bef441f9e8e7af206e33798af0b7b6c51610ad542274fca84bec3384b919b9c3605972fab604618d5fe2cca348622df6f7e91077225f87ed4e554b269a3e018093fb04274be4fd1a31f91f996f93085f1a0286c60ba15d83176367e614adc9e1be388db45f6e30203e7c8caf534257e4cf5567b58088f67f97ef6394f5ab8397bb86783531619552b399cb46b1d123246077d695f7f22b0ddd94e2cb3f642f3186d7791ef20b287fd28195c700c359bc98699e6d7256a914f6232ba1a3ee204b50338e04a7c9a614d23d008d43edf39e35f81a5ba6e2aee0d6d161cb127d3a8ba1491bd7245bbbb4c6d1c57bb7ecc657790f0d27a7d320f48b44f43d1c745bf8153b92de3ae477d5450ea1a8d807b6b8791f85169c07dc06801a755ebd3122b86bae340e9bd7b417218ce812bbaa5ac5d90c2a44372d49a3d130c2896f7fbe7943a3694692974bbc6edaaba1b46219f35e5b854986cbf83cd03d9afc72d49ce435c36a7e80d03a02ccf09921699e0a214dc67ee03084042291e9a3b8137ebdb6cca324639c58eadc33264945ab673ab7d6b0b64a21b11e812575ea29545ca124eed3d230ebbb1421bf8b9932d3296b8fb27c689bae0c9ad0527c48233ffd74b23ae3f6445582183ee45b97c0c525a4dcf538c37f5de217aab5c75c3ff6b3638e937daa40bd591f083ffbae4c68fa893599eec94f9eadc8ffd88bcd35309e96200501d73c83ee033cf61a99621067a4578c2a1579573079e837822f79b9f9cdf3459ff002e8ac382d7719e715a45703ff4ea356bbafd12d0c51f58f551eb32314ee4692b389fb8bd28280d58f6bba1bdd48afbae0989423a019389e3f2c449fd42ed3b291621ea8893ac0042ec48d4972d85a8b5aa74f2f63e182c7ae5a8f8f5ebe580d53d4799e54aaa0bb0682487a9329c816393c27cbd6e9202a976c97b30637e96d617998a9d18d2d5bad7a966014edf6e84a5f43b49de61ff98c53ccf60706832beb4a14b6a9ae41b318bf3232f9f91735a1ca3ac6ae1b23bc6fdde012efba2632fd5d3bb9e647a8f3021f8f5da1d4cdafc49e131df3c2346933e989fcfce94b8d4073c27189201921013bfba798056acf1c5845b691ab84a0fcecdcb38556b4f0aa19b3778ce60a9d32abbd95e47ef4730f91782ee9e8bafaed7681bd6e927a514ad342467539f9562c0a804133aad2ec2ba2d9357301c6821b0dfc515666f881e29fcb17f421b2629d6ebb025f32048fd90416762b134ce293cdd66695cc9d42736d8c849de67865ca953b639690ce8762b908f659ace2efdf97259ff93c461a7d56d79a9aaac2220e787f1121ec4627def1e34e85ec5c824902f0b984ea06ac9040d333e8679e1360fb71f69df3df7388c5cb8fea209b6e359479d11b7b25bb2fab2daf34c52b19ce03b92dbdb4e200056e96af5db9ce9da5aa783f465269cc3b21954f4457cdf9108ba5a9624c0e4282838092e03d344d1382b99bfa46962b9659f7b967ab18523e81fc7d09c92dfd7e133dbca207dbccbd33455596769d000fbac296229b6085031e5a6edfed371181a51ce67198ad67118967a06d0a89b03f2cd14397b8a9b5d2cbce7d16934264339421c922229203a2385dd198e81b0b9ac92efadd9316b24f4059d9bac9686a59d0e42bf89f786a46ec2769aae5081bf24a9c3d1822e04faa7a7c438016ae28b69eae5440a6a2bfc99a1af72f20344723cc75bb15427c46455e37390b71749785cb03239e9f1b1ca1b4655abc554b743422fac08d174c2b36400dd37323fb4a7e286beea86314bc013b1851548a0ad90e8df52d08816005adbe2df4eb805fd0742374a590be0c78693fed9a4327267242f1de2a5bb788dd7e2fa641c2a893e2680908572199d80cf300322bb38ebed194b0caac307c5944b05c5d24fbb10bf69871b8c456d68c9338b3af1f10627b79a1162a4a8b192a7326d773420063bfb2a88db27266f2231df0ed5d459306cb8076c808966d268106564104383193edf94ca9c6210809d694f0d92e0331f85a7849fba02e1faa3716aa591dedca45e500a66b8cbda7eb0b3a73c1342cf4cda48a7bd4f07f657f2ab5575c73362d006207fb802fcc8e09ddb0b36c10467e8afb853dbda60f1766c0e66a27cf886e048bb95fc5ba79387e20619d7c854b15859e3301d47473a9e5b1eaede2622b547c1442b1f6c47760c95964c2eed47396b6f9b551b6f967ab303c8693b4d41f68e323e51ef0344b1e178263ae4ebe9a2b96efbc524d99c51f70f16f6ad0360ffba74984ad114e7ab78acba8e0c2d0b57b0401ebbf17547e410a58a544ce839f391d5fe464dd58235176f925805e6caf678be8937d4ba308d55c50772dc2c6d879f52ecdc40de25b7334522f4bf080e62753e501861dce7a3de7b76282bf1ab0e7e37eb8ce53b68fc690e6d1b9839bc54a1861d810c1b4e2d61dc705285c9ec7fc08f1e628997c6e6b7eb1095da20e9c33f0decebc95696c513bfd05d8e1b199e5ec03be8c85aa0784f506ded5d86e3006eb50a89dd63f4ec05320752e43fdd6ab144ec5d7b2cfd798732e71499d8d37bfe61c4c50c216815d83197392c24e0b773ddfed3cc3d2b22f7f512ac1d02c8e867a4d1d1c933e749e2902d15d1ad012a470c8fd090fa24daa9228fe9edcb0c732e6331de14becaf9bb7e8faa4d03eb3c379610adad111b836dbb1d489f8b81fa0a2fe2a088dbf4bcc41e0d112c10f52c965508a9a97bff237b2767b7b542da797a686a18ea01467ecf7f3c27bfaec57558e01779ef11baeb711968b264cded989bc4534428fa2f104487be12eac6378115bb0d7fabbe3dba5f1b6d41980a9b2b13b74d108fa715dff4897e03e7ff45c74aa6fc7a6d08748259fa35acb9528af1393a2c95e272804140617c06992c2a1595fda9e14801a124ef7bd71d818455aadce512ab2b7ab62728caacb3525e9e34914ee366d62ec0fea33e0f08557ee69421de3307ecafb1f115c3b9dd63693125b95db9ce1ac6fb426166670eee95cdf8a9bbd4fd72303018fe32d599508e046000701df2ab1f91e7c84e22af627002a27e48696eeb4e89a3947166966def1dc0e4972d176eef63ba2811941f9dae992b41eaab04fad33e658b20a28ca98af36f559bdb7f2ec1c9f33cfc77bdc034ffb5894621b318beceea55cb5767c101c4e5806bfddc06f4bc99b759bd39a91380ddd5e6c37832f14fc4e80747ea6a8d2da4fc2788f5a3e7e3176bbc595682aae543005b13a62882365768b8f05f5799994671e2d8ef7f0517bd5ea110646b1a966d1fe9f5eebecd229950e466cde38ff0b6f42a7244cab620a4c715299ee3781914b20e85d8a593fe52c4c258a3434104a3ab8c2e607a5ba06c308ed2f810e68b9ca6f5d58d852b2424a7288a7dbae7d80d80bff234980586411e07394d5ea66420336f2090c51e43addd05afe2e11f2ad22e12cf3c12ea8ba8e054d40532712275d29e8e0574f7669c942599020d0b8e2cd52ce1f8ef8c8b17422dcb02dfea3e4ea337430be9c481b3d01c7b39fde8cdf57158a63330af44382a0379d3417c067d2e121196d7337e16c30abbc14f7921d22f0b1b19e6467b6a072e93ee4ef883232388dd5dc0b8b6281a61017c4004a9c009ba229f3df226f3730da926fd6f868bc057e9f412708aa18bdbdad73f8c3563c1e7f3094e21462934941ad776933ee002668e6c21c01d4364585666c065c0f6b50626c0b3cfc791b6d7ed04d4c8d23b29f1599f122948aab6704ff2a7ac6b1dc222cc7fb31dbb7389eaed19d551785872522c24dfc2311e5a6c3800486bfb183e9e75da5490e811a745cc675cdcffb8ad647e513ed99db17f6e170c83d55f1585fc5aec6fe0422aea783f982b8b25eca3a9660efe221239f93796e23531ae7bf08b034d59e3ee84ba50f4b18f146d2d0c3d2f96079f9d152fa127ebd4924fec4dee192e8127e17117e304238f58af99c4ea73deeca4d33eba26e38f5cdc7b72abed8c7f1cc8805e71b2a6e18dacd083ec70e25c00e2bf8a71f2ffc55b89316b74a38d12b11e38f59c803c13890cbf373831cd726ec0f36260dfcf82db6eeab41e97d71f88796bf4a44b03b44448b63d75dd4eecefec67d23f3de6c8f31aa6ca49abcd1c5dde4ebcda0ac4584814f0ba4175cf95168d731bdd8942f719d30255d2cdcd347d7c4fee5565c1bef2517f9f1a2cb7a3793bc971c65cbd25a299d22ec71efa6ef82a6a4264b4d15982da49d85390ab42fb469ea9e105d66dd40a68c9248a6fe4781ed0781d525d790443dbbde170d336400ef4a2ecea5b8652083f9240162d831376e8ffe53aacbb231ffff9ed1ab7970f71f6ca8f44c412fc05182e453ed217de640adbf0f34f9ca3538c9d3da879eacd4360f2e5d37c3845c29620987c356cedb26f5a16cfe260bf1b06b800fd8214b02afc302f6860cc45bf78d6e26bf3f43b24c6a0ba57b980b1a67311d27a98274e74ca68d1aa15ad35395cc080d1fefb5ee4285831a19a5bd3f7d909f7c902ad3c45b2665a78ef4b51b005471a0d30b852c3b3192af904035649916534966f30a221069404f06ab33ffe7398cd8c98b9ad98db8cf2875dea8cd0b625aaa2c8b0ae9545f0e1a66569c8b5166bf70de22f0e61468348a4da42985ac8355687c8da37c70a1f7c65a5f38d86fad3745734106e69f504a1de6f2efca2c5a3adceff5b96f731aa544d951e0a19114c3c15565b74806123f44623ed4f63c3fcd81bfad0391cb7a0c2fba18474f7612cd652b0663770e46fe1a6494d34a6ea18a9ce91b5ea1661ef99b01a66b495623ca151b1af399fca5ea5a5d36040a8977b763070b040ad53d3d621843278527b788103d06b56061fe43ca41bac8b5b3af0f54d2073dff915bebababb5b2a551ff898ea3efb192ae2bed3449d937717b03d4773dc22f9234875e5a589eb811c303abfb767795e1b7b201b8395b334f51444e974ce4f01fa3c4c31c19b22a35f8535b7f6e8c66f1fb0305b1f5c5987b2225b10935ff3afe7c807ad5971d6ad81c0d96e89f410124758a49e56824dfff381bc1cd3a70b83b44c21b5c1668bb5190e5675327173be7d76b83c67539429a6c7dd52914195f1f28e0d4a73e8160e52be7aad0c6efda4514b29a8cfe798f6d50fa6449e4647b07e59e9b7558d1f03e3c613c6bb4f1b1f12500dd6e55188cf0eea1a278d9594bd80c2bde91dc5abd25773d683797887f6a064af333553d024ca39bdadad58d9ccef1cd1b47d60023c29099ad54e10544d373c85467a999e1b03812f3ef2b33c54fd5f48d7560b59e338dfc442edb65d8879392d92ac9e0c26d52616814ebf140b2ace6b64760ac827e905ed27f7e2906fb23ea5140901d56ce24a1986269ad0a91c1efbf788842f5e3a71c0e621c9d3e47dd085f2c941c4c0bea609229cc626ee4b1735815bc00a5af9ff414f13d6bfaaea3f06d1f49cd1cc5be3ab4a40133bf89c81f93682a5b0ff0cbbadabc7ced4b806a2b52eb4ce85ce6adae1f5ac9760ae8012e7b6971455a23949e8c362511b1a4cb1bdba7fd11b86d65f729c31f63b7449c3896d5a3564d221ca3c1c347867feb0e3dfd07f2310c828fec1e3d87324d8a8f766cdd1793a173c1f8c6038e355616bbbb9e2676bf72832dc4c16f3d935609f8fcfd26ef3aeef3894e27720e314bcf18e5d88e6d8b1a3e1e610b9b0ba29b822259151f96262dd9b9224634f298e5161c9e531df0ab9e4d963ab184033569f7adc08cffeca80dbc183a157985c68c3d6f473e7fe94124de1a27614679447478b9a83ded3672fc88b22458bb69dfa15e34e9056f7884c8d0ac51b44f0848fc92f0c3ca60b0d034df57193d7cf46cd81eff6f19376ec5e852286b293ae2486f7584ae8d3c1711bb3b66a489aa1cb424a12117e6231b81f8efccf00b92baec0e14cd34d48c3c9083a35ece8371e49ca27ad906bc5ae30270cef0a9939779f97c1ef01b73debc5442fb5d4b332dd19597708d4dc7032dbbf92775b0e275c937cfa121ff6282cc2884d3038ac7ccd815c2d21146f1a4c39c8e1acae74a8de059dbbb5786e8808a872ef686d07d830cb96fe75e46648040de0a0f7e97127f014045ca4db04dd20c1120b8e1af81090b148c26289f0f9df4fc3f6601687e2f099e3900eefbd2e126fda9c0b2fc3c8cbdb39d94faa89b0aceaa28863071c6ab527aa13a0013e1bf04fed1d1c2955858e62628753e8d2629ea0e556c27d1b027e276cd689a879bb14e69f77f0f8367782c1eb97b8d65d16e72140739e40905192b1c22184acf4b5f21dc14857d862e120acbddd3ba5c0f7568b058232487a272aeff202f371835185f6f1d77bbb485c8f5adedd6afc71313a78fe73c841eaabadc1b86fef3393360be3fbd0931a1bd5b525135f78e40140327d131e0a636e56fa2e7782a63d13ea09d6950dc132b4a71b0d5a9908a344de9fccb4cd1b1d1df48a494c26b1ab163c88ed9784b374afeae6f00d47a96d7839283fd8f281355a111c13bbb08b3244e264f439e03949ef0d5cf94f4a371e9752978f927c17110fa22859c5955d1a77635110ffaf943eda6c7dc4eb5d94649d03a148d6a6e5315f7708e79239c9c21bf756374d7d7add839ceba856b7084302ed0500c676b3a7bc501ea61be49e4827452223c3672fac655af5b044b6126426372df07d48e3522d3fc8f1972e13fe646195f4986342c1c8dae9c5cbf96094c15353bc5550c40ba86627809d03509ca57658b6ca989498052c40bcb754343f0f84b40c894881820520636d0e089c54d5761ce0618080001ea7b56ff5fe98272c68f774814a8b93f2d9e5b856d94f716192651f635b72b518f6dab56db2a7461fee9b9b6c051720852bbd9c5372422d512425049b08a52ea3d67cb68ec5831f0bfc48843161e53eb34882efc20a95330afee8a1581197dc9e16102bd92e12d55ee3ba511eead1d02044b26775e31ae056936570831804d5735d5ebd80146f41ce03d54f263ab81eed482693bb523c6c9b94fb527aae0b42aa0fa9510b54c8191fcd1f98ff304ee8c1b55f320e438962d0f92395e86ae7abdd3da900fb558a79be7a00bcd8d648c3276b1fb5ad636cdfaba2ed07d888c73f09e5efcb812cf823752019aa98ce19ab2f82726d76cfc3802543bfb4b4dab22c64ff6a7feb8e70e5cd431f7cff8466e602a24110d80bf5f7b25db25e1c09733403e84b38a72f7990e650e7068ce0731331c73ab361732e7740a10f71030f4cfbc409c22aaae31e099fa98afcf6b82f41352419670760c1736489cba5aa6f8ea99bda730c6a87a39ced1dfc00da7173563937352b412c6afe878d93e9c561ed7395326aec79f509989c7bd2b39490ebd6bf383d97decc96b4c93436367280f56aa26c277a16924885cc27b29dc4c1f934fcb5fbe298747caabd27c4adebff9750541a27ba93b53b9aa478c727368cc11f26cf858e4233d25659011fcb803f97c1a98ac8dfed91834de1f4fd5fa7695f609d1fab8f82fd235ead7f3d4d80372426e5655594441e987618d48bdeca6db518b763ffe2b230a9fefc442e314003108c6b9067fa232e5d4ee4c4affff919e3d4179362409d9b49954e83b6bc0ca923cdbeb4cc0369f6aa5560083ec361e549ab04c499168ff4c52512ff35e47e515763bbfd93a290d6f22e78b7c2dd22bf7e04a51c0be9496b0ef6bb63b2585d466563d2384aac8e0f8bfed1865b89a7841874055c5b32617f7f308c629d5fce7222d307146ed9cc0537fb43c46082c5f5b6202636ec052fc2c1f6a1de7a36683a788f5e1aa382a5be48c438babeb847e0f009156c1a53b5a3c42f85f201d88d745e1bebeb6243814f9531cb775a48709e1339e754808f2d42ca49b4c741fb4fb6302dba4ec7d2d591a6e441366c1ad71aaed1e7d3a666e8babe60755f51624b9449fe467bf0daeec09a68f7d079d2589605136f72032c7677bb9415731222e2674f1dffe395120f29b0f25bd25e5e3d6c7f8e94c5922ce74cdf88f520fdd3dc2a424e6ea84e1c31f23add73ecaf3bbe4f6aee8d660d1d7d08466c91fc8d156321750867ce1a68f4dd7c480546d92f36116a1f1cfad356337630c7e400d79674fb573a3a8b84e6a2319e90e73e136cd7a204389b1ea207618f451e713ce3ce347c3bf2b4cd5e9a923c8fcc107209619d8742a3924dd0b740bfddaf0027d7406a00dd392a0e19a41b1b57aff929394b2c2dd3595b76f435ebe34fcaa7d92ea8d0a332568cd43762bc46cece8e7037d9caab1fb8beb0e559a34660d7a84f4fb11a831d04b1dbe9d028f1d727e6d0984f35bcb9c0b9502972f38711cd1519760366770067064ba7562735aa4742e9f351d96384729cb9e286b5188f844bb4575058fa9430e72371dcbc7d5157cac07a3c8b42ea1d9e138123ccdf7c1246036cc8cd09b6d0185f615e5a7822585ef9471ac275bfd72a939a72ca6159e5cd9ffe3021daa3c4fae18e792d54f0577b9ae248f8f4fb1191948ed399982693687fe9d537f95d5d26182ddc428b7a6c41f2d2607fa2853526a2fc2b257b4d2b7e7a3ecd5a9016be9052fac0d4b66ea3c6fddaf32b3871708e55ce7f3322db2bd8d5bb9f2b732479a4af2252bb61e4e208798a85144dcf3177f439cffe61dae2ae79e14fcded785d9fe6f711588e03bb7fe26ba8e459762e0207c02f4f7988b6f0547572e75c4e949c865e018af1b279ad73a7dd2f48d26d7beeae0c0340d2d9794e5759b93b971d3d5a5917d98c36990c1736f4d5f941884890bcd8ab23336e0f9ea81f71861c2ec68cb6e19b369357c22240c1b0f29b0ee88cede2a648ffc63e1d2874aa59ca3949450f06acc58508402ce82d29e53636e5e0bc79ef908c9afcab16c294c9c2b42ee26a316a20432db3830130acd4202e677be02bd8f41be8bbbf7246e1f3766ae82f68935ebf234b6b4d86b94896ac7d213c1363f782e2c367c5db6ab4198d930d38d0f81c50dd97e9635a7c802a3719fee179f5a46293ec5782c798a8581011e202a3a24ad5fa634cc235a377c6a855885dd792c71afc41ab2e93e97bb2b82c133be89db0298bc13d91eb25d299cd88e15829d108abf2a46784fa8230746438c19e8c88db5de539b0472f7a24f878c28f580d44b54cc1a225971ef472f54924129dcd45a0267372fd5309a8c83395a76780676f8c98adca24c9015dc2eff6c187a7c3e831896e0f7dc7ffb55e268e6915cdb362ac07826c92c939024ffc89aeb9f829072e0629b435a0fd173f4fe3031d2fa3fdeb7379e3e49812f10311e2d8ae43243b15c4573819413df8fe1c45e815b086c57300c46f2ee