python3-shogun-4.1.0-2.fc22$> 8۟CfM3Hr>9L?Ld  7 ` d      + 7 Q W `D  (    Y$00y0(8I9I:mIGۨHIpX,Y4\P]4^fAb,d-e-f-l-t-u4v;t w=XxD<yK cLCpython3-shogun4.1.02.fc22Python-plugin for shogunThis package contains the Python3-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.V^arm04-builder15.arm.fedoraproject.orgyFedora ProjectFedora ProjectGPLv3+ and BSD and GPLv2+ and (GPLv2+ or LGPLv2+) and GPLv3 and LGPLv2+ and MIT and (Public Domain or GPLv3+)Fedora ProjectUnspecifiedhttp://shogun-toolbox.orglinuxarmv7hl  (LuUPq J 5j CQD_e .B1;</,&5Vcb6El)/@ P *wFX^H4  NNz[z `_TGATA )$} yp,.70T1,% 3  . e$k  % c nMEhPq4nQao ArUm9u4B0|F 6 _ k  s( WL A(RD/-Z2 |6eYf!| o+ 6P ovJ1hsbw%QI~9/zCP~&)U\ IQri A큤큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤A큤A큤A큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤VSVVVVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVVSVVVVSVVVVVVVV6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V8V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V8V8V8V8V8V8V8V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V9V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V:V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;V;VqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqVqae586395f4d952366c2ca999df2a11f011a7ff04b1a7146d0f6eb6ad6ddb6984ae586395f4d952366c2ca999df2a11f011a7ff04b1a7146d0f6eb6ad6ddb6984612976658ff0cdca112854378fde68b0c9b28841e03c355beaac5571c894ca15a042795efa9f28585d74aefafe4d2e1b602f69957c726d427f628feb96f5a7e2fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5aaec3f41def35b80ea8cacb7b358bbe647a9afc658c2bac4daf4d35b490de258daec3f41def35b80ea8cacb7b358bbe647a9afc658c2bac4daf4d35b490de258dfc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a86db64cd22c54f9f9116498e68b32ec20c01a9684482df2876744f6a1f6d054486db64cd22c54f9f9116498e68b32ec20c01a9684482df2876744f6a1f6d0544fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5ad37cd40d1af3923eed0e368b5bedd38eb3a95d15999fbb66597ea30e99538667d37cd40d1af3923eed0e368b5bedd38eb3a95d15999fbb66597ea30e99538667fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5af430eed535a98309f053555472c983dd91abc7e295121048c2b11900af75417df430eed535a98309f053555472c983dd91abc7e295121048c2b11900af75417dfc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a5f802d37aba80570478cac61bce2f46dcc4a99852d086dfddce3827283331a255f802d37aba80570478cac61bce2f46dcc4a99852d086dfddce3827283331a25fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a814b92e1d3752feac68189ed5662279ee0f4f11fbf34a93306344105964cf1f6814b92e1d3752feac68189ed5662279ee0f4f11fbf34a93306344105964cf1f6fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a403e349426aac0c4964af6360ac62f02ea3a77f392b0853a2a4669facd17262e403e349426aac0c4964af6360ac62f02ea3a77f392b0853a2a4669facd17262efc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a4512553432fa3fccea2c2d4420cd052e0646ae4098ef9c57517b75aaf3ca4e6f4512553432fa3fccea2c2d4420cd052e0646ae4098ef9c57517b75aaf3ca4e6ffc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a87bf8fe872260dbf5c97a32ceb3a1433ced315e76f6d2fb8bf1639ca5bad716887bf8fe872260dbf5c97a32ceb3a1433ced315e76f6d2fb8bf1639ca5bad7168fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5aff895e0a01448c54627d39799ca24e99784a9b8df1f8993e0aa5d4371158c0b0ff895e0a01448c54627d39799ca24e99784a9b8df1f8993e0aa5d4371158c0b0fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5abd77e4ff6c99807fe2962850df1368e95a8f468b4c43d1d7708d8b1960ceb573bd77e4ff6c99807fe2962850df1368e95a8f468b4c43d1d7708d8b1960ceb573fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a7e63b9af028620812bcfdb72a300575ffbbd9a5f574d9259bbe2d662f974f8487e63b9af028620812bcfdb72a300575ffbbd9a5f574d9259bbe2d662f974f848fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5ac1e49e4fbd14e47c03581f283142b73defc17dfbc9fb5b4f4023c554702861aac1e49e4fbd14e47c03581f283142b73defc17dfbc9fb5b4f4023c554702861aafc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a72a4718fd415ed9e67439544d8965003a8176b942ccd6ee4a05e9f464460500072a4718fd415ed9e67439544d8965003a8176b942ccd6ee4a05e9f4644605000fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a165b134ff2b5e9268c59af54d2a87d6746c8263c287ca4beefa922c926706ee3165b134ff2b5e9268c59af54d2a87d6746c8263c287ca4beefa922c926706ee3fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a423ec7c962bc7d8ba40d2baac17a2564238e2dfc9a754b4fc307bf4720d8d181423ec7c962bc7d8ba40d2baac17a2564238e2dfc9a754b4fc307bf4720d8d181fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a0a591581dd61a57a8dc77cd26614d486616b69ceedf86c19283f8fea9761df530a591581dd61a57a8dc77cd26614d486616b69ceedf86c19283f8fea9761df53fc8826657f46f5ccb57471a3ea264eafab2ffb3cc71d7f4bff65c2e079981f5a928c5452e1621403546387978df650d9de1b2d2628dd907c47d720fe1b7f5f6c928c5452e1621403546387978df650d9de1b2d2628dd907c47d720fe1b7f5f6c8847b1b3ccd4cbae012a9f2c84ad79efa68aec665e6084ca24aed29830926c82843f0d5a02c5d11b9939100418e1ea1a13f44ce5cca45a5aa35bf13484ed7827843f0d5a02c5d11b9939100418e1ea1a13f44ce5cca45a5aa35bf13484ed78272511095531cd46b2c3225dca29706d11cd4876708695aa8a978c2a6770444f1dbe06757c663dd114cc91144e057a44f87e24d1c3e32bf84130def6c81e1c8293c3a8e7b0013ff93c9aa9502daf8554445da9289ad4d4cf975edd401290b98fabb7efd085d32b9bc2db115a67fceb85e22a9886147bca0d50a75524635d3100f8e9c66c8df75056a1c677c929a905de5d1ded38a4c021ae34b28435917312cf86f2bf10180adcfae3c397fbde3562870d4a775a45b837126210487b292bd5dcb0f89ea98fc070ab7c2b9180fa71faf29ebf04519fb61635045502be094f2a86ba4d79de25d98c6cb46116dac3def31b67dcf9f93b64abb4689b2580fc3dcc5caebba69a32fe0bcb7dac934b811a656ecaef940c5c791da450340ace0f354fff5caa6afef44b996cb5026d6b4aaf60389987ee3c4accec15ae7d1ec9e8de9ab4ef18c092437e65d7d221a4e8bf56aea11f06db466dd5ce0df4238ae171a6951ab6765ef829344096e9bde724e59fecbda3499a6aea382aed5e0409d509f35f6ab6f2c2f2f67110af91e1f6fca8c6b14b787923856be2d67c0474760b8999e8f2e98bc6c464358ab47036f869ec06629a6d67488eb4469a87ab4a890600e3689af6ebe6c67b518006335cba038651b430cadb857da132847e1997a4ca53c311024776b7a171e4f8ddcbb304f5c0b6ba9e141e2f3ecaf98097b7323fbc0e48ee865f6deb18b1224dadb64927534fc0571d62e360c99ce737ee6a51be6462ec55bf6f561dd911e664fa280c07fa9fe102026713a4da172817d89e829eb7d7ef6f4a72a048a389001fad61e272a35eaf73d05b85e01d5eab5e9c9ba949b846230730251cd21c7af78aa3dc123869616c6fc990ea9ed8d9da5fc0166af7140341cee36c3dba10da524b46a27fccf9802f3806baccccf098aa89b53b85ebe74633bc1e47cabcb8362b83bad2d508edf38b8e06ea605c47aeee78bc52f996a5db288ce74b6b0c8aed0c31d342acb2f5675a59f2e51415b257d8effb3c7b6a7e2c998a4fba19e67a1c005733d32c2bcbb933a660713b8dc17f4ceae22dfcec5c28ba02d0ac2677a6495996629796386452f6e5734f743f25b660da1065e2a084aa9e020af1723de98a5940057af5872f36b1e7b2f42f3d8f7b0c8ea247bec0f1e38b9128a54ed4e16a900e35d688306b1dc4dfc8143d5ae100abcf4af0078f83020ad5c474db1f9d16f9d65aa0679d6b98e448edddbd508d7f28181ec3ae9eef3232239a61e19c568463f62b88021f684428863c1d268bab3119fe2e0e1b6b7b83090073442335cae94afef52135df86852b85ef3b42a946cc23cf6091a6b3a8921980c574548fb88aa9fbcf4a6ff99b9a863142059d89d6de8c4ed0a22cec07637cb6f39748ccc839d8c6e6851b988b05aec94c9384007d2ec09d15df683679d4f535ab355d0417cbaf23812ce9e3baa24db8d14d3ba2b455c12b9c9b0362bfe06e29ba137d33aa3989215f1d1d7606a81b4a7e4644bbe4846394cbc4067639694e56c5083f088b0241544f05f9f732e6a5d2db77a3c5b908da8539e2fd0ca651dcfba5688fe2918f8bf26306f629578f51f13cf38d3f1b9e343ceb42410df9ac98b335412fd4b12c1318e1b833c989efd24755b39b977c3dcb7da4c7e5993d5ab398819f3cc41ce6a5fe3fa0b19a6bb94b53f580761d9fcbab8bee18eadc3ee1a239dbc733a59e492d0e056aa1fd0dfa25f0a800f61c3ee3907587d86435c5a5c2377e683926f7ca4abdbdad0c88bde064e39d6ff7cec3815de403ed7d3e834648977bd1475797ba0559c08edcfe5b8c5dadc82e455460d2fe2f11391d3fd27340b9697a8b5c5601af51c02092406342770d7c27d7a97df1a77e0a01dd6223e3fef548ea3bed6dc3747758406dc7a29ba3657329dc0f14231876359768858b329ab8c1e6321919809e473cdfc0a69487646f28e4893c00dbd40955859f64ef918435e4540b971764716d431eb0451543285a983cda0bfe530317593145bb35cd2710c85f511d759eccb4943a0b6eb05d4d7b554a27481dc91b6cd71bafad29764f8f5d0ac7f85375cde9bebc8adfe77100f3513a1d53614c9cda0ed89bff91fe6026af982053efd937768c624e8d70d2c6cbe435e6caed236da0add3877cb2a68a5525704b4880af1aee8b7e3c2e29c0129fc04dc215ecd9270b18c7838fc033bcce2d40e36218db34374dc8ea233f9e876748fe275c27c5fcf8a0450d467faeaeb7369914932fce4fe9729719242019015a8e93aa0617f2538759d2468e382d810cb1f64fb44442ad3247bd64d31830f48972d28413a0022cf0868d257be1a9147a04cb3ff8457197d20e42c40470a8507f1eda1ec82d0f40b915b6f576acf6429933004645ac44