64a19ca4350e9a7febf8fd134027ad3374888ee3682d38e0af77a9dd12698aa946f8fd4a7d85095cb21b724be381a15b62f9214cece62ee7f7891d483c0d437fcba0664b5d64f90b3a03d1ed340d30180a10cd62203eb9a90a69ea89b514fe65d81f05fa25f203834714836418eb6dd94abe614977af1308d00916b68d4b3f6dff5d4fba6808d5e8d406af08a512eaf99d0874fb669599dbdb51d5bde7944d47ed2661a39aa47c725a9dc436f1cc26f0b18a3b1c616626359fa2701ffefe43f85178e20f5e6eccf64809af520dcfe648157ebcf65822d802ba4701385ebfd4ff30f198f51bd4fe26a548aa98b8136b7985feff52c98729080defc83144e5f9186e492a877d95b3973dd23cb60c9dbd42af35f40ca0b1ff472231b457880655a9355101db78694cdeea64b3572738ef137f8f851581fa174c40f2b640054f70e54efd927b21412361257d1fdb693a9fc6a04d11324da5d5e206564519aa38ab6324c10eb95008f60496c4b359349ec32319a958ebf9fa68adaf4406196bd9c40cd585100f6612458d620cb2c39bed14e2a45c6326742fba89061f38424756d040b380891f1378a5a481322ae14a907cbbde61d7cc076ae5223aec9ea710bcda07ea790d0c9bf7b93e4f9eed4f26c8b0512262dbcc412cd2cec0f5b10fb58ad07a0a406a624b078706de9c183eb94ae75e4e12a5fbee4e947deec3de2a15dadc57ce4ce40ceff3c7cb93c1b3fc1c3cb608a488e28ca8c540f4af69d359b8ea31d25e60fd080f47f4f00b936de5c4969772dfd8d807542cf055814c879c361cf4f1fd4b94352273b56baece80dd48b54edb72b0ceacb4ea2a8ff091c17cbc14c88a73a89409bd3f7317206d11698012fdc10c4fd9da52ed7c32637cdd85269438d9f779f011c78eaba6c22ba1b7ce4d84e7fb9d04d3fa9427f512419612bdcd89f6324f03aebbaacc7e1a6f273580186e4d369ed88a89230a0e4c40a5994b3ed1de4529fce266c56baceed95ce0c6be58931b6198e0465824fcac9bbfdff5759b986bbccecc75ad21794f18667092a17ec6421645ef8a78e634f0234a7e870c452f576ecefd9b2f49db8f04affd25b80f71d637b08c80eefdeb36788b8d01b681f68b57b86da339a875560bf80b83dcfa40a8c531c6dca8e6190fc73e4042fd43c116040045a40925a2b832762127f52f92389308fbcbfbd74ef4e4e1375418402994e6f1b74f322f7a4420a7ba03570694098d01cb1a2fd3194caa168f86f8e57992be7802dae204bda89722d5f1d2afab9139a9c639ef13cce9ed9a08813903f419915fac6bd984681cce1e45d5439b1a4f4f899a81a787e2f023855804314ad9b08420e71e252e50940cb7f753279b93ede818894bb723ee68e06c140655ed63efc5c39bfd9a555b350adf909d7c6c5c572935b72c2614536613f4e1e98735647db4f44e3fbf24734dced059f3c22ef2c8514c0534843fdf5491b1a418613def4dea7f9f72dad7444e26ebbfed254fd898c8faba68850b1e66b241d5defe12fcc63f3a24e365e1185661159965b12f96c40641bdd8491e89d8b28de508225cb58fb4add882a39f94fc9f4ec6167e8fb9e8f9e20a71393df2247e75259ceb5f059c3a2575ab8e2cfb7f5c39bdda474f468b860c6e5d2b2577e17c67017f72d78e7bc3fdae6875edf275d287346c095e1cf5b2514dbcdca76f6d65dd260e98f80d583b1e63496ea6b783ab733384c220f633fc1343b898e69b8aa84a9a2646fdbbb8770a423f63d2b1697c53526fe7369afa7b03915900c0e6e37c071d317aaca32ee008b03f6333a31af93537f4c99d76510a52926320d712469b810b9a59b212df56dd6915263b490728b9e63aacdd41ebba376dbf405dffd9b244199e9c66aed9735fc2e9fa2352dc98addeeb8f3b2307d3bcbf31615ff651714ce621ad7771c8202151e171bfa639c753b06f167d8a12209ee56f488978be17fac0905a627d5c0a029de70f49108d4613b8c4be3d4a89b92b3869b8b88d4a4eb255144fb36d481604472692a1f738efe9e11242f181e43a95bded2208c61d85a3ea3db422b67c62d4e80ad618477759cc3798752a32093ca71fa30d762d7f2f7bc4b435edc774dad21846f41823ccdcd0325e766696074e1dd78465a9ca6a4916a22eaa7c8cbc79db1041697e963f20e508ed6662edb71f4b0cc7a41e93a3f1484184c6813d3f11644cd0a0195dac86bc0eb20fbe40973f64ed7fbeab9835404130126e0ec190498aa92927bdcd09fd7e611ade5110cd8d03e83c3add82681df12f7ca2dd0024c842315d8af1b4715cf511b73f08487c566c54965fad0840cb4b9bea576642ccc581a5d14faf1e256d67e97731ab0edc0034b308eb1fc95a64b814f79922937d690e14a7415217e6b0498375794a2d1d6f6e1e7366ef29ba9ce9aa2f516680d6439c3d7edf095bcada53247e5c77f0b41bd0016126fa8d4b52a3e324af7fbf118eea1e4264da574b7627a50ca5356ac589f301115d090a63d90f4f19d96381c60c5202e7e7d4f53902046cda6d07d313e7a91ee835c08953dfab3cc12a9d40fb82443732f96b6be588181461fc1bf45af0b5d507ab666420be13905053667b5b8dcf2bb963a27163449bb2786bcbceff055c1c8581621111f1a077a80b2f6f7939968b79d91e4d985473948debd8f3ded3feeeb4b597954d6593735aeea40d6662156b03e5b383abcbf1abfa822ab60c7fe4a95ff26842d65d16d3491e48a45c257a9110734665639f4e50f6225ba6a750985107cbe206c74ea2f6ea5deb9bfa632b322b0d25e6c274a7af9708d68308192b4182affd746ed7dfdd565094e8ad03fc39b324f3cd95bb58cbfaa9ac219d71be8cbf12f3b26fec52b2c509d3cae57dd1c8cef43a19e3e7ebecf7df929a60e2182db4155984c1163c70bae559019d5109b3b2f19e255d20bd0ced592e1b14f9c45cf328e3d7741ce771e9bea3d468ccb0dcd7b2da9fb9078405380f4e4e91cb68ea063cb36dc0b83efd4c4744f6e6abc867a45a6afa23193c11fe61f50467fd4e81535710b601ebdb17bee9140c5651afc70dfa5054174089fc8bc3fa02829da7ea98bbb5a514f67648b8f9a08d13ff105cc27b62e7f6cbfbba3b678626d76df37fa36043aadaecff740ee82d7ea5bba0d67c86d494ce6ff63e856e624fbf3471bbd08ff93b044eebef03fd47af9c83336630f8cd478c830f115799784ae00df127c7ffd6264670513720e6892440d9da312bf5d26fba620348df5832217a5b4379c193af52b85ef77b98d413ecb87d234f5c96f8d20ca817b2cdd94f524ec45d8cc8fa7ee0f0dc40ec913188d16284f509c8db69c62bd28180856ebbcad6bb7cfe07963dd1668af4b292f5af9852e2d7120d8a20b71b11c455d2eaa4d74d4d0d29509e9c7f325499d15d57c0ea37d3bedb043bde03b20eb302db18c348c4535f4bc6b67e49098e644d40ae6d2183acecf001ea56eae21fea370beed5e6473b4ea676f3d9d478d6733d53d4caf2002b4a2bbc17c6dcab2e4e4d0bf658e9cb45c2295531aacf8cd5fb23b3b3a1e76394bc4f790f00a1a12a99c516673f20745a704e2f244cdf26a0a3575aef55744baab3c698ffde61955bd8ef63a12716acd80ec9fedd1232f01ec974a34aa3587f972a9c99d3b88aee0178df69b3f33259311e72d05c4ebc5770424c07d7f77fc8f43a645dd5c7fe269149280974dfd14b0029a7971c9a16ccf0a129ba8ecc852cd827e36a507282fb70a6a1ad51308b260fc6a98eb88879f7b291af9fff68d8364a6fbff2ac0a5af508bbb2affbfcf687ead791cd1fd732c267fb86074880bf20eadce10b0663dda0a10d35551b6cb176985dc58cb206f1988595c4c3b73c68fcdcf564b6e3ceb7362dc27685971b31bdc2c1ffb783bb302feea16ba258fff3d66f1267ec82562fccbbc32a3e1eef0d40c4cc546690193697c7390336dcfc796b16dde948c3410dc5ac8dba4c35ac8df2697859275ff9ec36a041fc8fe6b603508c604ca0ca5de5f4a154f946629ec2a01dd2e97cb0e358de78b86a355630af327e5cb7a6929533f78bca151a19bcda0ccd6247464cd491f7436ab4d5a24beccc28cf02479a47856efbf14b5811f853eb0c511263d5cf5da8212c7d2d46767b86df37697ed256c2da43f52260ca3970303dfff23135a3d2e1bb324bb7fa93630a4e3579be8b9e928df49f7613eb5f055d5ce9a8b46300300b617e973f90aaceaf8e154baa1f93321c6bff4b9a2d907ce26833ec278f91715a5ee90831b29f4292b19bd9d7854c30f68cab997206042ebce3c17d282c12fe02f591de53123850f4c8a2648b6efa09cf8be1aa92a300242b947fdaa34690031cb40a05be0ed0fc1ad8c9765cddba99f38a7c972b849c1d7acaf2b9816202658f9ef4e4bb57ba3cda36df32956a0ee084a7e76c415a3585513f851ed398ea4676574153b57d88950ac43bb0105fc36518b176765ce548d7a12bdbb6fabfe310a9598991469d7f00cf05048427c5cc6ffb87f93d9bdbcfa334dc8ac774e405e721de800357a168eb0736439b081609ae67e94b9f031697593497bc5b9571cca7599396136d3403e309f2e216ce368a65b9d3fe05b6e0f3e7b3b1c461f61fe64ca98e8b93b462b41b58f34974df41f66058b5eb23d05e8c01593cb58862dfbbb86b26ac495c8fc920c9d388c01ef957a772c44785e55d17499b697ca09f16c985f926ebe12b48ba6ec3eb76486e1044842cd0f6d4569999b946b8991bf9325908ad9c5226ec02765d15a9b1ba43a0f7b37d1ac14a01a32092304d014d1b92330157bd7af58a4d89010e701359444cd95523210554601f3367ba69951c5558306b70b3e643ca0f27f808bf3e8ef8fcce531873ca25c32419bb6601d911e50dd97c8fc3aaa6d483142b33be013db23fe66bcd0da582ace4ca993fbbd37b183bc9f6991b0129d06a6aa73cb5035574d7fbeccbe0edd81fbcd26138104cc141f40562c803b1b0b79b50213200125c6f3dd78c52dccc820729725dcf590efeb96bdcc55c044f5e6733630ac371cdc56cf0163bff900e3b45f97690eff4f48dc76b994999e2dbc34e69c90ab5794fd3e2d13378225b0ca741f20d25a2069d04a80fc08fe0ef7c9496bb3029f5f1fc94efc0b0db404e7b48ead6a92b50cad73a08351ea1d3e3c6390bc11108d0de272ea949150fcdbb612ae3c44febee309065b7703c6a332ba5ee029bc18dbd9d9eabb2a8158fda957d33fb7b720a17a9537d5f57e9a5abaa82e7dad3196e7de05dab37c1ea53f6e2b222e078511004412799a95baa2daf3f38915b4d9f6156363d82aae29120721995795edc0675da568d5dcccb8a4f6e973bc296efa6fcc6af94aebe6e368b4e15ff9cec974fbad11fc03c8bb82c0f5364c5fa77c1905bb03e095e617cc4c30168d569596ee2d88ab7bf3b2997444662655397e539878e850f41b89222f049019cd85b512ec11cbf4e68610cd60f654eb35bd551ca896f05c88fc1f3557248f3c9b66bccd54f2a2a31e0d204be7cf12b253ea82d3fc8f68455ec5d716e1129828019bf1b15cf0ed156ab2185d239eab2d04e015f66ca2d4019f20de042ed92575034728aa79481eceb0228eedd623fdcbbe30ec6e8edfd1d8c2affd24a1c2fc0f063439e8d6eb5c7f7fbbd502b857ff5acfbad764d916774182e46c3c646c6843a1cc2c6e48adc823efa3708ff6a54208d207c85c41c105b70dca66f909d2142524574418c30864914d898486b3a7b057225ff97ca9d7af234948478e93265512a94b78f31b179bf69968454a6a56bb732f7a2a71524e575ef3bf166869de87be97a6f6440e9d757f4615a0aff12fedfd2eab192eff12cc3ddbccaaff9a52be8e989763cd598d05f3e97d30757ac8b95bb489a62e47cbeebe384fd0badcc66ae68b7c3a6c2598bd466c60595dd8248757c10d378b3832c85e6177aec8bf1af2cedcedb642453093d3b49b6b39980726e7906fa1ed57a0ec5e423f82ccbbe6f28b78aeea6d6c01dbed29a2abe3c4a65ef2a678e129a0d3650d7eaebcb4df768d0117627f3aabc5344c2c10c362adb3b98d41158f63e9050f57d7d5fa1b5fba4ec0c345507b108186004f0d349748927da15b0fd748bd93f5f8fadd7f99a5c566ea7ea9b08bb4e34eeead345a9f5ec39c07c79da8c69d9b726c597fe0c2fc10d46cd95c60e9c39cfe5f66dade50e064ca9eb8315269b7746c5e0a494cb8a2585e10bdabe5597aa194df3875056a08823a7900703d9dfc51c6b26c536aa0d60e501ce542da181082b59e43480f49aa9749a03ac15dc883ae7ff413c7332ea84e4c4cd37ec383bd448b2f860429ac0ec55e254bb1f3d6659e4579c906975eb531039b4fd850200c9fe5bb03b1e5bc73dcdf8ec3fa5de1d8ca2a3eaeb9758622afba8ed802caac3dda333785dfd3cb228d5fc9d10b04d2e1e05a9b33114ca4b2cad7c4aa78c5b8ed51f158a7fba3d2135b1997593b9c5945073af1f8117148b14366b0a3dcac1af84fd7cf1be495c17a970d6ba5ca8d4c68960c7f52f9dc33e98fc93279428e59d5046ae1c1d85f96ae976e0e5be04f51965b6eff80f461326c8c68f0ec6fddbe8f53a9bc3e74738051b99c64e46ad9e8ab5a8c320917613d9d27005d078a65a372dcfbb2a4ca598362851f0789b4f8b5f3bd7e14731889ac8207fc99c619e4c35b6708cca0cafb00d29fd2f6aac4db0f9811ca4fffb164fef6e32903ae26a93f0e651c59eadb906b800a249c6c8aa2d5c9ba1fd7c05c65e875518cae74a7ffee56342bdd3c6e18fd1b126695ae6ce3e0d16b2e82ae3b35feea79e408ffa715484d1841aef67fb0741aefa8913c1863f8861f0722c35decdf17a487ad32d3000674399d1c226fe7cfa547bc37f9246a9de6c0f143082f20080129bd451775433e8af535b387ed9b231fee4e5b5e8259d290975d13df6e888ff0212f261adc4525d02c13ac2a047111de4f3361c3ca6a4cd15bdc8b1740c4ca36ebfc05ca7e8f711eaa0dc54373b96d4eef9d65ff19e9b3e7a2a2caf3ef5d80c3a18492b18fa3bd90f57c88808bcae10ad94144749f0394a7c72317942031ea5551335021fb2008f889a45493c8e3108184622a21c0caab0e7616ab2e2c4cbfeab1af299d77870b631533133c4b27974b5568842a4cd2690217e83cee7ef351990be14250b78d3a5b7bcf8eca1ba811a9c3b7760926439ff097b3b6972470ce3b7c58f3946280e23023e6f0e40412dcf10db10d119746b19f2fae8d8548a4f72aa62cceb078813b4ca3e6d35c394dcd575e23daf94b573a3b207b9a995790bef32b0ce2c55defea5cb01d6325a2f36969c62e620a8689a503561b121a7bbfe55133a22cef99ca41c3bc82ef2c43096f292cfaf9b9c23e4a50a501f6550f924b3ce071898ca3c3d26c66fd4bdc8a754cd7c3efb0864a17e74912011e131361c5e976a7a89a67a39a81485d6d469a2c50640af48bffa830b5f0e4a8bed6f4c3c137695c8f905a056837c94a2d0827f538218084e2cbcd6f3fe1877c3a4d89235adeb39aceb95f51f68962712bd0cc5c5a36e96f490c8a01fd47b2e5609ecb22ac42ace8cd75e01bd644a8236767a03f5658c1e5bad2267841238fc11b48b3e685ec5324b9da117228a33ff0be0b1feb3d3430c447a7c197ea65a3599ae458f1a1ec3be8454a2e5a0a3c359c9fbc4b629ce4f0225514ef7d239e845fbcdc06b430bbc10445da0000e80bc1bf0af2bb136d76d264a6e9d199ae8a51cc82a223e7ff72de58209955c0f022107475ca7a3860c643d7ea999fdc814a06c96af39964d62c9eb4f4d06442df42e13b7a4df42b9379d2862c0021fa8387a13e596df96ccfd720805e2864b41c72d137683030ab6d0055cd7747209c1f21259b10aeb21a44a20fa6eb156fc6627ee33f45261daa9f48307998e6272a74ef88f99a892ca482c4116e20829f9d352073196c88fa570e311b7f0b112bbc5d5d9a08eeb7f6723d96474cbbf6c2a2bddb9e977a3526e3b96f508b78a5d3d542e241c0935435d497a2873e4ab1d4563d4bb4caec45788c0ca8b4f8a825aafc2cc1c1b4d895c8b0dd4ee7606e33a9d1660a629c9fd20a993dd232d6d1bb7a7d6fda2792e41df7841dd23a809e18dc6055b4043768684bf0e1e2c9f1ddb440855fa6c5bc4e3170a02f6ad5ab224cadbb189c576f59ab3e0227e8faa32bd58ac9e3626f3fd37b19b5fd3790d071f3bbad8c06de42da4adfc380e4f438d6b0af9debbc6a8a395b9bc7fa2233e34a441669308c6c33853c907e63391f6e610c713ac070c071b4194e3d71d5d5f676fcb3c6ca244f11e1ac8b73bf4075e7f6889e85e12e6623835763af9545153606a46d019787c2b6860bb76692c5e892cfaa47b2e4ab8c283071637fb341c4a6d461342c67c9870d12c5068bca1780b434f0d15586dc6744c280e8de1d8051a8f588b14096874ac764cff1ff46d072643b67bf0c23b9bf448aeec6a7c83fd1fcb9620bdfa849ee0c8b3cbb20b9f12930398cbd56257b3c2f1da4f5cf12c1e137b5257e85d9be16e72285dbc6832fce01f1a4be60f2b7b09a93c5675d0337d3c979653efa19fea83870365c7fef56c1d1478e87d29390be0f8eb9a09d513a6445b6b5ede622475026e3a979747b094a0ec0a590dfdf263867b9af33e11a5fc717d86d83f2e9ec8ead94e2a03089b84da50c7e4f4e77e831f26a6de9704f3788db456446e6d1c0ea0f412f719dc56e441ef0936d096290991ca51875d9dddd769336ca37e505cfd0f7ff9293968414a7c68f2387c7f4d2743d668ec93802f1805e18ea01ff5b2b28b90b955cabae01707ceb42231a5082bd5d04a59c97fa3be98ccee328997c47b3c184227ca356d3e7406546721ca7c25ef6a102c819e5c23efcebac003b7585df4b1439e578a8e0b67e50f118271dd48acf6391114844a856b45823b8e6a8c0aa93025933f893eda92496e25aa3b9e240877a0eb65177aa9b1ccf158e41fd2a4d01a6b1f52e29ba19197bd6d9816db596f1525e808c0896a4e5ce444c37249b48b9732196b20483fe3192648fedf67f0bea4dfc07273679227e3fe70c1bbd8aa5aa08ba6ec9d00e9240184edd026021cfec218bbd6e56fbf0c16c616b7c2c6bcace43ddf231baabfa94772e213152d58c11c7a7251e572078a1e646a1fc6261a12d71e9ffe52b4b79b1ceb63a1c296599987c590c156c7634d6b4d8603ac7a2bdcc3d8a5d06486c9a91884f4c23879e55293ac1d16460542fde218862494689ddace936da62472dfdb472b300b4224808e9ea88a1f920ed4