dff640bc51c0a160c8027bb2c046c85204482c435dda7dd1830d808da8acaae1d11deaecaafbcb80ca55582caa0ab1c7849120a0420e1febb483060cd3e78e1f0df98eba70edb5743732b8dd38d0f4cd819217b4a0f111eadd5416b75f1db459a065ba90707918309486b2726b7a477ba3bd15fb4b8f4bf7b44094c9ef403183aa4e28805d0dba2d44509cba5fb9538d7ca2fc7a3e052594e35cbf5033967390ad602dc1ab89b490624e0ecd70432f65746208dea8efc72ed5d4ca4f07939540de5fb54aa0d80d3cdc71e929208b5021ab26701990e9c88e2722c4a7958da2f356204c3d46688e5f0a430b50d9042bccdcb2aa946e7a7ec99f284085834a7b98ffab38181a5de3f8fc6a2d1e43a63faf9460450479ca7e6e544711c52c23928d721a3e7e36234c5e87a7fbefec00e70485af7cc30ec978d742114cff5b8956766fa026eab52f42c16c7b7e1e98c97b686ef30899515cb7af051400f5d337ffe4424e682c336756446271711c223a379e7d6bedba507859708759d63846896c26dd1003825e5c49bb03c8251dd3ffb8acbe067944d04a089377c66cd8b67a7253970cecd9f253aa2d2f433963efabe42aaef06d0fb6ae92541e7c90f4f64dc0660916d774ab0e58b07804b2326fc4d0bcc9a8e3060a8fc70f875281a68da5d05766a38f4992b1678a5704370ebedf5a9a9ca6eeedac99cd5eff874500173adf590a2c19f4ecf5d87166104c94b6dc6ec664821cb7236ea78f5ab593b0c743682f536b384e5c64dd72bd2cbe7952be97ae20d7b32aa78d3ed4f536ba655b0c7c32bc147eea9903380d60e9f9b21e0104ddfd269f74b23374888c0efb527d11ab2b85e1762a163db4e6cd1e894e5c832d6997656e6d08317b66cf54e723ea1666809e4df92c321d9e079c04fe8d46a1d24ab5dfada314297f8cd5fddd73b214cc831b15c1ad857e27744a14215506adfb1dc334cdfc75db72d2599b88a8d09ecf5ae0bc59640476e1ddc096e4b31c66c898542e7e2aa80c0af3733bd8969e4812bf038f3819976a0d3a554eab1263a40c10bd55efd880e40f6b8e0aa2a88a12c6d46f9be5556d334b83fe0cfff528a363453085ada81e4a396a6f0109d1b6d9229d9f485fffa1f4630aa02b4e903f9a5ab6b85aeccd1de8a79ced6de8fe21c1da61fa4478a04a28931d420222f5278dfafa964b153bd7466d303531505e24fca755a5f9875782e4c257175926a367f45150342f80afbc6c6caa06b8686292067ed9b5463e8fd82aeda561eb02bb4955ca37e751129cb38b81c3f3f6fc457eec55f89858af850d876adb1f4864cdd5f85dd05b5950a63e2bef4dbe8877a389ff34c63872a7659e54312443e6b23f79bfd1f5cfb35099d1116ac5aa5627472e29fb1ca340a9edfa0b320e80ef72011d1a2cb9dffeab70557aa8b64c9caaebd61faff33a011ec18a7b6c0c7a2d02dd72221f36751eb6f6d8d0ef59d3f27af819c492de78894aa5b510f72e4c4b5aaf824d2b98fdf493829ee5c7be8c440bf4f929c3f4addcc7d06f5a936fc334562120b24bcf49cf33ca69289d9f961311a812361494d40f4f953ca808d60298b3e188e4ba11429920147a18845e25891d1bbe1b187d58f934442ebf8549d9b3d89e4a6a38651375ee475a4cfbe104c4c941624be189a8bc5d16723d534192b126740a1e5c3457d39b70cac95ad0ccedce859abbab88fefd073dafac2842705f455cb1997a1ce4fd7f74361fed48b0fb34d815ab76d4b996b8ba381350f1575cf19b5c38a770c0993ab539956bae644ea611a13e792654b1a07c5fdb16ee0aea842eea684f523742b951cc3d5d0e3058097d7ec720ed05993c68b6e07d046f3f48b5363419cf0e02e73b2a2519baadce0ed9159b6d77c775a8a4b76c654c2c1cc47098ffe9a542c22fae27d32d8fc213deda206a43ca52473d619af322d0246b50094161b87e270f0b9754515e44eb02890699b80a54ae5fb2fca155db9baa1c408c36117ab5e7ccd5205aedc659e3eb325bee32c27cac943487e8473c978396d3026503fb2886ddc57462fa50589460358b74d28800d150757e04d4a2877e6b4c700d102403b9a83e90399f734b3ce30f34bd79df5f3fee6026a5b68df31dde864547ee1b0ce5777c3a69a0533ef3ec0185ea5a8ee0023e01dbfd332f96870c39abeed6c173feb88692514585cf438547d927e64524ddfb9e64985abe73ef395a0885f31d30924a9ef334eacba8eef12015af31322bd5d8d8608e0af33c34ea7ff6ae1d7113dffc50bcde03cee065ad64c271c63bfb92efa55b0035b4f871171c6908cd9a461436585d24889c0c72cc3b2e3d747b9ca70180471034001da83083360edbb0c965132ed1f89a15caeda24b1932a7c65c1e700aefe0a80180e8c97142782828db8554e9aeeb4230c298561b4abe732c789c2494ba5e7878b0280971520be099f455044d8ea9c70557e992a8cb9ab202d621dc864f8b40c9c2aa48ce51ee96bc2604f6866d1ee5047dfc09cc166ee1948883397845fd6231d6117ced9ea81168244aeb1516dd67d27981dcd2652f2cea0d31bc277c680aa5b7156e88ab664262c7c977e1116030445ef509fde1adcb0c57c625cf41f98fdd0105b31175a889dea1e04b3f5c8bac28ed935d6387e9e112757d69c4988bd00ecf2970eb62a40f3445fb76e1c2957107f625bd4db3f5553fa08922e3570cab1de3c8c49b23f75c38baabb8b2d9d1508ff092ac590da9163d50cc3b4091b1c39256a011a9c424a4b0d2a5fed9d0e32368a548ea4e06681d99b4421e719db310ff48f7b9eb932e60ca69b84469d3d078df3a36557f1d2f512fdc1b6682859d10cf45f3ffd5bc53628b39df20dc9dcc07b0a87c8bfe93d939958740627bc1b5e6a1949f31f312d0bab645c4124ff97b79f6cebfda8b169f053583d20e8f3421d7f0ea6cbcab24f338a66d80216dc3792726611080fde0e869f10c5f680a29715cd32f57546a317c3667846abc2827c00a9b86cd2cabebffa90d5f85f36637cfb571514f62f218d312d0f1fccba368c8cca8a6621829bc7ddde398afcde55d0a6ccb2e30c70acc01dc5cb59b4cb4ce8919e1c80dbfee7f1d6512730cafcb6877abeac8f8fc3485470029510482c8e70df34438732dc5ebba80b8059670f7bc6bb6dfa083df01862f1b364994900abf1ad86d0ceb08595587cec49d9af689e300691f603426da34ac61eedff3c8b34e0e4d0d55a1edac6846ea8194feef52012d3603d40e454e2c1a411c2b6361e9b3b59a45370ab53d84bff8d94e08deb95670b9f5b0e3ed8ca5c49fe6788dbf37ecf168ae2a2b8f95800bf9c8f0b3d8f3869ffdd374d1ae32b135720bab7372167050b454fc32337a144ccdc5b5dba8ee3af1872c68916dff051a5d2c1e62fc4d03bb2a3aa67cc342a6c33cd444d729c5c5053c2637d61007d9a40edd1a397f81fb4de8d1c02ef311bc34151ceb7eb5015b8ff8d2d88e418f6a0f83bd437200d2c5c2ef9b77c8d025e471931a7f17238aac7c6d8ef828efbb0f984b213b9de5b105a1ba43b942c8203f63c85337bfbf040822437a08d584e57358a3a674eb91c0cfd930e80c274a653cc0219a9f3e420b3d21edd64fcb974809fcc763d517c4de255068cbbfa355af623cbcb87193e974dfa419f4c768d6c5051cbe6772ab8c91eaad54872dde28dd0459ff362400b844b713be8f015fd02fb416aebf7a5bb264375813f2aa7ad76800336158105ee54a592892c1bb30ba26cae607e9118d364bccc50cca4591cdff4de89442b5155dcd224cc865eac03427b0f1299c32acf570f789eb1117e88cf9b9fc9b5a8bc1b74c5dffa68c770d7ef62f4a7984098336188c3780ed447e7ae8c822124a0cbfa7748ca3cf7bd4c7ee8021d98552cc70fff18efb07688b223e5907c78e15d756949d6119f33466c33d3b341ff41