bff1611dee1600dff7a0b50d92cab83da973e80c6cb446e854a9de70731a5db41edd0aabee7ee79e801302c3bf1e45349783903dcf45efdd9410f44b15b31bbcf67f3a1af8166d32170dd60b2208e4fd1394b72b254033402959a902eb0894d95958562a46622610e3857761e9f41f0f4a908af1c75a5907fc55d58936aa23061cc4641f8c08323038512123fde5bd6f55f7a780fe8cc39021f8335f48c229d338a80ee15f1aef5454d372ce0e224472384af8eaacdcd89c404d6acf3554600b74d2c7cbc94f82e50ccc06e39171bf8b075814aea1edee791f7885a054654482fc27c9a0108a3169ac8b99ff979b51f0e86e35405e5a0d12ce97163c4258d1bc0294e72585e449bb5041c75099cd53fae57549a40f13e553c469c3116a7e15e9f878384fc6346662bbb2d66521ba887e5def4f4037746a3832c98c3779119fbaa83cabfbcaab28413d767177088f6018a840e3b514a66027f641563404887c5b1cf656bc4a1f541294be6aa7128d2a9980f0727069257a49b6fb9948ccb69cc123994219e9998b5837a7e8496ce4d8256a0d5675f173e66f82ce4296711066508cc15d981be4272a43a487db92981903e5dd2ca9d245ee3ab1294130b0f6e9e4ab7d38af08ec61af1ea6350499d3b0b7362ac095c031d29209d90ac22f5aa4668e91c134dc21f264cfd036d6f03b711700da021fd8104227353b4ec25b95717ad7b6a22962d9a304005ce74fa3453a5a699b4999dbbc163f03e2d58bde914e25da482f0658428463d7ebc088be0d52f12f16fc33101b04380955f8b53452a4e636b676b5d3c104f4671b25ee69b106e1c63e9f8bf659d3f458312f01d9de2dd12d18179d7613fb7ca184867ed71cc3b07ca439773efbb18687797e74547863fc88e9011d26700253b47a269dce8937b23dfc13b527a743d9513e90724daf6043095a61afdd60f13a43fa890acecd82ad4be62735b668e1c57ce79abb3dbbc0123745c4c59b5b7f16733c67505304fd0013c6e5f8fc1ea11d0e77a04ec71366d1eb94fed226a7e07038f09779dcd57c8456fe3a7463632d2d782020d8015e41fc4f6d6b4f07ca72cbcdc02563765f2c8f72b18997e51c5d960020c908216b2f2204995e7a42e60e25d629a614241a68a576db51d249b2b361367718d1e58e0c1f7747e2610bac27fe50a6b8fdae3cb5e49b4f74aea9e36c7dc20303deaf6a3162634c08cba3179a58d72a8b0a4717ddae9855a833ed0dfd7692ae7eac5946e352efb933f5cf354c89d6ad3629d3c7fa19db6b78011fc4722cb4e0cfeb01bb5e97d9c0be2fd78cac28b8fd3b87cc148a70286309fe2756bd07ffc12d0ffa9ce958ef898f74bd058e8761af08e311ade5f28471907adaa9fc449f0e044c4b7c968181a13eb8337d98922c8576ce78f56be17d5585fed52693341260c92f9b9c91752c797f7228a54a69c2d9d5b03733e4bf6d32c8f65de1594cfa936b6f4f6d6543498dd2f2a4366fefcdf5f2e9db636fb557cdf6b49827e39c1beec67791b6568996c87af314a5e98347e2229c57f6923af8c708fecb6ee6afd535fd805dd15ee8920289f323a2825e7192471bc47efb61cc71d401740d31445efdb3c066b3b5358f50c563738584f296706f15a803fc4a5c9a5fcce1d28210394e74ff463b1182dbcc03f5d21f6a1d63476f0370e29f1046d6c860ce5bbdce560c5db26407cb4d757c32465e7d56650b8df160b58e529e93c5466658818d38fec45c96f95a4ee4c2220c46027ae4fdb40f021041c8a2a5a3e1e1d2451f0538bd0582f6a6a6874c56672dc2551b03b2fb519e15400b46a6a7606141c2c2450a298dc07abe5d4b2b2cab28573cca86177293c94b86ef746309bd9d8562a11a0cdd49651c6956bf9c686f055d5db8e7b5cdf1c125e7e07ef917e2f0a6242b620ca6a4c35aa2ca6cace5f93e4a2489ec6e1bd7b306462b9f3d7fd9fe70110f876dec8bab747c007c83844db3238f349b866f673523bbd9c4a7a6ad2e30b00a3b458b105228cb1afebae139131b544b7b3417b236ddb8ff4bca53b17a7fe33a50ea743ff3d3f1c3b9f72362c41372a68b96a82de681c1295b1554ad43c7e60e97353212921fd1cca98a5a76da1e4c52537adc13b40cd290d3eeb591143d43f517a39e9b40ebef42356f61e5269ef95d1b10603e40827e1d49ee05ef9b5bfe90690a50574427708811c07390a358b960d7f03c54c3db9ca9780de58a86923b82140b567977934708af13fcdce73222218ffe385685ccdd9607afb9d333530f8997157b3fefd2c4ae7d483faae5055b06cf06054fc345bd8aa1c8094e963ec706d8ec9629a7f5b037fb00d7320203944bdf33a429466287f10e3552fc07d27268930e95f60341bf2d688c4d07f59b2b199712fd14d2e7b9d549e447a781d1dc229bdcb274c1543d72199efdb3313426696ff41e543d93f8b282d8d4be3f2820cbd8adbac58af0bc4835f020cd9fe759a9ef7ee52318698c7911be1ea3304eb5d6291b6e0d0679373d36340a334d8a27317b2aab24845a3d96630d366e1882f2ec5dec7aa5aede75fd5ebbebaa31d7fd944a981f788bcca21df4bbff3bbca057d1d1af79d7c1bcd54004b8be946fa09c445cca8a83c8b0879954e298e18ce29ae671950306c3429d9ab1e80430f1255fa46dffbd7dec2b2fd9ba8e7f8a5dd4b393bfa9a36a1382fafb4f4e27cfc02b95efd5fe279f4b74751c6bba1aefea04bb8ba32165f2771a4b3006692b24f6542fa9aaec10893956436fb41aa1fafda30c5d9831d4333fb384090a6fb8d7e847a83e4a6dff017471eef45cab71aeb653d65f5fe0d5fe4d8df23513cb388aa75e83554e9d14a4e827da212ee487aa34390762833a21c0d0f2e43b9a95d79ccf66a3cf9e00ee696c304e27b6289b378f38dd9ea80257518c27f9cb35a28444d34db52e68e655132a9bf440438982110c2be6f32a27dcdce0874a121be600b3d84067c682d842a903c0533e8332e84ffb6c99069184dbe34d87e99df92d3047e1c27316157b6db5876204f7f709acf83bf956983b301f16caf559ed691949dae3b8c0666d2a24bc70a59501eeda7cc54289facefb783f40d7f2b816679e0106537d21835b3aa5e655e75ec9a30cabf65f681accee51e327cd3650556ffde1164bc99bf1068bb82b06f5b2638a8fcdf0193d988435c07dcbb9341cae0a1198615ea470c51a9c3b0fc81f6938f691859813bcda82a7c77ff033229311e1d70b4cf8b05cfd0a5e7e8affff07235560f6a8f52b4163554a28fd562dfe6a4ec70a755078246d5024bf613f196f6d131b59ed6bfaebfa8eec483c98dcd11f819fbdf52350db14476524cee32f4f374d49ef4600eb64d1df62c1975300ac55087d10d2f589227d100cb1062e9fc3503c8c8ed4a74308c5a8cf5a9106bbef915658b7071744bb38ff4fb460b904492b7a552ab4c8a41db96865dfef080402bff18bdada3a2f5e7d9b087412e6b2cf8f3d3d0959ba01005c8bef5e08ee6f19972b7b53c24fece2a6fd0c3c364a00d60b582b3f66cb49007ccee5f3855a8cfad4de977f64dc97e3724b435846e3d18b268b9dcdd4cbbd2e99b4f87b040cd09f01ac57050fee254e3b468c007d11a7d00e36cd1ddbc23109ec82731aafd1d94bec5b297535251a9e9e6351c7d90083fc2f01eedf2511095531cd46b2c3225dca29706d11cd4876708695aa8a978c2a6770444f1df9badc04b7e81f58aff2d34c191da2ca726e8b2228596cee5142edbb8335d84a01075046b0e6c4ae4674b0dbdf99c376a1b5fa2d906e414b491a3d915f55c5b5889870fa9b89e0773e03005740e3ad851c2d9ddfa0cff0d01f9f52966b138d3cf2da2d0f5e663e02f4f1d5ee62e58bd3e9956542a8084950c5936bf4053bde90c4b3c7cb6c609054cb5f20fff48ae9855d46c55129016a82ee90c7026b4b4f24674febeefe2f4ee9e974d154ccfd982720185020c43b00820cca427a3bfd4f38b4f6211a4a52f5155362376d5ea6c5d6ebf3448e14910bc6898baebbddb5fc3d8fa28f02b2ddc9c2344ff1e3541038081402ced0d250c4fa1970585fcf9bb852b7f9e9375d3cb18369c97530cf7e964efb7afcb2d2a1c24e278ba540954b8c675101f872321a40bbf1e75e7e3534b837d1769caac4ff403cdd620384eab0cd5cd75654bbc44fe3fc8618d71d8d8ee9b09a22297bc357e525b67b7696d545d2e507a2da6857d6cf97f5103c2a9788ddce815760ef8c82442451b560b20a7464511a118ba312167b4b1189a9b0ca7c0c3654d947fffe1f9e2cbd46f3dc84dbe2699bea2b34399ccb5b233a186213d3710cc224ce094cd4dc2f85e26b001b88e1fb43595ceb58fb7dae3dfbf84a100826602c61ad5c8b51ed6f76bbf0a6a06e43693292e3bab5a4f550dd4f78c6e260bef459a56c5d6f0acaded4de85813c1ae0ff256ebe39984e7a42d9aeeb86fd28eb4bbe75816814b465f9d1840fdf01a24d4ea1d6f7f08b58ee214cf8baebae7a10e0b7398856f3240bb05d541376ce086cca6cc875b3a2bfe9b586d645d2383a9922ed8a6a91bb28a6364bf4438749069e06365d4a25fb8d1d089ec8ed0b6e6f4caca830cb240bdb4666c65105d1c9fae07b567840d0275126e5a245fc852a0252125f27cbc787a135b8a5313a55b35b56f1164549fe5ea6b28b06d978e6e4023adf9295aede7a8e45aa523f974e0fb8f3f3e4250fdae564affe4b4249b034130ab41b7eb71b944e26710c42c6c77677e5cd3742765fc27e35464aa8895af1c338be646b830fa449442619a5b5d4f879903e35a4484711946dcc52997d2acd9ab066d29a3df1f8da5fba7c85d6fdd9f557bf80643ba547c9fa288d2f8a0c1ddc5451373ec36f804fba4a329d4a5b26cf7581167ccaa25a2b1f9c92970cd42a8a29ce79cf7ac8c5231fb822a45dc89810c0985d7bbfae416e17036a22ef13add4152b39696ccaf42eed0192d93e4ab0ec0918231cad5d2d47bdc1ef737e2784292a9ee3b26ac64163051ea8def1d5714c9e3fa705d1f92630eaa80655fe04f835f57d1d6cb2ffbd25e1820e067c4bd642b71fcc5c52e7bf46e57ba986a6600ad6eb57b2d757c1a09953b940340c36ffdd7df0c960bd325461b8f173be73c582e8292633addb06a40e56d3def9a82ffc1e7086c5553f1b7ba9d86a8bb5813fbfba1501677e18a08521de892b4cf4ce97e0966df0424bf9939cc2cba06dfc1ac768345e7b5cb20d386a35d5a8730c86141169363020702356c1b287c9ade1ed4d87ecf09a14e4d34fac221b3c03f72bc628a2673085bba984e8dc0215866ed155921499fdbc5fb5cec67488d4d1e0b0f6a9b43a994c7b5ca48893a893e83342f8d32bda131a586ece003511e0dd9c40da6cc604a942e95c407b10b8c68fb66ebe2f99033ef9085e691c4c5fc7b47d82233b9c37f700d8034859eb1556c08a0dfb725c16ced2a33deeb9a0b53fdc00be76c0a750f898a1977e560c9e72830f9afdaec9933ae9c521bb039f53f4d84155464c55bfa5498803ee5bf6bd23020be042fd7335d99ee0875f5de024e2f50975c531d7a339d459fac653e9aa7911520b48eaf73d8c5e02714e2e778b12c254730f1d8cfa561a273f2b4676331ebe28fe8dc643d1471fbab953b7054f1f1e48a9c5925ce49676d827a720ef7bea63788c714aae5ff253d8d03d34369909f7e6aa9736effdd6a34417543ca1aac6aeb795c083ce1d7641ebc5b080723dc2f79d77f8b5494a0c92b66b60ff6e7c9318228a53ec6f187b68f3c64a04bf7ce018afefcb70d742ce7546c4b069f8e2802bf572f9477e6f25fdc465564051d82f71c64385896897758f8050707bd2765f01e5355a2266357ed36a29e3d3bb6397009a0ac8272f0a74f9b6d90c0e4aeb14923db855dd1ce28addf7d33c2d7db891ecefeaf75875134fdd2f7aad95dcfd31529fcc9e382d3a9d16626fe8133cf845ac0fe290d80d724afde6deb01b1fba577feef2245192108e306f468b8a0fc6371dc252a974b0364cf9f9f15124452c437b0255a09cf40f1dc7afffb4c4e379f575b46ddda2d718b860b3df38528af41207c3f333916b7ed58b1b6e7ae5dd0299205a08856a75b9ede229fb88a0e6e65c26ce70e89c1cbead3579b3787d1a68d3a8fb871007341664d5f88cc7a024d5221e3151e79e544b9939d5730a2ccca726443f88c57c9940324623ed3c3c59342c95f54edfb93a4e7835d478a18aabb318fee52f393b6a102db7b102b7f121ced3780804c00755f101140f8a6a4c911b05e63fd4fae60c8d53c60a01302766ef2d3dd4718aa051eaca88b582c62d0613ae78c06be74241d0d230a1f3d1c3e8b7f6e8fdb760c9adc057f711905d7eccbe129cfe64618bc0d26f5af9bef8b5c23156eb44f012f5c69a2194d46ede508e9830c73e5dbc4ed1ca04ffb3a21d00eb55f51c970cfe98c8acb16bd50405eba6ca77e8232dfe375e1206ed80c6854fc228b3776205b3c60e0d6083bcc79a8a8551a6a5adb8349eee1a11e806d41a0f627beba1b015b82670f4d23b97cd8573db6550832a66e8c9e7f9a98ea8335e5c7dc8ac1ca1c39149b57a9ef6ce423e774f70c1b6d6feb249fc6b8db5abce0017476d8b3dead0a9c13021a2180dd91959caa82bb4f6685c9b73f8b7f8da7e47ff627d86bf8a1c39fd078c060ff95b79a431a716af88150ab308f146a26cf6c02582372594a7395730aefafbb00c01145cad1630d88a78fee8dbb093b3e591af3b2caa28eea82abf1156a8639a28f38bd5c19c1e998884b7e72ec1c5d9700d9b9076d76180235ec6c46cb8d592ac21dcfac76621e47b09d52bc7b0df7e178beaf260ed8315b67a9758e2f0f407027cdeda6e42d567845fa9527c69143f917bb908d08612dd21b374639de917676683928aa7f5b54d9a3d3939380d226136d60c562e55bc505f73d7963840138a9a4fdddac5eac75dce0f5d1ba40d64e3fa3a525617a856adaa75a97150d7fe857be2aa2dff5223b8296b323295c95daa2745719c4a96e3e73e99aa78d2b76f2034907bae4fc14bcce58d1b61b1ff0a67870d811bca697de07a7808b00837cb12c26dea22a86dbf11f65d712bd45d1ef56083faf40121f8f6235824a62ea9dd1628d1557ea4fed47f31fdc4c63958a3bd8744676d46432a61a4db753c7156a3406f79249285f3201d1cfb1ab8f8e52376d1bb6f2b186c907b2b23ddddf6d74f68fafbe5dc09a62d463d52741f1b3dbb784706d82de5809b3aea6405b89985cfc26cc1838b53dfb6d947f2a38d02447959aa6954c573d275c1058991b98e4caa866e6a6e7ace72bf08c178d025300aad3fc23fc2d61a0e69db2b6f7cfd67b2aae8fdb79945b909b45342d9aad4c945a60bce3eb69074db85b77124fb67ef471b18fea2af7f8e1c8ff0bffad5f65a3cc102a6b4cc093697755cb96fc8697b2c62eef1ca55fc78e89e0712721f8b2127c2e4ccaed7b857a192966fb2812a84b5d802539df458b1e9ce21d1a0621c6adc2b5af7c0466da9ec6ca738679bb4c9f7060238fa4f90cf50cb490b08d8ed7b73fd0b510e9d315d8fccdd7ed9eb29724b103e41c1da82ce28fd41b2846d22c48ecebd4e450da3ba945b727166f144b17ff652fa63c680d1860135316e603b9df143b0ce2764a2a9f4994231629d2952d6e7c0980c930a41e64e5e0c1094c7b92cc17b398587aa7cb72d546c6474c6ea1761f664e2c61b846feaf7c16b4f3cbc2ac343667d3dc36ea57fc64af472fc2770114f33c2d198f2b49114b6b569d5330588fbea49c45684d745f5480d3e411ac65d1d3c642118dcd9ca61cecdb429bb68c8b62cfa1dcc81deb250af95105143c656c55fb08a97130bbd5def369f18df6f2c0b85fe20a404a4437c1b2372969cd0a7c6abb8febb58d91336697407d32df6e99edae7c2f6d2fc1f019d371f4b585287ca808a95cc4f46c997c71371d045e86531746ac07171714c1bacf04b22262d9e6d28eef41bd7193b7c03f59c762dfc7729688149b8e92524c5412ebdfd391c9284521b9f12bee22fd8c014406d70088d63e00065375b6468dad928bc5082e13de9987624185e5ca513b252cd082f920c74a7a3aa75b1e779c204830762eddec5c6831c4db24662f23e9a1693729d940f023f4a0302dcb78d2721f6c89f8d3e08bed04f0b257f680e6b697f3787e3f5e0a8035dd9628abf420649dd26b4f89f0f1213ef8ad60ff269fa2c1c2cf409042b14f8218418b7ec3533f6e3534843a89e8fca900b1af7f3c038221a61ae41105037329d96b162095be1e12d294b65ca47b3942c33f77713cd8f825d9156fc6cc38a4010fcf46f5e65ec591e8e5c58a9ca87af6c8fac78bf1062a128b7f1c26d558c3cd1f7f46abf5e6a383d3a27e7316decaf9e247d9a689ccbf8abde1a70e89ed19490b2f1954da11f07f68f90365a5b906140e02468bd28633730c2bf5aae2b1f90592d027c959fc2d647c946b8f6f1b62b3934df89a6ff9c250c6148e223416d80c2c7161dc47e9eb9b4f9d8999091d2a09f880be7aa37a662e18cbed3bda9df7162c267337829929a82af9ea796dca47af1debc18cfd642f3fc315cb81b894e8d584840ed1a7f8603a4b4ee48b4c659f80284cfdbb01193b61e6691a2eaf2199510305af8f48a17f202773f471ea9bf03a4c8162a42c045de11be8159ba5a4c17766d8f0c453186886615d85c445ae5c920d5ae140028672475c0dc24beba1b83560cd20666f7ae4e8491c25432e3fe4929c2172f3ae3453f372312419906f23f070daae27ff05b09297c86453a50bbf6a419d617d79c0a2523571a6c35c42f8866bf3376ee8b1ecadb8d1ba4868ff4f1b6d241a4c111c54b1405b2fd6e0d84bd11f600251812edfef6c080cce871c3f405d9a0273852b2c310d78e54f2d1757479782ee55503b27f50de063433aa99adadbe72d2d44bd697efd17efa6bd705b0fffddcf75f5c58f219ff71f4f102a6902068340269029eeb34f2467f9df0f7f1375ff22a0b4f48feb3ffd1d3715365a218c061428ccb2498a2c2a68e2edf96be2cc1d95562206d5a62579305ef8c102a06d95ced940ef9b99f1f1aa2a1fd117be2c62fc71c50627b6c2ba523c09cae55ed66b4ecd52c339cf627cbe01bd8f6b38c9692970ff6ff830986ba8c68d25d7f28fc65212fe4a0e90fd20236ac2fa1ab2a46032659e7dfbe022d559445e6cbe84deb1650cc4612da9390357e9efbaa554c4159ce306d2a13278f2c4f57b4cb8c5ca71c649cfaf8286d21007356a9df4c74a258f0fa203def2867ec561e6e06022b35d11059b49244c134d5de9b116f6877d7d6c3e93a14ce3a91567495364b4dcbfee262ce5b43b235d4d58e422832cbea89b7cd929e4ff4d93ecd36702cc9b7fab0201006a3296490e80a685e700d34897d9ee272052676ae5539a796747f7a71e969b5b49c992adcd13fd7a1a9c6bf3da78dcc906af6a4cee3fe9a4648a2491d8e3fbf9d79845c075bbf1d776c8b3e0d246ed74e6560374068eb120cd2ded463d4ba25ea2d00b6c436f9256f0f75f11adfdbd659b3edcc1c5df51b08f30fd6e04b398988b5e950da6a3f03e4937e4f9adbdff5dcef04b21adcb5daf9a64f60c9547bf2e73813b0f4a089a743f4ef5b94df760dafc8d235d4c52fd5443b3c35e3ac5cf92fdcb99657f077f6b3329d9538258f998ed2276de4c2a62d877758146bc9cd5936f0ab60166d7664ba7d3e5a0a8adab1cf99054b47f390e2f0b080ce6545935e5637f95f06a57af95082f499026de01b806a613f5a321ac6dcb818a0b1c54e085e4d1fd9a72471cd79f9dd7a8f096633d7f78b1e9fefe8acc9a98a7467df36fa608266a3ddd8846d2f06f64d3380594132c429ab1905219550ae202ab8bd95c2736139baea81fd8ec8b31e976ddf2d12529ce4869fbc5350df153f3236d33616c4f586c71963df3b7329cc1cfe159e1f766e5d610bbf9b61bc5739126f38afb440a33ccd1c124e5de37c1a9e6fb4a2b38655567fcf6edbebb40ec780f12bc63b775f2271d196c4b07fff091aaaae2b5102ee4cc67112f5eb86f81fc2079d6974dad8b255d22da3ea700cfb4be2dabc53a3b0344f7bf3922e025d7c6bf0d2775a6b34933c65b526793466b6805a0d47471967e282edd12f34d00995c2fa8a9fabcf3a0ebca2c95580a119f8538bcf89cc94ed63b89eb14a10f243e1eb5ad64caf7c08fef4d90a79e3e8libshogun.so.17/usr/share/shogun/data/toyrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootshogun-4.1.0-2.fc22.src.rpmpkgconfig(shogun)shogun-develshogun-devel(armv7hl-32)@@    /usr/bin/pkg-configColPack-devel(armv7hl-32)NLopt-devel(armv7hl-32)arpack-devel(armv7hl-32)arprec-devel(armv7hl-32)atlas-devel(armv7hl-32)blas-devel(armv7hl-32)bzip2-devel(armv7hl-32)eigen3-develglpk-devel(armv7hl-32)hdf5-devel(armv7hl-32)json-c-devel(armv7hl-32)lapack-devel(armv7hl-32)libcurl-devel(armv7hl-32)libshogun.so.17libxml2-devel(armv7hl-32)lpsolve-devel(armv7hl-32)lzo-devel(armv7hl-32)opencv-devel(armv7hl-32)qd-devel(armv7hl-32)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)shogun(armv7hl-32)snappy-devel(armv7hl-32)tapkee-develxz-devel(armv7hl-32)zlib-devel(armv7hl-32)3.0.4-14.6.0-14.0-15.2-14.1.0-2.fc224.12.0.1V͛@V&@V=@VHV_V@V0VwVrVf@VP\VA@U@UĝUĝU@U`kU[%UXU@U@U8T@TTTY@T_SSuSSǺS@S-S[S[S,S,SwO@SwO@SXSQSKS(5@S&S$@S"@S!S!SSSSSSS@S@S R=RʚR@R@R1@R1@RR - 4.1.0-2Björn Esser - 4.1.0-1Fedora Release Engineering - 4.0.1-0.11.git20160201.03b8c1cBjörn Esser - 4.0.1-0.10.git20160201.03b8c1cBjörn Esser - 4.0.1-0.9.git20160125.0382808Orion Poplawski - 4.0.1-0.8.git20151219.af8c1dfMamoru TASAKA -4.0.1-0.7.git20151219.af8c1dfBjörn Esser - 4.0.1-0.6.git20151219.af8c1dfBjörn Esser - 4.0.0-0.5.git20151217.7e4ac13Björn Esser - 4.0.1-0.4.git20150913.d8eb73dBjörn Esser - 4.0.1-0.3.git20150913.d8eb73dFedora Release Engineering - 4.0.1-0.2.git20150808.779c3adBjörn Esser - 4.0.1-0.1.git20150808.779c3adBjörn Esser - 4.0.0-7Björn Esser - 4.0.0-6Fedora Release Engineering - 4.0.0-5Björn Esser - 4.0.0-4Peter Robinson 4.0.0-3Orion Poplawski - 4.0.0-2Björn Esser - 4.0.0-1Kalev Lember - 3.2.0.1-0.35.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.34.git20141224.d71e19aMamoru TASAKA - 3.2.0.1-0.33.git20141224.d71e19aOrion Poplawski - 3.2.0.1-0.32.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.31.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.30.git20141223.c329375Björn Esser - 3.2.0.1-0.29.git20140901.705b7deFedora Release Engineering - 3.2.0.1-0.28.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.27.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.26.git20140721.81c0008Björn Esser - 3.2.0.1-0.25.git20140717.1ba2924Björn Esser - 3.2.0.1-0.24.git20140618.2f7681eBjörn Esser - 3.2.0.1-0.23.git20140616.31f5609Björn Esser - 3.2.0.1-0.22.git20140604.98900c2Björn Esser - 3.2.0.1-0.21.git20140604.98900c2Björn Esser - 3.2.0.1-0.20.git20140526.7587570Björn Esser - 3.2.0.1-0.19.git20140523.681b5ecBjörn Esser - 3.2.0.1-0.18.git20140516.96b815fBjörn Esser - 3.2.0.1-0.17.git20140516.96b815fBjörn Esser - 3.2.0.1-0.16.git20140423.68a5124Björn Esser - 3.2.0.1-0.15.git20140418.34f9672Björn Esser - 3.2.0.1-0.14.git20140414.b0146f8Björn Esser - 3.2.0.1-0.13.git20140318.6134bc2Björn Esser - 3.2.0.1-0.12.git20140317.6ee3991Björn Esser - 3.2.0.1-0.11.git20140315.55912daBjörn Esser - 3.2.0.1-0.10.git20140313.9b6dcd2Björn Esser - 3.2.0.1-0.9.git20140313.e380071Björn Esser - 3.2.0.1-0.8.git20140312.d9c535eBjörn Esser - 3.2.0.1-0.7.git20140307.c281eaaBjörn Esser - 3.2.0.1-0.6.git20140305.9c67564Björn Esser - 3.2.0.1-0.5.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.4.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.3.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.2.git20130305.9b37dc1Björn Esser - 3.2.0.1-0.1.git20130303.df06a0eBjörn Esser - 3.2.0-2Björn Esser - 3.2.0-1Orion Poplawski - 3.1.1-2Björn Esser - 3.1.1-1Björn Esser - 3.1.0-0.13.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.12.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.11.git20131219.207a709Björn Esser - 3.1.0-0.10.git20131219.207a709Björn Esser - 3.1.0-0.9.git20131219.207a709Björn Esser - 3.1.0-0.8.git20131217.70f2657Björn Esser - 3.1.0-0.7.git20131217.70f2657Björn Esser - 3.1.0-0.6.git20131217.70f2657Björn Esser - 3.1.0-0.5.git20131216.7230f07Björn Esser - 3.1.0-0.4.git20131216.7230f07Björn Esser - 3.1.0-0.3.git20131216.7230f07Björn Esser - 3.1.0-0.2.git20131212.70e774dBjörn Esser - 3.1.0-0.1.git20131212.70e774dBjörn Esser - 3.0.0-1- fix serialization with JSON-C >= 0.12- new upstream release (#1306079) - fix build/testsuite with gcc 6.0.0 (#1308270)- Rebuilt for https://fedoraproject.org/wiki/Fedora_24_Mass_Rebuild- udpated to new snapshot git20160201.03b8c1cc3b8f4426a2fe80055fdfdc9e156953b6- updated to new snapshot git20160125.038280845fd7fb886f4459996f1405f8ca8c1612 - re-enable mono, issues with mono >= 4 are fixed upstream (#1223446)- Rebuild for hdf5 1.8.16- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.3- updated to new snapshot git20151219.af8c1df859ed3d5780bbea5615a5c523e5651db9 - remove Patch0001, fixed in upstream-tarball- updated to new snapshot git20151217.7e4ac1327cc3ee4b09f498c1b778d13f37ff0956 - updated %description - add modshogun.rb to ruby-shogun - add Patch0001: revert removal of migration-framework- changing name of python2-subpkg- updated to new snapshot git20150913.d8eb73dd89f47e0da28f07163c4f635b96d0ec00 - removed ChangeLog from package, deleted in upstream tarball- Rebuilt for https://fedoraproject.org/wiki/Changes/python3.5- updated to new snapshot git20150808.779c3ada68ae535062346ef71e6c1c39e482a8ca - drop all patches, applied in upstream tarball - add more testsuite-excludes for ix86 - disable memtests on %arm- rebuilt with full hardening - add Patch11-13: enable CMake-policy CMP0056 - add Patch14: fix handling of C[XX]FLAGS- temporarily disabling Mono-bindings on Fedora 23+- Rebuilt for https://fedoraproject.org/wiki/Fedora_23_Mass_Rebuild- fix: Build fails on fc23+ because of hardening - fix: BR: mono >= 4.0.0 - exclude tests, which are failing on aarch64 (#1222401)- Rebuild (mono4)- Rebuild for hdf5 1.8.15- new release v4.0.0 (#1105909, #1183622) - add Patch0: fixes double delete[] and tests with swig 3.x - add Patch1: fixes to CMake-buildsys - add Patch2,3: enable python-debugging in testsuite - add Patch4: optionally disabling sse and sse2 features - add Patch5: requiring 'rubygems' in testsuite - add Patch6: testing Py structure hierarchical multilabel classification - add Patch7: replace deprecated json-c functions - add Patch8: obey $ENV{R_LIBS_USER} when running tests - add Patch9: reduce debuginfo of swig-generated bindings - add Patch10: make sure all modular interfaces are build single-threaded - add automatic CLASSPATH-export for java-shogun - add automatic MONO_PATH-export for mono-shogun - add pkg-config file for easier use with gcc - move headers to versioned include-subdir to avoid collisions - retiring octave-shogun on %{arm} - R-shogun is stable now (#1043885) - use atlas' clapack on <= fc20 and <= el7 - narrowed the list of failing tests and don't ignore fails anymore - remove obsolete sed-kludges - use temporary files instead of pipes to pass data between different gcc instances - builds are running multi-threaded again - use %__isa instead of %_arch for file / dir naming - add memory-tests to find reasons for possible segfaults - run memory- and unit-test multi-threaded - use %license when available - use %bconds instead of %global madness - spec-file cosmetics- Rebuilt for protobuf soname bump- rebuild for so-name bump in protobuf-2.6.1 (libprotobuf.so.9)- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.2 - Once reduce debuginfo verbosity on arm to reduce memory comsumption - And once mark -doc, -doc-cn arch dependent perhaps due to above- Rebuild for hdf5 1.8.14- updated to new snapshot git20141224.d71e19aa5a575b2b4e52c908a694eb1db7afc973 - reduced number of make-jobs on %{arm} - conditionalized and disabled OpenCV-integration- updated to new snapshot git20141223.c32937574df1c560ce7c10f1b8860679ce011a8b - added BR: ocl-icd-devel, opencl-headers - enabled OpenCV-features and R-shogun - purged light-scrubber.sh from repo, now shipped with tarball - updated documentation-files - build mono-shogun on %{mono_arches}, only - install documentation-files to %{_pkgdocdir}- updated to new snapshot git20140901.705b7dea7093cb094fe90fcebac20b7e7d1debcd- Rebuilt for https://fedoraproject.org/wiki/Fedora_21_22_Mass_Rebuild- updated to new snapshot git20140804.96f3cf3ce58514299f98e688b7c43e057ad4fa41- updated to new snapshot git20140721.81c00087da6f05d36aec410fef0fcef5be490f42 - enable SSE2 for %{ix86}, because dSFMT-build will fail otherwise - switch back to a monolithic build with limeted parallelization - temporarily discard errors from testsuite- updated to new snapshot git20140717.1ba29247b850adef1b866a6c2112a6483c88428e- updated to new snapshot git20140618.2f7681ed0c1849088ee5bcc48b91a1c970ff3a9b - excluded segfaulting tests- updated to new snapshot git20140616.31f5609f7a7345ca05b5c1f8c7425236da2270df- export additional C[XX]FLAGS on 32Bit-arches for SSE and SSE2 - fix typemapping for Mono (C#) with swig >= 3.0.0 - exclude testing python_modular on Fedora >= 21, segfaults related to swig3 - build libshogun with full parallelization, but the swig-bindings- updated to new snapshot git20140604.98900c2996ccc4509099a6a337a71d7ca9991bd6- updated to new snapshot git20140526.758757094c30ae249f5ddc84f3cdc11b4b4203c4 - dropped obsolete BR LaTeX from -doc-pkg- updated to new snapshot git20140523.681b5ec17c0ca9c98cb54047dcd679bec9171989- adapted the logic for finding rubygem-narray on Fedora >= 21- updated to new snapshot git20140516.96b815fd1fa9769a24122f9016ff5a685a8a6944- updated to new snapshot git20140423.68a5124bec8df5a013b2406e8c00d93ab83bf88d- updated to new snapshot git20140418.34f96727f343b7f7f5e0426dbbf579f5dbc0f51e- updated to new snapshot git20140414.b0146f8b7314a4de25273dab2d6da4a37044bbec- updated to new snapshot git20140318.6134bc2e1e721726102624b372c1f8e7a31816df- updated to new snapshot git20140317.6ee39918dc99e72c23a30419a608f11217146e26- updated to new snapshot git20140315.55912da6dd499632ab2371cbbde9fdafaa913cac- updated to new snapshot git20140313.9b6dcd2a077868259029ce2f28b306e56b30bf2f- updated to new snapshot git20140313.e380071f5a8a5d35c0b33ea0ab55810ef9845354- updated to new snapshot git20140312.d9c535e85ed8dc61d537052a9abce200782b87b2- updated to new snapshot git20140307.c281eaaf51f44c16c9a7ded0678cbbac265714f6- updated to new snapshot git20140305.9c67564278abd5a13efe9ae016f8b3e01bf209f9- use new macros provided by shogun-data-pkg- use `CMAKE_BUILD_TYPE=Release` for the Python3-version, too- fixed year in git-snapshot-date- updated to new snapshot git20130305.9b37dc1e630d54a9c16f2d19b6a10c34d8aef73a- updated to new snapshot git20130303.df06a0e1a7e3551b0bee218246cfc4bf1a4696d8- require java-headless on Fedora >= 20 or RHEL >= 7 - exclude some tests on %{arm} arches only- new upstream release: v3.2.0 (#1066944) - enabled build of Java-bindings (#1043882) - enabled build of Python3-bindings (#1043884) - dropped Patch0 for Octave 3.8.0 (#1047053) - bumped required data-version to 0.8 (#1068941) - split-off scrubber-script to seperate script - exclude some tests on 32-Bit arches only- Add patch for octave 3.8.0 support- new upstream release: v3.1.1 - data-files are now moved into a separate package - added example-applications to doc-pkg- rebuild for octave-3.8.0-rc2- updated to new snapshot git20131226.1c7fbaa732c8476b2df26bca2ae93de666959092 - updated to new testsuite-data git20131222.0bbb04f354a29ed3ab43ce002388b79bb274e886- rebuild for NLopt-2.4.1- rebuild for arprec-2.2.17 - added a line about `no-SVM^light-support` in %description - minor indention improvements for the list of bindings in %description - fixed `macro-in-comment %{mono_arches}` - added %ifarch %{mono_arches} for mono-shogun-pkg for building it on those arches, only- updated to new snapshot git20131219.207a70972e794df28f0fc67309f217f7fbf3b4e7- copying and packaging the prestine examples to another location is better and less error-prone then removing the clutter left by testsuite afterwards- remove more possible clutter from testsuite - re-enable mldata-based tests when there is internet connectivity- updated to new snapshot git20131217.70f26573a501791e11097615296127c1c36904d7- temporarily disabled mono-shogun on all arm-arches- enable build of mono-shogun, since it should be fixed in current checkout (#1043859)- updated to new snapshot git20131216.7230f074751a97842170b8a5f9c69fbd9b8287ca- remove cluttering *.map *.md5 in autodocs (#1043856) - remove possible clutter from testsuite- updated to latest git-snapshot (#1043283) - disabled shogun-mono, because it segfaults currently and has some severe problems on ARMv7hl- Initial rpm release (#1043283)  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`a4.1.04.1.0-2.fc224.1.0-2.fc22     !"""