c32bc0f5c9a720ffd6226fda8966be6aab2b72d0de74a0e9f484c7256fb49a660a9756b62225ab16d4ed59a54f7ab89867b2b393ddef0c2b1ea423cd024f00c51280445765b011e3b38d11e01a4af4aed79de5b2675c7f7e29f1ceb893b89fc3fd68400e639bb1e821817496e945fa5fe2980c9845b6e4780ba1807ff39d6ab90d936a6e304e6310ed484fa82e770df3c1b8c5ab3c2e9b34b135f7b497111683de492bd6bb9f976b00a38a8db06353ddd829cd65b16b6101f0642cf4843a9e7159d9c0ca35ad5438c8459d890022d2bbdbac68fe934f959cf490d2a2763829214e276f3916869643d088f36c0f4254273e1af3e02b3ed61ae64c4f5194973905502609a5bd31f73ab502ba7e0c0e889eae7fce9e6fe0c398a2e3aa56ec882ff571584b1fa41edd24d632b4e242a7fb32fe0108feed3d7ca8886e90fcb9c98b030d8b8eab05b17e341fbb5e0556fa30ca26ab60d34411c331974cc56bb5e3e01c8f969d0f008ea8bc071592cc6aaf4604441a1277a5e46629b436e8d4e96f040620a811a4671790cb48154d7d927161aa96fe24c7c4e92ec128682182aa6ba58d15c0c313c447cd493ea0470de9858a24c8ffac44fd57256c8df675870d2c85c009e3ebc0a7fdb6bc8aba9cfc4c6198cbf14a427c0266942547138205aad35bd3dff7daecba19bab9afbd9660265d75106a1a15c055a27cbef29317da37adc363f586274a48060b89d1d3a45f60466108f620da7846bce207824b4c01d9e535209114f65a11ade962a41b607b8bb57837d7794c23a8c839616d328cdfa5120aee4264848ffdaabef78dd068ccc2a1f50b147424533f1947c75154b803d351fcc2dec1ec6b356f2a4fc9c48bacaf6fd8badec16eebf7d0488167933c79d694f5e4ec3589c0ffbe91b8dea00312e56634eeacbab3713c7fdc3c98a3072651efdff64e9e87bdbedb81180f7859f53074890cd6b3f5195744fe6d2ac28bec9cee269ea4bd0ed0f253cd3ac435f26809361489206de4d20235cb2359aea6722326ed285027d362f8dabef9a55c6f206195c321a08c9564de2a8005da39f2d03a3f5d5eba65415bdd76352ec3a78398db4fa653b993f1756321cc159ffbb73fd641d41917d35718bbcf19ba48baec6dec38412c65dbf796825c4ab31ea23bece25bc0e06ecc84b8ac74ce9b02fbce8267278a2c07dff0cb90a54814fb6507eea907b6d1facb09557424685ac1e29caaf467b19ee1c4446db2d02e8e63759c76260dc89be26c0f2ca6ad9aeda965d03525a9d7f09eb3b77c58fb9a7e990a311d2c9032e0381bb466695617fd2056cfe63ca446e19095f217cc89916c7369bcb3cda8fc49390e54f3e1036b53fe2c29ed53ff92c208adad6e02033768555f1d576c468b29d25a50ae495be5f5ebd11531147b54ef8fb36d85053ad202239e14e00b04f5ee4ea6d72815af308854eb024d04803380043abc786904f82e06c856bf860a3ef7c3e2f7016496db9c064d52f4ac255d266acaa9bf5520a4c0e8907d9eb5f3b79047902a04d778441830792704df3855c7e2e0d07f57baadaf5b43a6986fe24b161721bb832eceff58fd6f6a64f06f653fae99bb0639fa8d3194b0ca54c6197d9aada7369d8671f15847c78c61ed10e050dd71e67b13d10f7cb44b994dd5dbe98995c44597cc112736da6c16d2ce6e5c0d7609ac5f7cba2cc2af4640711d6e96884ccacbf9a37b7f5ba05603c66b9abb1a20fb8953530edaacf6c23204bbbf9d3fa4e9c0cf98f2a71932eea57ac1fe886b6558ac6c5ba1dacf01e6f012d383a2a118019bb1feffe321ac62a9e1e00057bed8fa65a4b2ee3b3201289ee9e7e838eaea8f1206548c25027fbc03e9643558301994ce9bc48c72e393833df11330366e7490bdd90d9d509ee2469d2bdbd22534541de8791bf2d8fd3f7a328e204e58957638bc8f2c846de5fe1bd8cbb2e3137eefea8740979bbe