!##!$!%%%&&''''''''''''''&&(((((((((((((&&&&&&&&&))))*+*,,*--*.*/////////*****001222222222233333333333333333333344444444444444444444444444444444444444445555555555566666665557888799:::::::::::::::;;;:<9=====9977>>>>7?????????7@AABCBDDDAEEE@FF@GGG5HHIIIIIIJJJJJJJJJJJJJJJJJJJJJKKKKKKKKKKKKKKKKJLLLLLLLLLLLLLLLLLLLLLLLLLMMMMMMMMMMMMMMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONPPQQQQQQQQQQQQQQQQQQQQQQQRRRRRRRSSSTTTTTTTTTTTTTTTTTTTUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVWWWVXXXXXXXXXXXXXXXXXXYYYYYYYYYYYYYYYZ[\]]^^^^^^]___``````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````]]shogun-4.1.0shogunbaseDynArray.hParallel.hParameter.hSGObject.hVersion.hclass_list.hinit.hmaybe.hrange.hsome.hunique.hclassifierAveragedPerceptron.hFeatureBlockLogisticRegression.hGaussianProcessClassification.hLDA.hLPBoost.hLPM.hNearestCentroid.hPerceptron.hPluginEstimate.hmklMKL.hMKLClassification.hMKLMulticlass.hMKLMulticlassGLPK.hMKLMulticlassGradient.hMKLMulticlassOptimizationBase.hMKLOneClass.hsvmCPLEXSVM.hGNPPLib.hGNPPSVM.hGPBTSVM.hLibLinear.hLibSVM.hLibSVMOneClass.hMPDSVM.hNewtonSVM.hOnlineLibLinear.hOnlineSVMSGD.hQPBSVMLib.hSGDQN.hSVM.hSVMLin.hSVMOcas.hSVMSGD.hWDSVMOcas.hvwVowpalWabbit.hVwEnvironment.hVwLearner.hVwParser.hVwRegressor.hcacheVwCacheReader.hVwCacheWriter.hVwNativeCacheReader.hVwNativeCacheWriter.hlearnersVwAdaptiveLearner.hVwNonAdaptiveLearner.hvw_common.hvw_constants.hvw_example.hvw_label.hvw_math.hclusteringGMM.hHierarchical.hKMeans.hKMeansLloydImpl.hKMeansMiniBatchImpl.hconverterConverter.hDiffusionMaps.hEmbeddingConverter.hFactorAnalysis.hHashedDocConverter.hHessianLocallyLinearEmbedding.hIsomap.hKernelLocallyLinearEmbedding.hLaplacianEigenmaps.hLinearLocalTangentSpaceAlignment.hLocalTangentSpaceAlignment.hLocalityPreservingProjections.hLocallyLinearEmbedding.hManifoldSculpting.hMultidimensionalScaling.hNeighborhoodPreservingEmbedding.hStochasticProximityEmbedding.hTDistributedStochasticNeighborEmbedding.hicaFFSep.hFastICA.hICAConverter.hJade.hJediSep.hSOBI.hUWedgeSep.hdistanceAttenuatedEuclideanDistance.hBrayCurtisDistance.hCanberraMetric.hCanberraWordDistance.hChebyshewMetric.hChiSquareDistance.hCosineDistance.hCustomDistance.hCustomMahalanobisDistance.hDenseDistance.hDirectorDistance.hDistance.hEuclideanDistance.hGeodesicMetric.hHammingWordDistance.hJensenMetric.hKernelDistance.hMahalanobisDistance.hManhattanMetric.hManhattanWordDistance.hMinkowskiMetric.hRealDistance.hSparseDistance.hSparseEuclideanDistance.hStringDistance.hTanimotoDistance.hdistributionsDiscreteDistribution.hDistribution.hEMBase.hEMMixtureModel.hGaussian.hHMM.hHistogram.hKernelDensity.hLinearHMM.hMixModelData.hMixtureModel.hPositionalPWM.hclassicalGaussianDistribution.hProbabilityDistribution.hensembleCombinationRule.hMajorityVote.hMeanRule.hWeightedMajorityVote.hevaluationBinaryClassEvaluation.hClusteringAccuracy.hClusteringEvaluation.hClusteringMutualInformation.hContingencyTableEvaluation.hCrossValidation.hCrossValidationMKLStorage.hCrossValidationMulticlassStorage.hCrossValidationOutput.hCrossValidationPrintOutput.hCrossValidationSplitting.hDifferentiableFunction.hDirectorContingencyTableEvaluation.hEvaluation.hEvaluationResult.hGradientCriterion.hGradientEvaluation.hGradientResult.hLOOCrossValidationSplitting.hMachineEvaluation.hMeanAbsoluteError.hMeanSquaredError.hMeanSquaredLogError.hMulticlassAccuracy.hMulticlassOVREvaluation.hMultilabelAccuracy.hPRCEvaluation.hROCEvaluation.hSplittingStrategy.hStratifiedCrossValidationSplitting.hStructuredAccuracy.hicaAmariIndex.hPermutationMatrix.hfeaturesAlphabet.hAttributeFeatures.hBinnedDotFeatures.hCombinedDotFeatures.hCombinedFeatures.hDataGenerator.hDenseFeatures.hDenseSubSamplesFeatures.hDenseSubsetFeatures.hDirectorDotFeatures.hDotFeatures.hDummyFeatures.hExplicitSpecFeatures.hFKFeatures.hFactorGraphFeatures.hFeatureTypes.hFeatures.hImplicitWeightedSpecFeatures.hIndexFeatures.hLBPPyrDotFeatures.hLatentFeatures.hMatrixFeatures.hPolyFeatures.hRandomFourierDotFeatures.hRandomKitchenSinksDotFeatures.hRealFileFeatures.hSNPFeatures.hSparseFeatures.hSparsePolyFeatures.hStringFeatures.hStringFileFeatures.hSubset.hSubsetStack.hTOPFeatures.hWDFeatures.hhashedHashedDenseFeatures.hHashedDocDotFeatures.hHashedSparseFeatures.hHashedWDFeatures.hHashedWDFeaturesTransposed.hstreamingStreamingDenseFeatures.hStreamingDotFeatures.hStreamingFeatures.hStreamingHashedDenseFeatures.hStreamingHashedDocDotFeatures.hStreamingHashedSparseFeatures.hStreamingSparseFeatures.hStreamingStringFeatures.hStreamingVwFeatures.hgeneratorsGaussianBlobsDataGenerator.hMeanShiftDataGenerator.hioBinaryFile.hBinaryStream.hCSVFile.hFile.hHDF5File.hIOBuffer.hLibSVMFile.hLineReader.hMLDataHDF5File.hMemoryMappedFile.hNeuralNetworkFileReader.hParser.hProtobufFile.hSGIO.hSerializableAsciiFile.hSerializableAsciiReader00.hSerializableFile.hSerializableHdf5File.hSerializableHdf5Reader00.hSerializableJsonFile.hSerializableJsonReader00.hSerializableXmlFile.hSerializableXmlReader00.hSimpleFile.hUAIFile.hprotobufChunks.pb.hHeaders.pb.hShogunVersion.pb.hstreamingInputParser.hParseBuffer.hStreamingAsciiFile.hStreamingFile.hStreamingFileFromDenseFeatures.hStreamingFileFromFeatures.hStreamingFileFromSparseFeatures.hStreamingFileFromStringFeatures.hStreamingVwCacheFile.hStreamingVwFile.hkernelANOVAKernel.hAUCKernel.hBesselKernel.hCauchyKernel.hChi2Kernel.hCircularKernel.hCombinedKernel.hConstKernel.hCustomKernel.hDiagKernel.hDirectorKernel.hDistanceKernel.hDotKernel.hExponentialARDKernel.hExponentialKernel.hGaussianARDKernel.hGaussianKernel.hGaussianShiftKernel.hGaussianShortRealKernel.hHistogramIntersectionKernel.hInverseMultiQuadricKernel.hJensenShannonKernel.hKernel.hLinearKernel.hLogKernel.hMultiquadricKernel.hPeriodicKernel.hPolyKernel.hPowerKernel.hProductKernel.hPyramidChi2.hRationalQuadraticKernel.hSigmoidKernel.hSparseKernel.hSphericalKernel.hSplineKernel.hTStudentKernel.hTensorProductPairKernel.hWaveKernel.hWaveletKernel.hWeightedDegreeRBFKernel.hnormalizerAvgDiagKernelNormalizer.hDiceKernelNormalizer.hFirstElementKernelNormalizer.hIdentityKernelNormalizer.hKernelNormalizer.hRidgeKernelNormalizer.hScatterKernelNormalizer.hSqrtDiagKernelNormalizer.hTanimotoKernelNormalizer.hVarianceKernelNormalizer.hZeroMeanCenterKernelNormalizer.hstringCommUlongStringKernel.hCommWordStringKernel.hDistantSegmentsKernel.hFixedDegreeStringKernel.hGaussianMatchStringKernel.hHistogramWordStringKernel.hLinearStringKernel.hLocalAlignmentStringKernel.hLocalityImprovedStringKernel.hMatchWordStringKernel.hOligoStringKernel.hPolyMatchStringKernel.hPolyMatchWordStringKernel.hRegulatoryModulesStringKernel.hSNPStringKernel.hSalzbergWordStringKernel.hSimpleLocalityImprovedStringKernel.hSparseSpatialSampleStringKernel.hSpectrumMismatchRBFKernel.hSpectrumRBFKernel.hStringKernel.hSubsequenceStringKernel.hWeightedCommWordStringKernel.hWeightedDegreePositionStringKernel.hWeightedDegreeStringKernel.hlabelsBinaryLabels.hDenseLabels.hFactorGraphLabels.hLabelTypes.hLabels.hLabelsFactory.hLatentLabels.hMulticlassLabels.hMultilabelLabels.hRegressionLabels.hStructuredLabels.hlatentDirectorLatentModel.hLatentModel.hLatentSOSVM.hLatentSVM.hlibBitString.hCache.hCircularBuffer.hCompressor.hData.hDataType.hDelimiterTokenizer.hDynInt.hDynamicArray.hDynamicObjectArray.hGCArray.hGPUMatrix.hGPUVector.hHash.hIndexBlock.hIndexBlockGroup.hIndexBlockRelation.hIndexBlockTree.hIndirectObject.hJLCoverTree.hJLCoverTreePoint.hList.hLock.hMap.hNGramTokenizer.hOpenCVCV2SGFactory.hOpenCVTypeName.hSG2CVFactory.hRefCount.hSGCachedVector.hSGMatrix.hSGMatrixList.hSGNDArray.hSGReferencedData.hSGSparseMatrix.hSGSparseVector.hSGString.hSGStringList.hSGVector.hSet.hShogunException.hSignal.hStringMap.hStructuredData.hStructuredDataTypes.hTime.hTokenizer.hTrie.hcommon.hcomputationaggregatorJobResultAggregator.hStoreScalarAggregator.hStoreVectorAggregator.hengineIndependentComputationEngine.hSerialComputationEngine.hjobIndependentJob.hjobresultJobResult.hScalarResult.hVectorResult.hconfig.hexternalPMurHash.hSFMTSFMT-common.hSFMT-params.hSFMT-params11213.hSFMT-params1279.hSFMT-params132049.hSFMT-params19937.hSFMT-params216091.hSFMT-params2281.hSFMT-params4253.hSFMT-params44497.hSFMT-params607.hSFMT-params86243.hSFMT-sse2.hSFMT.hbrent.hdSFMTdSFMT-common.hdSFMT-params.hdSFMT-params11213.hdSFMT-params1279.hdSFMT-params132049.hdSFMT-params19937.hdSFMT-params216091.hdSFMT-params2203.hdSFMT-params4253.hdSFMT-params44497.hdSFMT-params521.hdSFMT-params86243.hdSFMT.hgpdt.hgpdtsolve.hgpm.hlibocas.hlibocas_common.hlibqp.hpr_loqo.hshogun_libsvm.hssl.hmalsarmalsar_clustered.hmalsar_joint_feature_learning.hmalsar_low_rank.hmalsar_options.hmemory.hslepSpInvCoVainvCov.hflsaflsa.hsfa.horderorderTree.hsequence.hoverlappingoverlapping.hq1ep1R.hep21R.hep21d.heppMatrix.heppVector.heppVectorR.hepph.hepsgLasso.hepsp.hslep_mc_plain_lr.hslep_mc_tree_lr.hslep_options.hslep_solver.htreealtra.hgeneral_altra.htapkeetapkee_shogun.hppv_array.hversionstring.hlossAbsoluteDeviationLoss.hExponentialLoss.hHingeLoss.hHuberLoss.hLogLoss.hLogLossMargin.hLossFunction.hSmoothHingeLoss.hSquaredHingeLoss.hSquaredLoss.hmachineBaggingMachine.hBaseMulticlassMachine.hDirectorKernelMachine.hDirectorLinearMachine.hDistanceMachine.hGaussianProcessMachine.hKernelMachine.hKernelMulticlassMachine.hKernelStructuredOutputMachine.hLinearLatentMachine.hLinearMachine.hLinearMulticlassMachine.hLinearStructuredOutputMachine.hMachine.hMulticlassMachine.hNativeMulticlassMachine.hOnlineLinearMachine.hRandomForest.hStochasticGBMachine.hStructuredOutputMachine.hgpConstMean.hDualVariationalGaussianLikelihood.hEPInferenceMethod.hExactInferenceMethod.hFITCInferenceMethod.hGaussianARDSparseKernel.hGaussianLikelihood.hInferenceMethod.hKLApproxDiagonalInferenceMethod.hKLCholeskyInferenceMethod.hKLCovarianceInferenceMethod.hKLDualInferenceMethod.hKLInferenceMethod.hKLLowerTriangularInferenceMethod.hLaplacianInferenceBase.hLikelihoodModel.hLogitDVGLikelihood.hLogitLikelihood.hLogitVGLikelihood.hLogitVGPiecewiseBoundLikelihood.hMatrixOperations.hMeanFunction.hMultiLaplacianInferenceMethod.hNumericalVGLikelihood.hProbitLikelihood.hProbitVGLikelihood.hSingleFITCLaplacianBase.hSingleFITCLaplacianInferenceMethod.hSingleFITCLaplacianInferenceMethodWithLBFGS.hSingleLaplacianInferenceMethod.hSingleLaplacianInferenceMethodWithLBFGS.hSingleSparseInferenceBase.hSoftMaxLikelihood.hSparseInferenceBase.hSparseVGInferenceMethod.hStudentsTLikelihood.hStudentsTVGLikelihood.hVariationalGaussianLikelihood.hVariationalLikelihood.hZeroMean.hmathematicsCplex.hFunction.hIntegration.hJacobiEllipticFunctions.hLoss.hMath.hMosek.hRandom.hSparseInverseCovariance.hStatistics.hajdApproxJointDiagonalizer.hFFDiag.hJADiag.hJADiagOrth.hJediDiag.hQDiag.hUWedge.heigen3.hlapack.hlinalgeigsolverDirectEigenSolver.hEigenSolver.hLanczosEigenSolver.hinternalBlock.himplementationAdd.hApply.hConvolve.hDot.hElementwiseProduct.hElementwiseSquare.hElementwiseUnaryOperation.hMatrixProduct.hMax.hScale.hSetRowsConst.hSpecialPurpose.hSum.hVectorSum.hoperationsParameter.hSin.hopencl_operation.hutilAllocResultUtil.hmodulesCore.hElementwiseOperations.hRedux.hSpecialPurpose.hUtil.hopencl_config.hopencl_util.hlinalg.hlinopDenseMatrixOperator.hLinearOperator.hMatrixOperator.hSparseMatrixOperator.hlinsolverCGMShiftedFamilySolver.hConjugateGradientSolver.hConjugateOrthogonalCGSolver.hDirectLinearSolverComplex.hDirectSparseLinearSolver.hIterativeLinearSolver.hIterativeShiftedLinearFamilySolver.hIterativeSolverIterator.hLinearSolver.hratapproxlogdetLogDetEstimator.hcomputationaggregatorIndividualJobResultAggregator.hjobDenseExactLogJob.hRationalApproximationCGMJob.hRationalApproximationIndividualJob.hopfuncDenseMatrixExactLog.hLogRationalApproximationCGM.hLogRationalApproximationIndividual.hopfuncOperatorFunction.hRationalApproximation.htracesamplerNormalSampler.hProbingSampler.hTraceSampler.hmunkres.hmetricLMNN.hLMNNImpl.hmodelselectionGradientModelSelection.hGridSearchModelSelection.hModelSelection.hModelSelectionParameters.hParameterCombination.hRandomSearchModelSelection.hmulticlassGMNPLib.hGMNPSVM.hGaussianNaiveBayes.hKNN.hLaRank.hMCLDA.hMulticlassLibLinear.hMulticlassLibSVM.hMulticlassLogisticRegression.hMulticlassOCAS.hMulticlassOneVsOneStrategy.hMulticlassOneVsRestStrategy.hMulticlassSVM.hMulticlassStrategy.hMulticlassTreeGuidedLogisticRegression.hQDA.hRejectionStrategy.hScatterSVM.hShareBoost.hShareBoostOptimizer.hecocECOCAEDDecoder.hECOCDecoder.hECOCDiscriminantEncoder.hECOCEDDecoder.hECOCEncoder.hECOCForestEncoder.hECOCHDDecoder.hECOCIHDDecoder.hECOCLLBDecoder.hECOCOVOEncoder.hECOCOVREncoder.hECOCRandomDenseEncoder.hECOCRandomSparseEncoder.hECOCSimpleDecoder.hECOCStrategy.hECOCUtil.htreeBalancedConditionalProbabilityTree.hBallTree.hBinaryTreeMachineNode.hC45ClassifierTree.hC45TreeNodeData.hCARTree.hCARTreeNodeData.hCHAIDTree.hCHAIDTreeNodeData.hConditionalProbabilityTree.hConditionalProbabilityTreeNodeData.hID3ClassifierTree.hID3TreeNodeData.hKDTree.hKNNHeap.hNbodyTree.hNbodyTreeNodeData.hRandomCARTree.hRandomConditionalProbabilityTree.hRelaxedTree.hRelaxedTreeNodeData.hRelaxedTreeUtil.hTreeMachine.hTreeMachineNode.hVwConditionalProbabilityTree.hneuralnetsAutoencoder.hConvolutionalFeatureMap.hDeepAutoencoder.hDeepBeliefNetwork.hNeuralConvolutionalLayer.hNeuralInputLayer.hNeuralLayer.hNeuralLayers.hNeuralLeakyRectifiedLinearLayer.hNeuralLinearLayer.hNeuralLogisticLayer.hNeuralNetwork.hNeuralRectifiedLinearLayer.hNeuralSoftmaxLayer.hRBM.hoptimizationAdaDeltaUpdater.hAdaGradUpdater.hAdaptMomentumCorrection.hConstLearningRate.hDescendCorrection.hDescendUpdater.hDescendUpdaterWithCorrection.hElasticNetPenalty.hFirstOrderBoundConstraintsCostFunction.hFirstOrderCostFunction.hFirstOrderMinimizer.hFirstOrderSAGCostFunction.hFirstOrderStochasticCostFunction.hFirstOrderStochasticMinimizer.hGradientDescendUpdater.hInverseScalingLearningRate.hL1Penalty.hL1PenaltyForTG.hL2Penalty.hLearningRate.hMappingFunction.hMinimizerContext.hMomentumCorrection.hNLOPTMinimizer.hNesterovMomentumCorrection.hPNormMappingFunction.hPenalty.hProximalPenalty.hRmsPropUpdater.hSGDMinimizer.hSMDMinimizer.hSMIDASMinimizer.hSVRGMinimizer.hSparsePenalty.hStandardMomentumCorrection.hlbfgsLBFGSMinimizer.hlbfgs.hliblinearshogun_liblinear.htron.hpreprocessorBAHSIC.hDecompressString.hDensePreprocessor.hDependenceMaximization.hDimensionReductionPreprocessor.hFeatureSelection.hFisherLDA.hHomogeneousKernelMap.hKernelDependenceMaximization.hKernelPCA.hLogPlusOne.hNormOne.hPCA.hPNorm.hPreprocessor.hPruneVarSubMean.hRandomFourierGaussPreproc.hRescaleFeatures.hSortUlongString.hSortWordString.hSparsePreprocessor.hStringPreprocessor.hSumOne.hregressionGaussianProcessRegression.hKernelRidgeRegression.hLeastAngleRegression.hLeastSquaresRegression.hLinearRidgeRegression.hRegression.hsvrLibLinearRegression.hLibSVR.hMKLRegression.hstatisticsHSIC.hHypothesisTest.hIndependenceTest.hKernelIndependenceTest.hKernelMeanMatching.hKernelSelection.hKernelTwoSampleTest.hLinearTimeMMD.hMMDKernelSelection.hMMDKernelSelectionComb.hMMDKernelSelectionCombMaxL2.hMMDKernelSelectionCombOpt.hMMDKernelSelectionMax.hMMDKernelSelectionMedian.hMMDKernelSelectionOpt.hNOCCO.hQuadraticTimeMMD.hStreamingMMD.hTwoSampleTest.hstructureBeliefPropagation.hBmrmStatistics.hCCSOSVM.hDirectorStructuredModel.hDisjointSet.hDualLibQPBMSOSVM.hDynProg.hFWSOSVM.hFactor.hFactorGraph.hFactorGraphDataGenerator.hFactorGraphModel.hFactorType.hGEMPLP.hGraphCut.hHMSVMModel.hHashedMultilabelModel.hHierarchicalMultilabelModel.hIntronList.hMAPInference.hMulticlassModel.hMulticlassSOLabels.hMultilabelCLRModel.hMultilabelModel.hMultilabelSOLabels.hPlif.hPlifArray.hPlifBase.hPlifMatrix.hPrimalMosekSOSVM.hSOSVMHelper.hSegmentLoss.hSequenceLabels.hStateModel.hStateModelTypes.hStochasticSOSVM.hStructuredModel.hTwoStateModel.hlibbmrm.hlibncbm.hlibp3bm.hlibppbm.htransferdomain_adaptationDomainAdaptationMulticlassLibLinear.hDomainAdaptationSVM.hDomainAdaptationSVMLinear.hmultitaskLibLinearMTL.hMultitaskClusteredLogisticRegression.hMultitaskKernelMaskNormalizer.hMultitaskKernelMaskPairNormalizer.hMultitaskKernelMklNormalizer.hMultitaskKernelNormalizer.hMultitaskKernelPlifNormalizer.hMultitaskKernelTreeNormalizer.hMultitaskL12LogisticRegression.hMultitaskLeastSquaresRegression.hMultitaskLinearMachine.hMultitaskLogisticRegression.hMultitaskROCEvaluation.hMultitaskTraceLogisticRegression.hTask.hTaskGroup.hTaskRelation.hTaskTree.huiGUIClassifier.hGUICommands.hGUIConverter.hGUIDistance.hGUIFeatures.hGUIHMM.hGUIKernel.hGUILabels.hGUIMath.hGUIPluginEstimate.hGUIPreprocessor.hGUIStructure.hGUITime.hSGInterface.hSyntaxHighLight.hlibshogun.soshogun.pcshogunNEWSOpenCV_docsOpenCV-integration-examples.mdOpenCV_KNN_vs_Shogun_KNN.mdOpenCV_NN_vs_Shogun_NN.mdOpenCV_SVM_vs_Shogun_SVM.mdeigenfaces.cppfisherfaces.cppexamplesREADME.txtdatalibshogunREADMEbalanced_conditional_probability_tree.cppbasic_minimal.cppclassifier_bagging_liblinear.cppclassifier_featureblocklogisticregression.cppclassifier_gaussian_process_binary_classification.cppclassifier_gaussiannaivebayes.cppclassifier_knn.cppclassifier_larank.cppclassifier_latent_svm.cppclassifier_lda.cppclassifier_libsvm.cppclassifier_libsvm_probabilities.cppclassifier_minimal_svm.cppclassifier_mklmulticlass.cppclassifier_multiclass_ecoc.cppclassifier_multiclass_ecoc_discriminant.cppclassifier_multiclass_ecoc_random.cppclassifier_multiclass_prob_heuristics.cppclassifier_multiclass_relaxedtree.cppclassifier_multiclass_shareboost.cppclassifier_multiclasslibsvm.cppclassifier_multiclasslinearmachine.cppclassifier_nearest_centroid.cppclassifier_newtontest.cppclassifier_qda.cppclustering_kmeans.cppconverter_diffusionmaps.cppconverter_factoranalysis.cppconverter_hessianlocallylinearembedding.cppconverter_isomap.cppconverter_jade_bss.cppconverter_kernellocallylinearembedding.cppconverter_laplacianeigenmaps.cppconverter_linearlocaltangentspacealignment.cppconverter_localitypreservingprojections.cppconverter_locallylinearembedding.cppconverter_localtangentspacealignment.cppconverter_multidimensionalscaling.cppconverter_neighborhoodpreservingembedding.cppconverter_stochasticproximityembedding.cppevaluation_cross_validation_classification.cppevaluation_cross_validation_knn.cppevaluation_cross_validation_locked_comparison.cppevaluation_cross_validation_mkl_weight_storage.cppevaluation_cross_validation_multiclass.cppevaluation_cross_validation_multiclass_mkl.cppevaluation_cross_validation_regression.cppfeatures_copy_subset_simple_features.cppfeatures_copy_subset_sparse_features.cppfeatures_dense_real_modular.cppfeatures_subset_labels.cppfeatures_subset_simple_features.cppfeatures_subset_stack.cpphashed_features_example.cppio_libsvm_multilabel.cppio_linereader.cppkernel_custom.cppkernel_custom_index.cppkernel_custom_kernel.cppkernel_gaussian.cppkernel_machine_train_locked.cppkernel_revlin.cpplabels_binary_fit_sigmoid.cpplibrary_circularbuffer.cpplibrary_dyn_int.cpplibrary_dynarray.cpplibrary_gc_array.cpplibrary_hash.cpplibrary_hdf5.cpplibrary_indirect_object.cpplibrary_map.cpplibrary_mldatahdf5.cpplibrary_serialization.cpplibrary_set.cppmathematics_confidence_intervals.cppmathematics_lapack.cppmetric_lmnnn.cppminibatchKMeans.cppmodelselection_apply_parameter_tree.cppmodelselection_combined_kernel_sub_parameters.cppmodelselection_grid_search_kernel.cppmodelselection_grid_search_krr.cppmodelselection_grid_search_linear.cppmodelselection_grid_search_mkl.cppmodelselection_grid_search_multiclass_svm.cppmodelselection_grid_search_string_kernel.cppmodelselection_model_selection_parameters_test.cppmodelselection_parameter_combination_test.cppmodelselection_parameter_tree.cppneuralnets_basic.cppneuralnets_convolutional.cppneuralnets_deep_autoencoder.cppneuralnets_deep_belief_network.cppoptimization_lbfgs.cppparameter_iterate_float64.cppparameter_iterate_sgobject.cppparameter_modsel_parameters.cppparameter_set_from_parameters.cpppreprocessor_fisherlda.cpppreprocessor_randomfouriergauss.cpprandom_conditional_probability_tree.cpprandom_fourier_features.cppregression_gaussian_process_ard.cppregression_gaussian_process_fitc.cppregression_gaussian_process_gaussian.cppregression_gaussian_process_laplace.cppregression_gaussian_process_product.cppregression_gaussian_process_simple_exact.cppregression_gaussian_process_sum.cppregression_libsvr.cppserialization_basic_tests.cppserialization_file_formats.cppserialization_multiclass_labels.cppso_factorgraph.cppso_fg_model.cppso_fg_multilabel.cppso_hmsvm_mosek_simple.cppso_multiclass.cppso_multiclass_BMRM.cppso_multilabel.cppsplitting_LOO_crossvalidation.cppsplitting_standard_crossvalidation.cppsplitting_stratified_crossvalidation.cppstatistics.cppstatistics_hsic.cppstatistics_linear_time_mmd.cppstatistics_mmd_kernel_selection.cppstatistics_quadratic_time_mmd.cppstreaming_from_dense.cppstreaming_onlineliblinear_dense.cppstreaming_onlineliblinear_sparse.cppstreaming_onlinesvmsgd.cppstreaming_stringfeatures.cppstreaming_vowpalwabbit.cppstreaming_vwfeatures.cppstructure_discrete_hmsvm_bmrm.cppstructure_hmsvm_mosek.cppstructure_plif_hmsvm_bmrm.cpptransfer_multitaskleastsquaresregression.cpptransfer_multitasklogisticregression.cppvariational_approx_example.cppunit.armv7hl-32.fc22.logunit.py3.armv7hl-32.fc22.log/usr/include//usr/include/shogun-4.1.0//usr/include/shogun-4.1.0/shogun//usr/include/shogun-4.1.0/shogun/base//usr/include/shogun-4.1.0/shogun/classifier//usr/include/shogun-4.1.0/shogun/classifier/mkl//usr/include/shogun-4.1.0/shogun/classifier/svm//usr/include/shogun-4.1.0/shogun/classifier/vw//usr/include/shogun-4.1.0/shogun/classifier/vw/cache//usr/include/shogun-4.1.0/shogun/classifier/vw/learners//usr/include/shogun-4.1.0/shogun/clustering//usr/include/shogun-4.1.0/shogun/converter//usr/include/shogun-4.1.0/shogun/converter/ica//usr/include/shogun-4.1.0/shogun/distance//usr/include/shogun-4.1.0/shogun/distributions//usr/include/shogun-4.1.0/shogun/distributions/classical//usr/include/shogun-4.1.0/shogun/ensemble//usr/include/shogun-4.1.0/shogun/evaluation//usr/include/shogun-4.1.0/shogun/evaluation/ica//usr/include/shogun-4.1.0/shogun/features//usr/include/shogun-4.1.0/shogun/features/hashed//usr/include/shogun-4.1.0/shogun/features/streaming//usr/include/shogun-4.1.0/shogun/features/streaming/generators//usr/include/shogun-4.1.0/shogun/io//usr/include/shogun-4.1.0/shogun/io/protobuf//usr/include/shogun-4.1.0/shogun/io/streaming//usr/include/shogun-4.1.0/shogun/kernel//usr/include/shogun-4.1.0/shogun/kernel/normalizer//usr/include/shogun-4.1.0/shogun/kernel/string//usr/include/shogun-4.1.0/shogun/labels//usr/include/shogun-4.1.0/shogun/latent//usr/include/shogun-4.1.0/shogun/lib//usr/include/shogun-4.1.0/shogun/lib/OpenCV//usr/include/shogun-4.1.0/shogun/lib/computation//usr/include/shogun-4.1.0/shogun/lib/computation/aggregator//usr/include/shogun-4.1.0/shogun/lib/computation/engine//usr/include/shogun-4.1.0/shogun/lib/computation/job//usr/include/shogun-4.1.0/shogun/lib/computation/jobresult//usr/include/shogun-4.1.0/shogun/lib/external//usr/include/shogun-4.1.0/shogun/lib/external/SFMT//usr/include/shogun-4.1.0/shogun/lib/external/dSFMT//usr/include/shogun-4.1.0/shogun/lib/malsar//usr/include/shogun-4.1.0/shogun/lib/slep//usr/include/shogun-4.1.0/shogun/lib/slep/SpInvCoVa//usr/include/shogun-4.1.0/shogun/lib/slep/flsa//usr/include/shogun-4.1.0/shogun/lib/slep/order//usr/include/shogun-4.1.0/shogun/lib/slep/overlapping//usr/include/shogun-4.1.0/shogun/lib/slep/q1//usr/include/shogun-4.1.0/shogun/lib/slep/tree//usr/include/shogun-4.1.0/shogun/lib/tapkee//usr/include/shogun-4.1.0/shogun/loss//usr/include/shogun-4.1.0/shogun/machine//usr/include/shogun-4.1.0/shogun/machine/gp//usr/include/shogun-4.1.0/shogun/mathematics//usr/include/shogun-4.1.0/shogun/mathematics/ajd//usr/include/shogun-4.1.0/shogun/mathematics/linalg//usr/include/shogun-4.1.0/shogun/mathematics/linalg/eigsolver//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal/implementation//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal/implementation/operations//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal/implementation/util//usr/include/shogun-4.1.0/shogun/mathematics/linalg/internal/modules//usr/include/shogun-4.1.0/shogun/mathematics/linalg/linop//usr/include/shogun-4.1.0/shogun/mathematics/linalg/linsolver//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet/computation//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet/computation/aggregator//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet/computation/job//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/logdet/opfunc//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/opfunc//usr/include/shogun-4.1.0/shogun/mathematics/linalg/ratapprox/tracesampler//usr/include/shogun-4.1.0/shogun/metric//usr/include/shogun-4.1.0/shogun/modelselection//usr/include/shogun-4.1.0/shogun/multiclass//usr/include/shogun-4.1.0/shogun/multiclass/ecoc//usr/include/shogun-4.1.0/shogun/multiclass/tree//usr/include/shogun-4.1.0/shogun/neuralnets//usr/include/shogun-4.1.0/shogun/optimization//usr/include/shogun-4.1.0/shogun/optimization/lbfgs//usr/include/shogun-4.1.0/shogun/optimization/liblinear//usr/include/shogun-4.1.0/shogun/preprocessor//usr/include/shogun-4.1.0/shogun/regression//usr/include/shogun-4.1.0/shogun/regression/svr//usr/include/shogun-4.1.0/shogun/statistics//usr/include/shogun-4.1.0/shogun/structure//usr/include/shogun-4.1.0/shogun/transfer//usr/include/shogun-4.1.0/shogun/transfer/domain_adaptation//usr/include/shogun-4.1.0/shogun/transfer/multitask//usr/include/shogun-4.1.0/shogun/ui//usr/lib//usr/lib/pkgconfig//usr/share/doc//usr/share/doc/shogun//usr/share/doc/shogun/OpenCV_docs//usr/share/doc/shogun/examples//usr/share/doc/shogun/examples/libshogun/-O2 -g -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong --param=ssp-buffer-size=4 -grecord-gcc-switches -march=armv7-a -mfpu=vfpv3-d16 -mfloat-abi=harddrpmxz2armv7hl-redhat-linux-gnueabi                directoryC++ source, ASCII textC source, ASCII textASCII textC++ source, ASCII text, with very long linesC++ source, ASCII text, with CRLF line terminatorsC++ source, UTF-8 Unicode textHTML document, ASCII textHTML document, UTF-8 Unicode textC source, UTF-8 Unicode textLaTeX document, ASCII textUTF-8 Unicode textASCII text, with very long linesC source, ASCII text, with CRLF line terminatorspkgconfig fileC source, ASCII text, with very long linesRPR?p7zXZ !