189ed118d4a958881cc38e5a1adc1d1c80abacb91a78abe0e6ed860a1e5c60091d8cc2b0088eea52d9603df568c549e6b4fa5c41f32dec3d66f27a2db64473c01be5783b13bcd4ffb2e730a6cf1347d982e9ca9fafa3ae8d673b493bc589c423de59d5a547e11d982685f59363a9866d4dfbc657579ce343de37afb93dba13db9d693834cd4f21be350bee28d98aabef5328a555856e5f4b5bd1a331cb9afde542f9e302dd8b21201ebbd945ddc9da1a1aaf3b259d074ffe46c1a63d47e15cdeaa823c80f2b338f0ec6af84243f643cb91995f10bb995fdcf3ccf0b2fd127197beda7cb908ec8667dc919684c1f43e2fcb14191bfdfe66523fea2fdc07aca1c6a16a180a90e4ccbec90af2d9588d80c184b84ebe1bce21b1481eb16d449a5effeb7e7b320a99162386efeb95465e0d968c75077ec69ec9d8de06542e29dc0514ffbaff1cc3379b48a7cbd3a8fe4b219fcf781e44841a1bea28615652d589c0458d87e33266b5a7d7456332358b3f0a8fc17101ef361cb2b2280a5e4d384db2000c448891d39bc7f1cd01053a7045a57c7ca32c6aaa4e9e6e517fb17830343c9399a83b235656f0b00449c5cdd3595df5ae8deffd0d92cfc156223a1971b1b504dc2cdf496a06e0a06810bc10421591c8e241b66a4f32b13f45d76f389dfc837b8c33614f8a5414e4ee06db27b778eb3c040e0668c4ac4ba2f3a927ad4420cbf84438287c39224d6977cde1cfa402b752755c951bf1d3ee39f67b8cb6c43df51e3971056b19d72c2edd36b1ac7b76c397d71be60c9edd3fcd9ec8ec61be4203930ea77d8a41bf7f0d29e14ed8cbf044b067430163e751c5725842c46721bdc817da5c9c3ebf89986d645c06a07689ea1910f86766e903f3a739b829f3e7a05125c3578b7a0645c4eadd352e54b3869a3dbcc24082173f2136b36f66d273de406fe099aa333d5e5c58f73c66c5cd31e45c5663f6713aa49382c634dd1ed6f8f1ba5e9fea260f7342a5be879b9aad2a918640ea54d1ec2bc4f3b468ceb917f83f69a79fcb9f0940b87d9d4cf883755754c05dbd1f6a4a6b76ec0dc0decf7c53ee50816583f153b99cecbde15d12bb48579d03e00bdfa31fcb466c5217835f9535df2397acf0cf2ef6fc57a1b098ad9302fa9a214eabb917b31d4e71c4d49f945341b5b9f6d3f004da01090622012ae13d3a9aefb755d445da80ec25a863c65d80062c993ead09480941a2c2703650ccaaefc32c84a02399648edb3c2a0ef14d8e4806e895c50fbdec591c4a4e93b77e7f8a658ef1a88507fcaa78d083b1c442f55e7411232da87d6c16b118bfe163e5769c5f710af3994d7b591fcc9dee966fbe54a32a3b15d24a13794572064c04c14641be3e539b5a604e848176fc73cb4aa9adf9fc73ce872f65e36024a0d23a962c6098dd521b61bca81281ac9fe0a3e4e89764918545a6ccf7ec1e6155dbbf7bc7cd48014f6ec00142626e6ec015f064c727be506d0712c6cc34751025ac6bce76231086978e110534c71b8018f88c1e2a392a2e090dc9d23a2678c345943922f90297b3bd127a4b1d2cee66854d2b8b00bd1da716c594a1780c4bf9110beca1ff5531d5b422858f3a52c05edb36699845a3e7f87b040763806526849656667fbeff5230dcf57e6a9e8ac28a711c97b3c863e695255f5ed65a1b186ba1bd8bd0c7bbe558d586e5485787d5e1c800d15aad363572687aa60be6b59cedc5297635dda72e17b843983ccc337c81c58d2815644bfe80e33fd538f15a5f3afdad29e46745c8644d89ed25393615e634637e9dd04ae514ede4e79d904297b5085236ec59d7984574df22a4bc939326c6b5f146f60a91c6f698a1037564a59d56e3a97e065ab7a503f901e958c4ff552aed334795e36c6d07cc11ce305ed2eaf167f90ad44cd719dddb1008b85a9670d2701dda6cc4f03fcc161e47f26feafb515ee7d74333b43ccfc661f688961