#,]"k%r|bViѴ@t,ݘ{p- > 8\5<^6sp0Nc϶qD[(]h\Tn'M2cI(UY" PŋKAޚae?)LwH٣ r{&6ewyΈ p: wIZyp.rc[Km3`ƵZL󟘼pD"g%mwEk99I?e_L=J@Zj[2Zz:9KIV4v+I;feIUyJ&`e` 0MT M`>߳hݔȾMCŸB"&-mI+:5rfinõO#6+wc~nq.5,Tx9CWYIQFV)cAMJ m uY+wIT~YhȈqab .lo8kj}>ZY<]W:B|pF+JCu~* #cq/ ϓ?|5YXn?+cj\<-hAӡL;ׂ^`*k.G`KVpDLNJ?יBv3E*Noς.@5ћq8hH%UQe/!9=1m)pq>BϪY0L]00'KRiRTpOc*x)_i5OIiJE|[3Q6n }•. l !KdzYcXg.b2EsP@s1qiIB,*C&ϑu\^U4p~+;i\O⌫_Gzjy[G>[ib(0I$hwiC&>4=b턉T8i; G{74A2T"Hc')뎋CdѺN7&2O< R'T`XM`wڂ񢆕B{~,ʿcⰇK-E&wDz"ZM2ǃ Bʖ߽Q}R&l"-V ߿Xn_|+V,q{A4KO=2T~/ye@;`a5p\ ;Eս==$Wq^?ŝ'UX0> !(s+OU$粤00sϋxiN *x"њI`y3̞fMs HS=F#C%(@- >BT)] Rns_9h> F 2<WCoV}+#O?Tl9}giaP_YuP5θY[`9Zb5E}BϋJFңeBBQRViDr;(ӦHU,T@=q\9 )Ѡi_r&7|}gz;Lh+5O͘AmLIk|h:+TQf·=}5yq>T16] \b->*QH=+I#JoNBSvyL8`< Dcn=ƛM")yAcz(ZȚ1b,g 8z]dA(Ctʝ*Ό ʘ#}-$ X9oq.#/7m⇠~hf@ШD w:Zg²UU0RQr)nA_&pdrءE:3PK)Qb|q4Fd&~=B_6:ew( JKM.Y3vҚ"{!eF7guauU=]>M 1A.Y2tJ"o'0Elt hzD-9ڊn޵l FGWGP6CI&核U`bqR=rصL.;n?Vq,cbJUz= /t3 O6Yܸ'b0c(O`im%N7B~?p OU$yQzTNCM>6eNiA+LZN1FbAilܒbv͜Ζu #6?G@/ w[-h59l0O [u2Zo2GpQd m} V) 2[:R/pv@.6'z={~g"hB +Q2/6 5#DR/}Peqjc秴6G5xrŽ?@ @(w-6B, GWM\n\>1>W ?m+(b8";iDO.WiZ6ˬi?4vcGYH-j,ɵ P{VDLF{2Jw;t4| {Ϲ +& >Èe0,yg 2i#q%v?_2sP @܎DNEn)RD]"BZ%D:^4XMitu jK&>!CO[e;~ŋty66ѽhMG@.K4`F⊿J47~?%Iͭi#J>M}b4 &d))%7N'e#?NR\l*QOWf~5P6/Rq1(u,{RdQGIg8l'6XW+ ^\I+}<JL0 i,7J&|=- 7.FאfNoIWl{$ pqEsf+a?n|Hfe>VE8ެ5\@w52/K̙/|f#/O2JT<Ļ/BS!y8cNyx|ctW!]\^"=A.z&r uyL$UhGv'e^:mf5<tK~)UW{RN.?h/#{CKԸk]-rwvgFzSlnOù/0^[wnc#z-(hHj7 x Ǿ]{Lb N#HC.߁9<1c$L.v^d͜RSrYx^Yw$,,=*r'FKroOvD<-"r32-xP3HjSɂ\FX#.SR62kj_*Ak?W#a.]FOY: {H+é[Bʡdß9""|Tوo^PJڳ̖y5uxTdbb܃ /xglV?L 릡גO/Rw ҲR[zg[xZ+n%K/eN}A 9(NU$|~[e;XT`[my(#E|ʠ\a,aiZɩ-ˌwLC@l6/t(Ua4#-WGxt4R×WViH8MQc@~GVE|i&mV#RV-㒚$Z}wxNr?}oZvkFhZi@U`[-RhF]"29;%?=ьؓx$JK2#2'8*GO~Lm7Ȥ7 ~ƐRvph5LU8ĎZ饄hBnt;򵯲l57lHCYbEI#&A:?0GFJ5ЎU#( w]5\_ HfR0"]k/wkਵfBms!@ʈԦ_"]W1?WNe+|' ޙҊbOlOZV*#7g7@Ii g4'EaX yF (.ܯ,Y GB.O}4S;&Ek'SjCzƒb2?ME$ww綸cTSE,K^ A K;+KbEϥ9I޽X7x$c@Hw H?sz(LgZ'`N)eUnx>.UJVG:cUlx4kQ${zj`:BH쑽q'{t/qT4ߐ}߮Ax7!Vs47`-q뇭U-n dn k8x/t>/һ\)SU5n<ڼr٦I7c&$w` GO,X~ըNAi;b$"ڈ7I\l'%eџ8ӐT: fL 72,z!5ff{g^&= nOl5e{FBz07YT+j6m&_VgnL=jߴ_okPx+AS/]*Zj=y2< +(c4t|Ẏ 5ɞSQ*{MUFP] Duvd!oK}!@_>x~]3A_Ɔ45_H6 A[])&V0f/+8G=!cBQ_ȷ9"qJAz >s"o{fxiHCr>}^$|WƳ% ;L?(^W8NH-: Am2fdqq*E`CLŦ? +]B֟Wg)[?(Y5r=bRew$N6%SNdoETj?OĿop59N :<\pbWpjs/)cW /_Vn.W;x>$u']-_*(9B5G:bx5QA d"؇mU 6uBI?wWr1csmŴp}=yFv)߭)7H}t_YnsˢuĎR6A qʵ Pg82T.DBnU*HkNO跑ķK z;!RROg򂲢hJ_M?JY QJQg-eƯ!1q@8KږdCݝ.et&{5FgJϬ! M%up|NIc57;k$.  p[i`vS^z-hn/iϝo0t Ghu"/ 5 <y&f(ʳ#)[31C7yfZ~Mh#+yfMe<ۜl7`K8ځͭ \D⬂1lXY AS/Ffg\OW\p+7)J,onhW+BXQu:K 'HPduP Ѣoe[ HZM{ke3Ut]jt4Cȴ5/Ġ1=>=&Lq"@:a}Z`1"%N[E>80gDw&C_;",F+7}szM 'Irr4)MbJ?~>HoWYLƄXYqڌX8d( &sk'nZt#@U፟ #)HEɁU8<T87Y(A3dnBM rԨY ~gXqZZ I@t euifW#@وrIKuT a~ 牤;Ǔɱ:8]Spw3{ ok&:ֺI/닊z:ܑ.B,ԎÆrm> {wV!H|ll` ȌCK"UA8^4c.N_PbC&-%GcټWS o-ՃiM—J~8ӼvKd?R'*,I*!rZJ>N%Uc \-a>ADZs$ ?ۓ$]$g/ Q=FvE=Ξ{""=j>&݃_Gr+'lO,槾ȽR2W8 Pz5~V(>dw34?Q-ewe|gQ{&bUKr}g2;t=D,&zK㝙'1#,op%f;Aoy ljoŮ# PPhXfV>C 0:[|&I*w HJ9Vk%ΰ(H9U$i}6x"Czbߥ&6fC ـ'^Bkt' 8k;~{l^{ܽ(e!LK…>ZO]6Ѯ.^c!Pq;AW+G;:ɋ5x,/;J8X "z[5_?aN>]sBcxVsFcC O.RS͕Ui~\N&)ͨS`ôe{C]&:I5|1R U]Գv~<^byAEg/9DG_}vBv~{@\Tl{tY(GvүsbMSbqM ZSytK nAJ)A>`Liaz'$ Vi0yr@TtXQph?_f? ܂TppfMcFS{76Zphc%[傉8DN=cJ7aa?0 dU#EƘps7Fyp{4,|lI$# 򮭈c0 ʏ`#kZR=bk]ʤH9GgaFA\Yay >QEႷ2P]fnRRqYMſtPDnPXb & SIү~[7l`xs7MsuW VK ;v(jqBO^d>WL߆#%#/ii9U/]#Vd ՜[n_VSIdmX魏s`G"IŬS@Jg50+i5}ptL ~WdD{64-N52T&Noʬti SB&' PN.OoGН1|є<;quk@ů- d]uM-:牊23/Ɩ;`o%،Swo?x 3]13mxTuVk5o%{os֘g&rYnPO݊<Õɻ_o>2†fer~jhԫq[m0po],Zoڇ\pʣoeR-iͱ x6/ma߇xy۠ i%+;gy4@W%#tm%윓+A3|DX.VyTkΩ.4G Xys7dmöΫŪT"RΑTmHxG|Or) (Z[r!-){;*ufJw_k8J iphy;4PD?f;޻srM~#el8F8lIM~&ZB!t $6-h@a{8R|$-9ZIFkhK l7Tѩ4nior@P}d3s"Ng*":s煘}asK55Pאvy]538^f@PBoJ^5^_ ^S xD1D T{kS#1/]̵@ f32% G2w܉ƛ<0kXvRzm~FHp;T룛Κ|ĂrixXbZO]9߹^ۙ,,5ݾ X8v;"d稟/=үC(# $@s[k2( yw2%v=*_+Yt)PS#ËC0K$ ,MitDn3w^9ÊV-r8wf ;)϶i|smXhẒQQ+ǼȠbw&Z2ٯD{6:.!WcnAEU+@ O4v_gE{Nnih%%=LJLWZS|tZV]P+2~l o[]{P \Pm3>_s2Swx(Vd[XR` eПӈ̰{+ 6 MmJ)GB kK56ć Q5qoE7&=<>pJ83L"n:ʈW~1I–S<9P[[˘gHB%ss[Rw‘h H)ӈ.X 4^tN93vH[yʯb5?UHO@^A; v~03+)V6Mg.R}9^f5fgws!,S :p=hy:1@D_|B<-;HwBZgrm,9 zU@9\.4vvʮ-(6[w,tsκ[ͽ4HBMRìUg4׽BH\ ZoiEW;xCoGaPQX~^E@@&ZTed("R|q${nB*9U!Tg6P X|%ۑ -|BEߘȄwkjWP>èjvn'xHb픣߉Sc L2j躋p[v@╾XbB~ľeKmFf G}3 /Rg,v}e[4GrCK.`{?ț R(7RwA ;C.fh! 䄐@޼ y&=qB#uy>@yĈ=D$Ts(Xnf qI\6 $QtT$?LSkǰ\2,/VY]a p XX#gvsERlҿ]Gn""aYX3%Ζn3p^8G?O-V7,S ~昱X+Z*|97rJ胝+ߡۛKfp;IS+E<T/GкQ&l]  nYX5 ǔJsI6ۖvAA :"U ⅕˫ BOy,7ɺ'>(\ 3xh⼎Ww4;P$V,@n߄b#qtI³]D=o\.UZ )zduIτ (*[K r=4pd^Ji`9Vbl[&]_Zi1*wGeil+M"&d2Ͱ×˲;w.tl2ד԰napĈ= k8ͣWLHYU*}=Uϡuߒ~rc/|roG& 42ߤ2Sg%ӊ K!z; ټ99ڒ5T"՟&@5ɇCh;_x" +pڐE5rWe=`ѝ۞ q\gM\s g6R,v{Zzt.NJ`V**\7!d5b.fԃIJrevÒ1ET/ 6l9V˱feBX$`xl#+NLa/AN߰Ih:RAȮ.ԅ 2n9dS_1z.샼;~΅fY'D '~oj #&,LevgE4C 3f^GUKuۭ%3 CMk*C~J*giBC-3Dp\$`ӗJʦ8>,z!e%M !pAA'NaAb]"5=>{C۩I ٘Q1ځƈ|M^(5&8'˜O~9\}ߚ #[ _jzW;?q(l4+q2~k4+P"¨d' P5YOSݢݴ^8׀]Y۞@a;嘭|joxt+)Z"fEwq3;I勔nO6]]ց~^P'Jq|sxޞTE۰] NTX2 L26.2Aj-l ru*9!7`J<4^䧻IOo/q^EkMǁk#0i=tO<U{Mlhj'4Nqt BnjTCxm J5D9g+!/0 b_47ϱ#.xz%WE69UY#NbJQ+Ŷ f.m+)mnUGS@9G1 v i;4o68(Ҁ?}>,|B h?r^ypu" 4һH {vldMzIHcGxՓh";ex&K#ڶ$Xxd,p| V$\4^Ed}(j$[JA_9 "v-kΩ 6wK(ƍc͗iِ֬ 27fս,b gk NE/YCׄH֑O{7؇7l1;-Q>~-ؘ+~ظxB(-$舴r@psd9L|rgv:L0&hP!$o]M6#J^& l @\52Iާ7zgJ=Ir/{޹\.5[@؅̗.`Fktɣ(s?ۉ;a -+i~vp 覾PM`eYS|EP A7~s!O'/aBoif1Lf/6u3pZYM KZ'"\ 0Ԁ" ?ΣGdZwi"ɗ; n6\:L P8Yg4njIsO[~ӷonfa3pN=fovtp*Czlҟ7|C4[drb!4v mz?,z ڽ@W)Gwϝ=4!d9bLl}o)◹OŔh:) #d?u`PFK~Mݢ`l*Ȝ-Cu2pQB]a{շ%HH\As\8_;5:+vދ'&cc왕aL)U,7cA%믅򌮔e0@HEߨ9ЄayX_fDm4 {*OΒZ:]pdsTH',u씢%"gx[  m)!-\L.bvXd f|vբUVy ui/fJOR%,Ս&.n0,?C>& Bwhn{&oEv9ϟAGů[//{2Lv{ZCu"u5@!Y %Y@ ӞJBHM؍y sfۚ6|PELt6kJ2zhD}uTtU^8|q_R02bxfG|A@;p p 12i$~ڝAO.ymTEhL-tCyz}4HKmbnSlkƲVU7ZK`<׀8t;+oIG#M7qFf I])ԭ_WO#ZAk xju&65UUmYW XL8(gYε 0JxOpFư4ң_!)Téa %D81J mP^o W1Ѹ+mW0sK. q$?v3LR.8++",yOM*7s~D"Rͧh(8dŔ2n[ 缿E;09еL՜\r08w5z:25>;x ׫E igKh G9}&J>2%q9:$*u2_9}&0)!v!FE{8/&'`,>fx}?6@T7D"bEgܵQEhn>~ct րeזZ);Vi5df= tLx{)U my{o[%EB1AXS@vEty`@~>7er2Hjt<&W[.WS7w+kDʀ 6uM~>q:ojʒ,e2SXmhF`g uw)R$l.Fd?|E ܃By^VM' )~k1Tp"ޖ15zkrVƘX3Z`_>jxrܒOFl4F$QG.Bx)@r"- gבXkA'8/4Ԧ^Y=BGN ~ׇyR=x +yP9P0qH&Mg# 3eq{u_Yf'S\\i3 ]e:H$ِMvԺ1)\]~:쵻}w N;xKTяh]MOz t r ?E AƖc XmO;J; -VC¨??koV;]HBowb>m\vl^)Bbi,K85Ft^ !<~G%9*e4'2q˝ëDzv$c%Ԣ;qJBPpOEג6AWI!xX}xATF\ņR3xaUvCNI5Giu&nh' L~j!I@_SFJE{SکJbm=愰At)++%%b)ćG5ʮh냨Rw3HDSؠFKa<."k8u1U3v֓{V]4M3+0u,n?/ƖuE{Y#G0m~df<΍S/c4{V|Ng V> mp0MJ^'Ffuf ݕŒ+]"{%hDh6^q.pg$?^~x%V9d R\_ ҆΄A6fGwKqׅ "-Y!rI4dHOE?J4[3Hqҗe/!b- o,{hЗCg6S|YʾK~ݿN4/њU}ee=Za:< φRz3f}L'IŌ~To8wq`!-E'pc#1ʤk3!O dB@"grw} DEfOXJ(~O_\9ǸqS%g ^]rϤ} d/؈gϜ KKǗsj[q~idvҫu'd#4ys7>V=f3qdĂ`6_#Mat+r`E,G=4o{|~szH5B;f+aZY}l/2sNiҚIۗ2β1.܋<6= 8j`kn |ip0[e3hΝNU!~M*?G/<0qM!c'mDGRnyFIHaY?beħ3F~nm;L0[ 2H7er@Oـtjg@YVES:?.X1ưÅ3>!xQ&V}fhIgQjYn1"3SCWd3RZsJEo)s0FW0yb=/jňk$w%\;{BbT AяzxDfXXa$oқ{a?6;Fg*#{􂵍^cr+|HDIkT % K0н6ä߼dڵYF'lD]9)ލg9)gdBK] GÍu esX ܚP['Bҙ&?-(̚/bqb`΃" `HdU cf\_Z?5K=;~5oOgK2jފ>SQ|ӭS18y|ۼB:Y>vOo\_UY&.fEw`K?m̉->Pȣ6.H"x wc0ל'WRrP-h ֨@++Wf;̳GD2y=9sW+P(r* UxVAd,H`V Q4Yd FdX`^/laXxߋp]5Q肻XS^4nz%cɢr|1c~5 y.h<.FQV`ZhX@WIҝM~2\ Q՜X0@[FԹra/:][ vd個 ? DJ6[# _9a/<{Z3xrMFa*F(w$mNA}iK7+2q.X.RO<%J%4'c關-<|*y%a{1";%薽`_s7:e;$2jLIzx2͓dpjѺKhbLm̽@7r QpASߴ"x2[\i7$ז;lGTAB`n.;R?!.ȞAi`5%jW) +O5dǽ4QaYU~(2d]'7gQ[L^g1oQ֬h1b9lϿ @^l\"R>PU.ۢh2*.LS"a*FN ii,ǰ׀}=X7=&iԁjP9StrBI+:x5>zƚjhfշ6;Vߘ@|lW>|Ac gs7a;J Y<j^.Lrnt.9SqqڰIZ>#Tekv}pʓW"zǡ\XIn4,t3B=7At $Y 1FXE_c@ iF~d˞hVvv|R}*G>2y?{ wpS^=as}fx8,BZKH[B81J)+|8f؅Aũh4a(5ezʝk(aHm/DG1^H)r%"B#1&Ay& CƄ&BFesmt8ƒz [⸘#E@ac"&}lȶs?Y3//YY'eqC]c?Mx_GΫV?{]NO\0iTќjZs[hdN*_SF:(5 'YϹl :: s9T(_l& %/K@w7 1Ftl4JIuJ$%A_^GY؁cX>G6mgV4X۹F rJ2S479!Jyy$7Y//u=8& }a?'{_n\!eȡ]M)ˍʥ9]1?U&/v6QՈ@^"a!tD,6-&;8E{Xϻg)t2!ב' /x;u@X. =V#<ӻͲ+]F3!b#& L}Jx5d93.㨷\\:f=.ϳS7Hh%/¾m'W<*K=g+zM2{W CMp$ n$o)bD8H$:bȈFb\׌WTm+d>U#')ԓP"L.~k:.L[Ud4IA+PT9Eho V-u9fg['Օ3 Nܫ=1YzAx0MJKr#R,`@:VK18{]b v~lec."7T-&+-1׼܋O7 Lu9TphqTƲce3{Lk%ECI@$!C/wH:0,t{$l( Fhji/oJO}3{K YsOF5qoJD[z>RY&6- ȟ6s%lg`K 'LUgAfXdhb٣Z:x0]zr~M؟"q8/vP5v#Oe+|Ui!DSr;l eimY㑎Úgh S-b)ah~*x%a_t^Z(ڏPm6Ô:ӴWWn P7JyUG>6cID>D50( ROT47`WTYLŨ^N3ӉыQ7/ hp_>߶ 0RmNe Qꏝ $alV|j?_,f|lWi9 Ns}&3OTDSI"?v0vAdu1=TUC %?\:1_i,OC`^ba.˰*},5 1 '_CS%|_59,e_&7rS@]Ku {hTyv{- ߼c7{I'rc"be`L~9qα{bX*iZ2R G: @Uy!$V##kdsUtq qŸMP$bt_Iϫ>BK%8djң Dg rޘ,1[ܱeDwnfϠ Y&j/Rk\_A'rC}ϳlzU>%픍;g~9&Vۈ8>㏷*r7ᆲDFjN`>T8w&KJya? 1'Biၛ+oNܢBql4%@Tj.ka9Ytn-{fn[6ˑ36-{vw= ayG6]G!Ai6Qy> ]iN%b'hB[ ~e0u_%jۯf`5P Zlns.~+ʥC4="Q\qR!**WznJ0z %NFcIMZVY Kx͑ F*FrS Z b%ux)/BL[^Ec4-+9o*z>CNJ^VSx54x4X&E#K:y!HF'ͅt+n[ϲ="X"d\TVe$XP Ʉ -} BbeE XEګU;ZE.}~~ה|3r$T`+ՏGcz- F=ENB-˃hoSI=]h˃^P2#fm1@b?p >C4ȥ6Qכ5Tȧe; )cN| G`XÁ_ jM"³y4FE 9:wi-[9ħ!5mDѳXW2mUN0>W<^,])5-%!UoR'0)-UYmmwvsA_xzkv*w0Ѳu25}?s="XnG 7̀FL \XΏ[+Ot1dtR ~ô ǎY,L+H: %n! g;X\~Tb@9 +Ti"_y0]z"XEmO\.ʐ a-sI@r`uq8KCaA\e01yfgo81§Ѐ᲎yu{ƉK̙{u࿇wdx҇*kʦ?ymOQ_rah\YC,E.BV>M(u=>}?_PM#Gj$Sp,=Jb<>򐋒ww³w?B/3; 0H<w' ysi9Rˠq*0Z+'ٗF=˩>) {nNUgbS  ?`<Ǽ wm/Nv*z)73!gAR?T_[k8"Φ!z4 в`X7v E Tj%*)1Z+oV@2d ڢ- ?o _|7S?ej/E7~h9?Hѐ5rWUէiKS2w}X :-r׺C#bR ?rwoRPRvR]U?6)UTT뛇 , 2NbaQCDd>q>[8Pn,Wo6v[Z o3ɆRAȹsiO[ tf | z5g;mXbzjl3@QAa[,pJ&ucejp\ ;;sdp2440$HW\xZE%W$6:EsoY=T3=_x0A%3:\~c1 -j֡C73 5̫?jcu%3cTѩ`v^&UoM~_~,-A7g}2_Pil$J?ʵܙ9.ڄFh@ 3ң ̝PBWVg6`Cc'ܫ`A;P )  D| U)2ͱ&[i1RԈ7;6SʭM0!  +0vyBG7@Qt᷆ 5rHQ! }ơvq7R+Ial5Պ!PN2Lrr;0CLo8`=%qWĵXQ_^Ԭٙh{q mNԢ00]b³fu;8.m\5ʹj uPo\fZ$D;R=d Wv՟y1NZ{*X]9 b}4FT,!r3"5fMB< j?r#wq (obuk Yж-' !\ ,> dTǧ牥 %L"^KbP3A\R.[;5wSf)*h{daM!>zl%ump wHHȕ}ݐ;#k\l:TcQ~s{I\RU+Eq/z%o)v76ҭav]#=#͜b8RʚQz3dE2.aDe K*x?F᷹=JSIWѲB܊Dj.,0˼ n n'SX?JJ eˁTSI @4]4 qSmXx~:s/-óA.9>lUẪ'2-ʣ&O Uh&z%jt]!0;2ΫprIX% j"!^, 8 8V)zFE0HZBf\9uBv#nTHңV[&gM-[2,' 9kV0Y@Y;#i;ng ]_ rf ;#I& Nx=?Z+ l:ϗ{R;IE'6o^%֡.ۆI$Je1= F] ݾhesAE]J1bIS"$Rf2[HW< п'ٙ&D#~[&+Qh+:a1b RApeuIC%72݂ E"S<JeF!p1nYU&19sS Sc+VGϚ!sJXÙiR0S;ɣy1#0@j:G?KG%Vq>yfe-u K|C f$=f!ByZͺq0FIYK²+YZdCZ ػXԯa3)X.w嬁+ZX~*MV.BQ뉁/a";fs ,-)Pkz$aH5o⊡Ppb ?'y 1os` }c[$JKuo<ϊHt`6(-&SŲy b],:"$Kkڐ#\bPnʵ_ߖKaxԯhr?OU (wU4!w3 g"ƪ2&n#腩ޒuSrx./ FobcG氲aq YEFҵPT O{tЬ ᙘ=X/m'k3h!-|G>:@AB7ٖy O!cG2ם=Ru46Z?+Ax&*\ yʆl{ S`c4D@fT0x Q@xXSwM%e;@!0RiL{EN g}İV'Bn \!ځWHBkά2@XZe2dEO_F *[ N113Ph[$"a~M25ZIp-E&5ծEi=ɧ>Dz{[s[U>Ƶ|/G&SQIsh_DCY Z2E|XK߳-EZ0 褻-y LU. qsN *7ȭ6fv\/GUl w2bUrO˙DѲ!V-7X.4LӕnOڣ]c? -IWxzVo+ec 7͇:Jm08 ώXNA&7&U&YzlׯQgƒK]]=`ީ7LGvGZ.9g':Z!Ґz3=8p[" -0j7pn?^`7_'Ŕ`u+w=> c4U\ [B&obf,,C:L[J2e`^0-"D(~;SM{k-|X)w߂- Lr~#bBܺUkŐ^(7O&SuB( : v'}ڬGF0`QMh1!=,hX휠Pt vgOTž@?2<ħG;@FпgJq |xto_#|הqq1R+&wyW>TՓZa9wa ^M):E C:ypZ'd32څ3F@JN J\wKqwoZh> [C[j((u5A*iH96eվW"Teߣ_qoRBL ANm"˜l~M`[W~,f]2䬔3I[9$ܢxQRK&M;K|55F+!\ʢY|^_7JǍV4妚…<'磳,HfM{ B @EЙ+ q::s?yVm !Ffzxł^sDXJ2ɖS ' F0\|~;%NљTӧX+̾, @< CYEjL9c2/;)-VAs2̣MvFeTfds4"GrR>$+Ep0G[=|&: fQli-{W&8Yĉ\dc' wZ5`6X_ (철 öLEC@^_߭7V& y6" `_|3 6G=Tl>rS BnZ=*AžUm9#]u^BM? OnI:]2=ݸdo.hr~Se/L/’2p"> /{Շm"QAK q'$S޸޷9رA7vAnXlcBf + 9z aVi3~Pj?GDbҴѽlxl狓-%lU3^oga 0;,- sK ϋ `J-U.gݱ2w˲L8[ 4 UGnGX/`璾E6Sכ,*2 "SŦgqtDE\BqOY2lCߏh8< nfɫ1wxpr%J<" OH8>ܤoIKVp3 b{ȟeZMꍒĄ9Eu6}1sz}:=̽Bl܋ۭN86Yz_)Sc^&`7Rq\%57Li0$ZϲYLu] DKM2ˤ 6\N 덂%m%dۇ½|Gc< 10:xY)31)΅/g$a~@<𥙾j8x*d]vgU c<)'n#p~>|LtG9)xzl\Qީ܈lS -Ԏ XQZc 6A'Ӗ b8Eo-Xv+D!*!F'iPBT"-ž 2LwvC[yHgW*-mu<Łdse@=\] e(g%"IA "Z*v._FR Jz݊wrƽ0ת]Lfހ8.#zp1-2ya[I`0&Πc*:;F$Km?:#򿪉R.&> = Zy6[/;bk_y\h ި"m~$C,Ӝ^)7 El]ԟZvjmEqb|^x ,9cߋ?2ȢoRCxҫ75| *1S "RĢG==K\#N[ު5: D^bצGO: +&\q-;xOwD0 Ȩ ߘ`N /mx~_R:q}~T#%$Œ.GA۾xҖ+ 7TOHZ+LlEo!3錎2qL>O0خLۜCSՆ 0 k]C jZ~of&b|0\ \vhԍ?0[8|DLjT6UX{bnŦmN= 0''0EčeYhXg$z.K?)Fg)mb3ܧ~3p#cB8zjm3f#@͒\yo䧧(lA)&!H?Gs1طp|W9lN-B~|c:i:AqjϱIMSpC QWqx㷙t?fܿ0͵)>2-ߥO؋[ viџMv+"Ki;zLQ`0 ت ' GU6ar8Q7\έw!LAeѡV8Ś֎֊fhƪx;jOT @ Ȭ#KE2 wPIr ~c.7)59|1 Q>!SUӅ Z#O3&W葳LAfWH\IQ7_uۄD,vYbbƺV3ge&`bg1uU0oŃ9*2Q=:QRĦq^f23wNy8*bD"X2&j{-( hQ^ՑysKsL]Z+̫^3[bܻ'i%L.k'v; G$' 4mư&ʃ ފ$5iUBr 4=kxI:*j/5́-SkuSY /gpʪO,p 5$t<'DT]މ4C?Ku\xƬ IkK4|!2idD}锋}0Z[6UR=MFl>3C*!쏜L|R8B^)m$!*wS%'` "`W57,,3# 2o"X!ow@Ns/_5!A2,)r1}GO0bvۢ' *%-['q+>P(F/%ig><fNPhE@+ s{űCY,aHB.WFHN9%߀/kS9xz8@3$ Z٘ p1ѽE9^w zYV+#a{vaO?V;k $^q d HOn“Bc8ѐz8cI%p?1 >6mƤ ^udVsO$MeAZ|1DZ+j5>|(iK~+H|ZXM⊤¥x>ʬ;gs0@ӗ Yt_N)-7j"x3o맏K/=Gn`oeltmet!kwY'ƀxjF َT{|uǜp:nq@#DWw|KbOX<~N`8m5٘6y!օ6Ϣsi&3?7o'𖔶L&RDGkT8:K!ꈄ&} w]6HU`qI``.;b+p:3.}p /3I˚1m4aZǏw[IP>J7J ( ~Z뉍#^w`94(TQպq[_Y<-& x/UOa+EwN7my-(,5{7XՃw%@lIe.eg~H:plltUZ秃_hj&.QZ )_4FUcx^@Oٸ181qRݥe Ր_n'Stt< `;CA=5*S^T!*(0U'eɠl@0;A>fPϕiDsTkTaip|JGBKJcie&3KsJډCZɞ+A#_@dgO@(=y{u8%e-RxG̥QGJ[g8EW3WH)@J )Yp|AX LGFZ28(?6rfKvb4N^ןRk<WH尶7~Kշ3HX.mD Ymb Tv g@kA}r)'|fQ!| y6;0 +q x`H͂CJ7h m.Aǖ@K&/ZܑydsգȀ”Y`),>x qi}Lxj>OۭQxVWwܾi2}n=%)C0 EʍmߪE?mK#+]MwyUGPmqg\ Ψ b!5ut:>6)Ւ7&Kl_ ڦkn_=),cuF]B:AU\]l.#$z>G{{;xQ)DZG.Mվ0M.`ZjN02LAJI-'⪓:Uyz&Nb_U9`H=iWiޤ˸6$P!Ғ[zɷx wЃTx yT|c 85?g椊G½Ȭdu8G.w0HD{q걬}rj#T%=#M-C]A(oZr\7_JPi6x-x[h> o;}_}{s_\ȭ>DՂ`R0e<4ǪioW|:xYDoFGEѶ!zTd,gR>ȇH4` E!PCæ$|;ÐB.: Q.Qjr(߳Cip;N.ש'_4(hlպ_C4@BSo͠ɰMWݏ,R olܔ,D >㑝VSyxSIfQ!7qìmu#ЋHԚS Է]3)?&z-\c w=. 9Au¡9.RaǢ[s]zBvءr\vjg:~<7u>}х]J,AwW]i>m.Y^oΦ3="vm*x^zU6|ONt@`s{nƸA&&+JF;1GY GG4bïFR1Kӈ1PD]G;Q X&l|cZ"=Y{atyq*@X8v՞Dr?4+sdD6^9[g#%]T Cq]wZ~fk/H=pQ (*oz$VaxA- LE}d*8э߼Z nBݮ bdW-+TVQC7n: 71JULC smMЎbpof"dsN" x{{4M r z [ m ݟ2#^P Cd/r`) ;|7[E TD |uf2о;m}B'TIR3J>,HQ./`ف/W3r(jj=~ӇcjLdu2.T 3TgOԬōϔde@/M^ y8NɁe#e?߷~vIj/ƾcփv'"Cqua{&,\XVTՙN Q*C[Kmн䊸+oVxՠܸ}PGt(d?\p5Zù>=9JrK 4GSv4-vWoWAՃ~e]>񇓢=' }@HImkO+֦°y@cǜhYrNf*`%iZJn^{~@<`UO'em'䞠8uHOU>a=/'kAR@W *#xdXP ID7˯#u?1yc)xN2M4R &Y*e q E`Py3֮;/opPSo.f ;7!)9"oѹA5bуSE4a5'Wbeޫ<1bݔ~i}TQ@Vt6 ( 9•u󒌗G $۰<ODaϭ$&yhNj^1id'N14aՍڌinki BpAUlL15+^Ѿ@hM_auJAAP/MFHpܥaI?E䴩#C,52aN%|p5mR uR/Ң˓ÁRt-}=*:Z>d?*Vt[c ۚDq^uDn|ia^1T5mX7lw'?ěy- LQSb]B.=2ےSc!!U8cc奌D}|k*{XՉ nvS=0p3 ɠ;knhNɎ)b|w8?:TѕtSzؗsxrwcebVDzo7و(uJoNI3,`-R2cf"Cxe ٜ>0Z=NZ|hݼwϙPdL'=rR'. 3|^7EqYguAvU_Ybe[d ROlpc_lvn gv њq'ouBo} gd-X_ ^]ÅMsА?VG30ߴ٠c;tp,@MS@RM]"jik#27*[>1kC'o]#Mawx':"MRlxUoHR+]QH<%Qײ8:?*( ԔYD ^yi9Wˁ>wi$M(.3*߲H?H)JybU,rfW{6 fu'6fN_mۯJCt#yjtR,EV2Ɵ^F[\#a pjh ׂw؂b̟(o?b(,ܪL'Wg\ 9QFH]6D nP:vJ 7C~5׳}jOcbsԄ|X{_A&r6'Ѕ8mml~WYa~5xK`?F% My#TnD"b+~_F,5>O) 1*^1N\; pE3;n 1J?0sC3_>*d1]~lv3}w _6A*dJ.WCTޜ@w 1?%S~'LJcVfI#*=Qx;~& X!ҨbZZ .=n5ZےNvmaC:_mTQ-ņ"Zġ I#&hc4?|@μspK6@ g7B:bW Q&܁=KDj܈I!1N{_c84K^AznKS!WI?|]pu$-qH i^.CzXJ Uq8'ɼ`ηz8QZz]Qgpp6y^.NBdr\ C~6@>hQ{/7D5N`abk>ҷ$*=-,40pc:?vg5Ƭ>"2$f!zdj(V6˅Gf[aG7 n!Z9Q2sՆcoZh۪Ϡ2fjZgXv^>S,4բM̚$b za~23Qr.5^ g~i6.oh~PpM>2\/VO s@&r^|$yRt<P.4Tʍ/@W=NJJQ,0tUMRn`Yn?_z$u}L=ݘw~=߲ S#w~_`%4nampTB@ rYLŐLNUԱ32pt T`~f"8qzQۼUm[rlXN|kڅ+&[m"`"ۺ EzUYQ6_fہ5TfM qs;wb8-wv0ٚOƜju? kQdc5+8ԙQ*ͽsUKh 9s[|z^a!ՓtbcF@w }(~ɶfݲ]]X)$=+ ?QV +_@Uh5lO,Ie}nK-lDwˏрu/.\*Smѹ*=:΅F~aYnh-oBf gPT|mhQ##7sJuCeʙZl[D ADxQm^k&Nv,8;A{Q`pI3O4ܺ}&;^ I4ZlrT1dGbY ߇[kK3H SCڣq). щI\p46Z#@TVӔ?/dnbÙBEu_)xJ@ɋg 6I#6C+.Kd숍41a}58Ȑ+XYDvm'$AZ*&lbhG1ytinfϹ1/n,-TbUeAϱ`yRR݂>[OۘT5 fxE%qvp3\ v!LѝSLDܵ0i u^39GJH}=8Rq=& Ag>{4Wce-zc4g;$Txbp{W꩗2m59נ`)QI-oQ'D&om(v+nC8 nMdWAԵY_gT a Z)] aWXvgUEqW3{{fML^D(y6!V5΅PmVӻzj)ǽBjv`R E,'|e[! _,Ĭ]he\RtXpE `y1fCW3  2o7gQ҈g@{\;qHno &Ҝg0og>ћ|+:ҭ mq֫mD'< kbimD–BqX(^w~[wAy7uY%$͚fYAr==2 4on^7H~UUZC@@})`C@I?drxn\.UACtGZ1>yq/" HiQ8  cx6x͜\!b -Ň"&aGA(|s5ƤEYӧ͞[ Q[lta7W߁쁦 iF'3Tw!ICW_  NS:xa޶iޮG2riv#Fi>Ym9P_Xk{+X-݌~߹y^Oe{+k< Jt)2艺+ J Cg.(,LgAwCZE (P!kHbI/v?Nnw7^yֱo?'M!r7 So-Qxqh.sG„(5zR g|d> t*?fU5ވ5 NvQZNkP-T%k_ *.$l;oSXD+zZTL)%*MԸΛ^5ŭ5Z;y:ӳ HT0٧ I-#7nҤcg*KLh\Ǡllj`/|e.Kxw[/֝I 5_ӆŜ\]V`hzzx2HvTgXTAm3üwY}AUNO lAV5{%cڛ]H=zgCWάx!XuƸڔt!I;^Z*\"@0&[2#Nħ'p_OMN"\Wp@ )Q6% 3?T"*DgnF5waCE\"0; 'Rc NUby.uxV;V(k D2eOIcJQ{@|%#z+Ad7MjnŸ4<%YtSl6t-~8My%JuҚkMJI9ERi_06 lŊ] :Y{6MOVVV!|A%X׼;tŀsZ3Zɴ t0wF]H)EF*,+1H%늈OIX%J}$5h9!HA_*NaAbkE܉z"HWң'U4ܝNam`^,/P^~1-s彔.͐d D:13#tj%eW,҉|'#}^pCeN'*r3v>UЗ2ҁ44$=7%솓.`0̟ :obTZu)THp1$8UǮ>hFMzƯ@p/dh' R fiaA޴$ھ{CJ/S{Yv0QV-vjn&4K.Øȭ[ eKXƒc$rv/Vx)J 0}"( t`)L;qe6m_r_#6{(7}68c"% D/ mO|ptE7tʹu״UPm 3N\PছnS_p>}[ٛQJCJ *kqİh$Mr ]!N,x9OȈkxٽBk`!@_ 2&aWd {pnI+G2'cX[;^5;2dl,?!Q:yL-̸8 YQȟ~HH}OI0) e#3B.U_p\ +c47= jJZ$.jgn Gbϔ^<^QIgI~ v#_A8-y) <WX]6X[./3QnK SSg`Xzz1 abP>#rtN\4Yk<^Sqs[ +-/{նͷׅ~~,$?f 5Ebqw"<#/8&zڏWgQK\ /OUμ617a$&wvͤ`{ a28_q;XM??f}4^Cs(P4'sy!\8!ổKkcAl.qln^>Ix!Z\ 0y?G7%Е}?JH^Aq*cߓ5jIHV ?6QIs>kW6|U%Zԇ";En |fAc(K<[<1,hqU'#eL8P `tWeNStN/ߤ->Ca%'`DI{D@.$xdw!^%{ҶQJ!4` [Ce=蒰,߰k7C|[`D!n95CF8آU*ʓaS.-@[-[LV:Zom!`dªZn8[Cw1oh~ mF`9 ^-e~(`+I /.'@iU&-z`Mc@Fv؁$#KR#" 7]?\<j; ,ӗỈ )#e*@Bs z|>8aӯoYs`?@t~lcI癿` \)4?U!Sh +,TI+-#[7\+s@᩸'X%ũ'|[ء`֬eE})Z3USXa-= ղ0!%YfA1V"9rB[/U (vI v;pT\jDz}u9h(1W&EiσjTL G0r*)gr=|׻k ddgޭ=VI9*5O¨W!Ϛ=_N΀Qѻn$ $O⒱JdEv;[931Z&Y#S;@@h%ծj)gĶd1*<* >)B'ED5U 8\™1|Y@|ӯ\ G#4x]w&U` .W;EG#E^Z6w@F=̳;W.:$[cP>RLbH"[Z?4̧hLQ8p,~cuA pv/ZR Í(c2Y* Ҭ{5OE]o~1 ELEs"{G0 q):;5;2aVĝxӯ:ЄwdGp FɘUr#ӎ|CK-Vx8 Cnd*"eQھޝ+h ;BhM8U0LJ%m83ⷄOzZ;j-n7P ob}#DQX&|7ڝk.q*t׫fjb׫ܶug< ivaް4PΟ_ pzp m!ufOkhS3JQ%~4apke.>uޚGoop~eno'd >!Z/ dӷ50,4N1pҺ\!\ n9gZav'hX=gX aKʅoO yzL9 ۳_C^Uu;%$\^9a ZwopCn#xvO\0mB8g_Ow> `5?nVuk+"9xX"v; xFH!TV|6IEEOD]Qh}!Zf╍:]>oq=^$*5`vXJʵ1lՀǸU[ :ҵB?ҫs &EfkBd׷6ջ pG(E5qyoSD*7Na (tG='/A ת\xK;eoT|,3~j1Is$6Pgٌ6"Ӓ-!+QN iNO%19J`fvC7 3:y׎]Ӊ  z-:e`d~0{h{\|'{dY\ͣA$ B=)ZOv9O@ (iMtDVE_N5BJ>@B9= Ugh0} -403% P|43er[2aw/sP9o9?OU@\-~@>U:iK6Ge6,\%[W7lq:'NSoGnsz)%S 2^<X:t*?('PMD]=sFe5dSF3%$y!+Pz`/M5RI*EqW>!1wHS@0YuOqlΎDU/C aش#."씊T&=4G.^AQ['ϴ[0pRCbxV]hvWF37ʬ_[i;;`+jn~\qN7H춨]g"68̑q$jpPơKBqaӈ$͉[e0e5/$XOj. :e tPjyžR| cD; 5^BM㌚NUۑ8t&Ld ]"#d;XYhiհt"`ySRF= azKW7haPԘ3 >bD-y[m^2\%KC vIߊTMR܏6%%T֊[ec,nTk* $Z+8P)tW0Hd0Wl0G=˱w'l^em5IN8èR=RXYrBGhy9(E;P+$xr=q]~4jlRj5s]5ݲn߭7;.3<>'0#磻YP|.2?1-A"vSɲ×N0e+l<0LDf:p&`,5ZjNAٹ.mnjQ(a"1I*!zq6X}Sr9UIŠW<BO|H% % aqzp}#7hB8wU:'hY 2UP_+"xa92/FLS(^*"bF6 r::-\T)uz 7lm-s%Bd^!QLLT08Iʓgwj;1%9z`9_17sA˴VUei9ߴ4]Mc9QLA >{ׯgy_P?G-"XP @6: /a4 v_!'®{v+]>9X2Lw9&ÅuX洖ΎxMʅ#pv$^lM')uzTUP+Xr- 9◸wJؘrΟ]|mNj^0\6u7ۃr~BxtۖilI00#်.ee!e3-.V,T\zDwA1u*(#Hvt`u/Ll,4sZ(N./v r9kCКCu55vs1zC`,fmqN~,x5 L-Z66¾@SJ9"Iؤ;mw}Qeޅ>PHA50J$<iM8{/T]{te&abʂ>!5VXpOضީAAPMy!z62@2YKM ُBXK%sEXB o;fFI,?eRS6 ȕI_cM(Wi'(\A`vPavʈ'xI坳  AhL#6bFK$amNBn3Z R3Q襺J/.Rv*<ūzèHi5Ƞl6Jf*=4j| s`Hmp a;%KN+/|t"'i;p2jg3D\S~|078N!@j?<&aBsRHٓٛ5.yL>'W&rKdx@;^* ̷ٕL2{bBظGJ3,6V8(5 7vAtz 6(0MWWdծRЖòWXd8AfċM]F,v&RhBnQXʪ`:*6:NcqZz2HuQj^؏Wz Ys-U]ZҏPe# F:I\ J2w2η`R}M+516z g턂X"vl@"Os]iU$I6a?ͫի-uftud(ӡL͘( C#4=/ .099 ʪ-^VijS";㟧V^WW%*mU)\ozbJLȊpQAsM(iш>9/Vw}Y`u7=(3 !%!A#6 Hp},, ׊7{%4UUTPg2:[uܗN|?1/^;hʕn-GG:~[[̺MJ|t*f"2BL˯Ay0V4;oY5Iվ[!)8UQYlHYoWBf5V':`\?pTBnB)HML#i,+r9>Q!iKoqڤ;hLe+P?L1$`kU?^ p'όnv) Rb*<XEgܫi1Rt/2DSG/ӁξM7?l<=S =ueIV-*/caAgei%/~ɌX 2&cse&;wTo>N4v__NC|"[Cp )^b[~Y[tWO )No=%]ChyvQ|vkp k7}mLeY>9P `H p;kJ:۞0mXoR&*WbZؙ!#l3V/<鳝ep L xT][F}Y=̌Pm$0݁zvSm0GTM+!߳@+ $TTRo-9OcX8d Y&&yOӟtFYH,"(:.5p֍jUU bB:4$`KVǣZ-`` -W$%mZ)S _[RN3!/QDZOhn'lFE`GF/.|P#CѴCjf ht>DJUA+7]9[kc6St?aoBNfL!.?6덎H-cύzН* mVAQ w?uGoKrst٢N APʚ ̽GbT]w]S9Vx^)Wϟkы8\2ӮjpvZzf@'m p?0F~ˉ8w DY\-xjUVTZYR*ΨEALH_eWd'^uQD52+C RE\P8;*!Q'.U*q~}IWPI?>߮rcS5kMO |,1o׿he[پn%J!A 26QҲ^ ϓ bdRᩕdWfVEИjD!]39=\ TTQe%U2lOv>]r61ԿI"!V#9g\N/lOpn/Pt=FE$s06!#'}߰ԽRhd sm0f tq?؍"`@n?tZ]W|nV4S.$t)>{'^ i[^[Dff %,o@+&ذI\l \#0j'IB1Ȁ`tMHQ Ș~>5PVZv!AZkTt+$b+_g56)hN,Pd 7ǀ\D%:2Ye8 7bdLlF_t'ا&jfu>Wv}a,UK3b\LE,.bkXЍMILWڲvKkg K>ÂfkĤƂb][W,9KYB3ym.佮A1$dl`8yoecal;7ʡ|n9 &3;dDA8%/}-K ◖h9"!P]D7 U>lj}!/H0qvAxinJp*'+D boMxƏEWoǟSuDŽC W;P}FE0-fgoEqw7QQ`1e6`[OLj DxUܕSOA᢯w ,/3ʮn&ׇ*s;i9@qa.x[gX~$ն3W=}.#kx BA%7[7=,榩08DSUK=*pͭ}2oVB Ƅp5Y94O3'WOD.hWx]2=Xy*8~1d`Ee0Lr#`8.!'6(هϦ1 6_c'R0c9S jr/=}Vkɤ%>|l=xbă;ZQ]6I7+͂j$LZ0M@? fؾƭQ6e h bU6$< b z/Ц<8^G›M?WOP]}ITqѭhko&2i~q#6eQ4Obm=*WrӶB޲BTǣGFʤAs"FhU ?Z6a2O)Ϭh FY9$ Xb^`FV=y3;@zXQݭR\mXZ ېv~dk ɤ;SS#jή$kFluE,inOlܡ o!ISf\cKYEčn1"T~CtZ8|d/孻HpshDln>y#8pr)ML爩_>D rn.*L1En@vGFGR4:ndK=smt i J̫Q) _i0@uևsq4Nh[268>ZAd)J1ƨNYʏIؔ6[+53bc_5~:[17-c<%_2򞟴ICd/pS. UAU/(ft-H$0(*1D$jcrXYn=-N&s3LWjmH`McUAuƂņ6J<\K_YoP:`gn'?#I;bgghSA'd2^Fp[Ve28!}Jk\d\OB4-D @R6~,tJriٲngUrnha/(Tf$&U^T0(nb`0ĸA}6&7jh{& 2sg\ S1}c`$P(k:.M%>ԿxVf* }/w|9mȠYzҥ{@A1 1jl-js3/G0$0o'C5*æFU"hv nI޿XnJ>]p o!Թzܙ,N2tBal.{N4]EsGZ.AZcB:``zX,s%[!NSv\(nb|) #;q1}LkplO,5Qf992bK9`-0?V}] 6o,EC=N|Jg)dD ޱhm8-`;wmDlPRړHNc;\?{A؆k:~٨Q$PX;nn7 qC;x[o+BH3B{9Vtoֆ0(ݿ dkEzͶtڇշʣ*5jйG$U>H؂򩗼hp? jׯ8^2~k.>oD$EI]RxA75~ 86$cvsρo-􌺃(z̋H$ȁ}ŨFknP񸜗a[)熡A>3uE%X[^,E-F%^jA%Z KTV /h޸A C)vӟq#RB~iRW5qr?Kv+ &j3m8=HDK]ZKtMBLU  㮻U ^=w KΌQ +aq-{i7$x*^Q1Eu/$-4=sb NꐧXR=OG"Aɛ#3;bJ!!k=lFdS~4y`H&.܀-Ijۀ7o/݊! J<ט+Gd{C2>GԱBwCtIQ/MC4z~@aiM+'ieu^mpD xC@5 Gz27Sa BxmA:./{0*3a]n=/%t"JjwπW:x5X]J8le,ۻCPQ^pJpK"dvdYXNˏJiЏ.:CH;V +y; ±Gw ;FK"?veMGkVQ6`)^R)ґ+n U)v mhNJ_)"d3rIx=x4Ԇx g@&J‘R'#>v"U+>d32DyPF*T+BsjS{5 3PUawyfxs} .R}taQm 8%U!eI[Y>= ,)#2x)*'X>w>Vh;i2*ГusЗ"As ީ8v5֭Jك';QA5öXo/v%^aAҕ%M m\0M8fQ&&uhnaB IvOJhedekqF8!vl#UEZ덋Ljb:+QQNkf2iߎlb\ֱ8} H_mtpgO颲Υ}RK$f@X-LKoǃ77<I[7=1tsdOAa{qwUTzJZԘ!`-Bi"ӣ-AB<w~V*4. 8h8E$lO4<+e3GŐ,,&c*\9SGd!nEf4Ժ3e2Gœ2p}! T*s dYC鷕 zS%?;g_ȐwJp`vU, Q!s`L[9_Vڛ|AYY ~:7走I^jc wܛu% Z8r3ܑ7"|J$qyx'$zFy֖GH㖦.$(r羾'DS<\+fk&h61:h8fB?:E l(3i$?9660W?=(dwp(q~&Db;+#M<UhKfeyKJB\Vt%@+Ux@v@Q=< Z>'Vn4@񑢽R5L*F~E%<ӫˋt|rlt4 _鍑|&z ;$88H(-,'T-n7xoμӗk8T8)|jJ%= AG[~ u@If.Ԛ]4y#5pv x䞵:d-qGѐ/$Dq>f ՅA9l}A;t [M'j4H /՘*OWaU j9 ] +=+ }‚3֓gCq2N?\m-@fW^zC'B=رĒ! #9yf䦜7a& xf,|Н藥5/|/!_pXO)h9Va$xa^>¢KV8^z6mY^>GJg1mqQ6.|!%֬NR~_ZqQq-WDT?\nKzZBj(P\Mb6s?Ewk>AG)ՠ-b́#{n&0k//d]bN҄Fda >qS8OG/L$qN#J&h; RRlOf" KnCַ,Y݊4N! "uR&8Z5}㾢;r ZTú+mSdLZKa|k(r@[S]a!mnu7>Y-S5soͿw 8t;40pÿNzwP=\E \PW7OS_#gr, MEpu2> .}8Y4}9, ?>jl*,Q:VMgt>~DSl$MxPWDpY9a5GqhJ\)2Wf'7Sѝ͇3Q>Z q&*EC0\>$phCknKʒ*I~ y>i|ɩbq 4.d"8M{--[LRԲ01NiOn;JwՊ'EZq23Hյm;J#0%ǣ)CI:W E=6vV6QwPz\Y]c.[Z[s'hz~(N`oz­ #@y/U+l  oTX&fXn7m056'WoǦ=tKx0+W ˤ'`{m(H#Q9/'grJ+.uX0w6 B*YU`;7}[LN=Ъ_8Ъ:!ToN)F|mT,'~R;` 07 恒/)6gYgE4#UJY%]"rQAE*h ' SS%W0ڷ?ZeI Ps/SG&3.]X^w $Nԗ8vU괚'J< Hn*Cم{]7-jSܣp#[19t(/AFpY;少njxo1YӠ:Sl~'E#~NP[w>\޾ OuxN=C)Nv*}k UÝY>ym9b* `!GJaYPBo*l9 !׷xh-yHUwOq!sd;ރ*4b:"sSY$)W8\D:uVIaQMpX"v!n5 A.IDݾю!U d"R~uu0 bR1"&ŌT v%%mWKq` _e #a;K[~~B9$M;;bM6;<_:F?FQ)U hcZy cciNN `l[6#K֠lf9 Ô$?PTD#wr==g_j0hsq^8{aGnLL{"bޛ3Iwgۂ#V뾿B=WDGJsE ɤZ…r~ ).ܧ/?U jrh7w_Ir O]U .[r,QH3YÉ6p״Y{g=.8$]bn9Q*m3zD Ls@gZ<pFo } {)_|7|D?{$=e;T˼֏dD3^T*_< xɽ yKԬeӁy@GXvmbG бcCmOz3[ iT`Ԋaj陀J4'pRPB G,R嚱FKݜ=vƂq9Ŀ":xYd-c8q9](0,*2Ց_Li ai` N-Mk8Y/ѫcŖi%27MbAp cJ-̅M\ɷ3)/bvWƴm|d:99=`LPaܵuh{Q'jş=nC[Web 6U`E{1Dew@*.wn`y#]v痚 #i '饥&/q(:xyؙ9r1`L< :8ePІ*@Gd^i F^v]}M7̵2*q<5NJ:aeQ>LA֯w,Je"_n6C&DoBbURs wd4އHLeUEN{y,肧%c!95âIrr!FV@.RiG:>U1m8У{lwƘjRd?)] pƤ?Ph읃 Wpqw.t ˿_".%[IoCh."{-;yJjt=E D K DtnB/BkMh(=IORg>ҙ*sȊd]"`~}^1& '1ԥO {JFlm@9Xo[9SHǩ-L0w5P)}t>qݔ2VB}?5 = *dCa_ġ 79҈k05I%̽*h&P)FIGW6-u)%O:1PȶDTǻ%3OT:7+~e5~C9GנW3/s\B7`/U ^8V㠑GqbMXw4-m,ܻͶ]? XGi8}Q&My;&T $Lx݂nzxS(kha* &Q+e' !Ϳ XZL^mZXc;8}L:cM_NJed@!9fqWEJ^_́Pp ʺ>:g^&7:HT2M?5a>6ݿ?Ċr7Ajh?dv; i4%ȾP+8MMb|:ԓ*5t0ݹ>vȽ0 bU pO ~sEn:aIE]@S0W\9jؒzTQהx򢺂s8S~Zb+Gд}'!ZVnPdŦ{y[1(fuX6`3~'uh]ty$^`͇ jHInI7 bX W u>)xzbz@bo{PBsf >gK{];t=0"W@ʠlVIK3QX(/ ء}F.[]&z-|TġNU_nhWsBBe:A'CH*suBálS&M=2E=R.&I cU!puYU|==~2R.c [D ץĜ_163hW"( A n9rf) z28{+@M3.7xH(%O4y#\ :B̅!$?8|>(Ni}?+-8KJ4,nw K*jԀ݄i11֬{\mMBdU3Sm~]/m2?N ^,.^t?H֬TQT+د_zyo=#nFDD ZgQ Bz{LyKh"(uJqa%I!b&*sl}I^hj:r.E6iF][cov7AL?8{wCCW@En_-1PR |黧Q 'kE_<+ty*SC'i%k~we]>1{I Hrp/D!&y_4B WC|A/~M|Ӫ}]@gQz6VAa_[\"LT="'wq;cֳ!@SEPɡ$3agehsǢgrwzN`( Gݩ%&! Cɓ.#u3HLQgظq&(fX vzjoTr:=MCtΛs'Dt?QV`k*) { a8@2hշ+QՄ0UO{\ wހ\Dt:mD.:PF`Q,nX%(楴hѼOY/wiƮͻP{|LA-W|-ݏ>f+46SGM)vXۣh0Ac-"ToGiO f #AX|Y,!W_ byix~SBM3d!}Kݹbܢl6(E#/-X?ꫵr=KNb{ >\XESێ@(y@B;XI@Q]X;򝟿$AFhS~;: >9x f}iPvaSD^4 E,7WxL?r\9O&vi |K&.{tց:dv +)ui Pw4 }sJ$gl(R6'myDDxi<{P=Xpу3E Y+bݦzcϙK o #gO$8@͉ J[)|An"5h^YFb yKrgi9C#E lȫaQM8E)W?*:@_Ѥi eg*i=lX>/dpytk<㵨վ(go`ۋp?޸5;گ>U{k)Ö} de'gsW{5e"͒̈́~ e7MX_9} X(+ڔޮ{P̽IӺgcUȼf,rƉId_T@ֱA>e;/+?J 8euRhs<3,lIoײh >;-3>ttl,ң\Ba1<@4ƅ GA0 Ƕ[(_A=,ltiӋ#\G@>6.Z{N/WTr*Σ)H{7X;a^s&UC|5TҌḐ:a"jp"3:jjg;2n8Uy vBgϘmGU#%lS>jtɒ۵LJ;[uP/`gXx,I6}gҳݾ0{|q:Rʫ!ĺg?#]z]25;m5zHˆ&.P}f}w)#qh^}L@xt="p5{hQߣNʩҴ[CٙAGl޵Yqx@:"tVX01iNُ@lzUI/"Ӯ}W1;p&<Ƞ7 dOˉ;t8TڸBrh|ܛP@" ?ٍyϨC3˰YW:L#-PkeSEU;"9pԃN{gMIӾ'FiߍXUg%2ĘT:^5fei!K@z%1Zs6.,)>e/7v}pCy|.~ٱ蝋@н9';~q&(݄6Sͮ=&R]ˎ͘NbJNVQ=,6Wa25c{4+TiW wϜez WM P$4-9m?iZ.c}sR22|CYfQT;$!7s1JrI}SaQgk<Qf%Ynҩ$isMQ r?w2`:Bm 7Wó@ބ9}EJHB] |8.ex21,>c=p!P\j8 Ng`XKeȨPF9ErvCm:XCKKoX)X Vo%lNKJ6]EXdz!3#rTߺ&*G?F] /KC2B^#7R:=g?7U#E$NY)txF<<tse#4LM6%qB+j: WdU.!riW`KM&zTydtv |t> )%+ kCw3|umHtr?#o…D -JԲtNʯŔ3۲6*g%F8@j>H*T-?қ]3Ւb6^Tֲ|\[ Cr&jI$j:4& 0$O14,m`{:Q9d[׋?ѣLgpt߼8[D Ng+| BSӣ2¶dָSV3oA.8WPn!`ӌCH?)<6^XJ]ɐ5'wcd ͡1)JVρkD`J*/ȢX\,p``_!E`*vL5k\rX7HI},OԶ *yv,:F :V)4ϊOk@.#!,H Ͻ ؜)aoy44AΒM rxJhIx}cG0zB.؊Yjo#u"a- ۱+="(s{^cR>7Ͽ@$|F3Xa~ \8x*TC?Yxm/yI,X70`"`ud?Q`qpmeDե껪n؅;i ф$MA8$1-(B ].6 C+i>/0 }XET_2\Ǖ6lBz+(/A~.(4 __Wp:9NElBemk2ΡvhO tX춄xiIyPO{Qp(;l[тRn+ަ9QT MNzڧBDzl I%*ISTMX,> Ch%Ni.JΜ@1E^|A%h:xɡPc<:Sji֠gP ,lڈYm&b a̩UtCk\fhm/fߎ!ڒqxxE*sR?(ͶX)YjCh7ׂ;&m~z63AjTm\v}փ+yia-ln?NMޘZd\3̂tC:k0Pcʷ>8rb+hCg5C"bZ)X7c#?l@/АrH0AX0=)b\ݯ_+BkF;$/2+͞ UQ~.>pE-0>lՄ̌UYn x=D<Ɂ \Y(_tLPy^U+ A\&^@}A6b҅mTC$ AۃKwuc4d,8j02g3udA&<( ^b\ ~4\ֹ᱗Dj$4s˱VW=2{ݒ~\ʹjR%i3!iN*PGxsN0D}G}"ڱ\"4W۹})ی-QEU.$ ; *GGu GZPQŞs0VssįO&,>Đ 6/F{&q̊@&-3.S 4^O@1ӏPDKd/"FJ2 ‚'8@}"=/T  y$ZA,a|M](@8(53 $wYs.v-µAUsVwBt#j]aeɡ9"ѭ1$_ *RW Z][|}anl <-C1UT;?JO'~q<''4_LwP-ڧ/Tbg|QIgزŪ%~#ʰ.j=;ґn)Xg+0M`/MJs&0M*=HOJ.z a;'t$rb$xZUCEF AY)oi2k3YVRIsv,sn(z: ]Oc_]"KߟM@ OBAWG4#W:DPfOyAΜ 7Q [S?mƃ`K ɰphv.fv3撣^ox3$aȗFi@l љiD]F }ܜ憡źqy7E=Y> o*̕u.X˰+^wE(j΃U}pA@:Ȓd3vBׄbiI?:@W1^٥9; /dϸXig35ŝ Q `tP’ YLpݰJJs[ "Zxά=E<wjZ ֣Ȏ%(oM94[ qĕSw"CfShK %Io!eh6N7a#$)}Ǽc̎GI+ +EP72} u0E829.RM9_u`VW*1OF$P#j;i *&>AdD>cLUDr=;iO#ݟrK@FW+¹h)*pL(. I'_tL`[!C#%i SE zҠK\T[Ҡ1V#~+jCByip,9 oɞI˨Y&8'?)D|kVq!(&+( MT:;!^!1+IuXVx-ֻktx:K PVkڟ#(jGt+8v]&^!HSP}V]:wxNX^63 ,xch6|ȵ0X&c 9nGVm@!bh)ٕ:< W~( 2љ)0O&~uٓ*mO>R#\ZΟ]&B_NZXSXh 20'Q2wIJ$b 04ePGDמt Dj!IsQDNרKV$ U6DsN嚓:Fw$=HBR[ܓqJL،s#UBi轙mQ` ri;)\e9TM?4 $ %ݬ]xfzo[+ %1~ r'MErʪ:UQԜd ˻etPdYW G46&p'nsZgIl<>M{3Ru䚴P!!W [WByJGk[%)AViN'ȗ$lìG;VRb pGd=)y4p9Y@PWw&v3 $(*dQکƲܗbfPxѡ_jD{%AA zgX9uho룴E NWhhXe̱>-Y"%khAiM*Qjs)4dpQ)D"L\N[sUfbX8a ?+ B+1\g IQnV[$FEdܨذ< PEvsZ%'"IZH ;W_ lO+f3"UZz)pE+L, E;7kۼ]D#%&|NUԋF n1 [(P@ώ8zk§4 H9S"C.,qɼlJ-3r t+¯ qB-_4{7Y:Yb[(LTIDӝi$\FsĽ!X[[Kj}-}\@R?zPrAL5e{{O#7Dn zhḅsnGז. ehȧmy/|pj"rǚ(C%moYyAwI0C<-?#д$[R4-rǯ%N\ uYO5L1LdNJyHdDU|iF4MMF}"tcOxͶhBC,L_GS~oZ٦Np9 V : 6QIv9 nY\!znEljwP,VࠥUJ$ HΩڒ$̥hR(,RЊw (G tQBiIْJiX~Մ{e`1s¾QYȶ vpXxR*cAf l,念ϙPz }I1˺;O_&JuHS42Zl1'Dß"; ck/%c/yy+SbICɢP-uJ4jƊH4ቆNoNP"bǐO|1[!Vy-~oʳVRzcz Jv,B!3I 5e}2L ׊^?AL(҂h7{|V~$谞J=-^nDyTiypHSDC }$r Đ01S=yvXqj81V$>eͮڌ 0M &DgtK,C?2WGґՒԝ\:E0m~a`+.4~y-GCfYԽ mgGRCUe,0fj)@$i֥fsڽ䱍 >p~Y0dE>v =-lВ0X!b=*ᨓkCMU!$!߉i#Q_ &L,{d߆~w g$Q&cmģG3\eOcJc]DCE[K͒%猐RgmQzv 04NhosʞB̺/Km<^b<'$FP[ ~ZVԐ oI1Al'36hRaP/Hj%EԢqmMw䢋T2ܕM u{P.D!!zU} J>` TƜ(Q p>cږm@h e1!`6 "Tn=-MLjsЯo|сJ+J hi0PY_.2@5c@Sx&n)l~)ZŎCЊTBOc.kQAHk dX-)=[vb0䴹ѓ՗/WmV y]J@dq|'SuF{1v{$U@\oOc}fFu^W羠$RI5pOٗl4 $Iֆ3!&`)-CҷVK4~3`6 Wn?  ASZpu Hol|rlvf1ٴ " 0ٌ\.=Da'@ַI-f I]ifϯڏFT>8 m] ♙/I1;åJTכxY$VOU԰ĞfKZ $aВCTxUZ!D9td,@ !~hD ClrfUana/I9 Y U[Me?؆ Z,^o]6DÑGPiHH !CA=坘^l$0I(WQ^oEܿ_>!j!T Np :"?%}8|Two=қ ]l^my49KӼJzzY K. ~;7UIFmېfn0Z%mZ? |ʭ0!eh'eY^$dKw%Rj?.8Cnۨx imlM]uhn$fuoa}.2%1?~ 6qb х%{62׼A6+pm7q$c߭8>)@N:)握/fܘ8b_>E1sOɀ_ըˮSeS@-Ǿ%$xw5:Uƴ[:?#0eʀy/8w%}BjK{9'ga{;:PF~Y OQ+=6|fVUUFPJw\ҝuKBAh^s']މ{& 1T# ]nK)ơ/Kl ?nlɊoỶSԏlUa<d8xWY7u(Q\3x#D\u_nیmf)Cxp}~d^_?8e!B^t;za缔u-{yoُq!~x\7ĤVEz\2h+dqz_׸p3E] GW{ʳϨiʤ5wg_4696gUK2A$!ܮ2K:=PSq0J>㊡Cշ'UJe!ИqGl^%9!="Vza Z [< Bl:֔8gTOnF5:3Z~DN@"+~^<ƕ'=j xJ[ﮏuن Fӽ@i9O&SP{aq}4>iS>/qɗ?hT9o8Vj:*>ceŒ]"C!Ձ,%zBFצ/B}AA@#ˍWɬL |&\+R3=)#K/xHhaO!ŌLhf1/aT t%7 e]M1!S #X (0eFﳴWkm.AQ{8&3`_ Z1"tr!MY$3$Pkѕ+wÐkM^, \!ț~=M][oW3PPxÎ6,rŮPC YZ