871d76c5f92873e9d8916b463b2ab2e16492cdce3991ab59e05a6a007d645ff6cfbe33a5965a943dbf30795402d5ebc3a82ac94897d3e7b058b6b04baaf2f9dd84e896e39c2b56d77204e701172f3ff3565e0ef174d05da66b14a4a76418b0f09df86140d7ec240da8afe87ebe23577041bbd214f06a7223907343c013e5169d0abc6fd9be1f9d485458be32339e2328128f6ab5b2a9d37685077053be6f83ebe44373c4b67a88cf9de420a3d34b23da8ed08cb89bc80a89c71b13db8463625d96ffede499f73bf2e4b14c66aafa1d3f7d09db338c01c061a369d41df4ab2907056ac68c7ca9b0b0a89a26ddbbdcf1e2907f2648355d543743cafc8f5c341cab78411831382997646e534bd908f850626278bd86b6967aed7b0008bc88df88440bab12c9aa7776f2c05b28b690cc4b54ea398940b8586b999e425bf4155f6072db6e448db2727f4ffd61454aaaff57f93062e9a57ab8fddb090cd81cbe6f31d1f8da53b2cb3676ad40e3687e689c128e4951db0804e8cffd985993a7a556d6c97601f52559197b01cfd6cf9fd874bd3b86559d1b6d23dac234702a65e557b2762759c57d171740a272e6f059e619cd6ca83d7c0ff3659e092c327576cf5c1194a9b95148022bcd37a27439fb6512158ba3485234a70522a57085d485e4cbc22b45165cb6dc60b8270ad2512750aad1b132ad5b284d677bf61d969fe4381c2cad315605b6e4709615d5fd79b2032bf5e629120141154728c7ea85893a8ac05905372fe07de5e786f72074fc9ec64a87ade28be29649c9207980bfa3b0cd6e8e0b32b0cafd7084856a822e49f4826b2d685e36a1a88718b8e6325e9c58b509ca0c6d7768864cbd546082ac6b138dd915ea430432fd65ea2895543d6ab77467297c0c6667785c8405038c0246fdf9e1a8424048c380adc741fe78744e0a664276da6b58ffb5b955a2cf8c0dfe8e397d9d11b219ab34a7414786668dfcb1e15932a909fe8aed3ccedd35128ade7911a1db845f4f0da2d8ed4ffde6c2c5f7e602214001b95e4a13bf94fb79b553143571ad89afce0c1db28f74599cc2a1f9ca01ebb2c4336d2a3db8e7a97edeeae676e48388e25aeb99777b16ea4cfe3c0a63c9f6125f70269b7bd07cbe9aae0234a390be44c91741b7ff67b6112fb44786062befa9c30bf8f531052ac7eb2501b221b73d7b0663ce58104598266f1054c4ad3ba2439c3a65858beb69248d74eebb2d996f4267f67cd359afe0445ee429f4b82a8a201e37e47b633dbae929fb3e04af77e353ea66634fd8f3065dea4453e1b748bbdd6128488cddd1ea5abdb24498770b23b9142d1a46a1c2cd16b9535facb63ce6dd70ba4e674a7d1255401e3540952d1678360efaf6eb985eb95f6c8bbfd4635b696d78ef19588cb9c718a6ce71b4c580fc1525bd1f6a74374ab8a6917661f7ea5deb81713a52dac3c8c0acdfa6ed8d564299abd5729f88e26e587a02c8e66f2caeaf7aaf59c5181d5f57135d8cb1b743f7d9827e4dfeaa4725a1ec836396fd9f6182361942c2d61f949e148e17c9d12e2a35d70887b571305f2e4069afef34af84af2d3adfb124cbb542c8bb500196f12a2bb1ae8d918602ebedfab6a461ee2d089c0212dfeb5c5ad11497d7a832b7232c05d9fcafb60684c7d01f9b54a5f42fb1b542c6f04170b38999537827d17faec0f1506cad5cfe2746edd94ce14d3e1bc6545d2d93c950cd1e604797593d93a7a4b2a9cab5cabad8aad2641c8f77fc05fbc0ccb5566c5dc80133420188e264bf1b8601ab809154c6432428624954d5ca0c821bc477f3b4c7632a1dd0a23e39b9377c6f9c2f552364cecb4e600eaed81c8c063e0849a06a3837099f1975916c42bd1c6a7f7eaa20d7d71ab25ef75c6d2224799c8472e9f73d3031a0574b6752e04dc9a695c97e8c6d5da5909dfb9b87e9ddc98c63b16d0b8b6ff2cc534a7c964f75912e6911f763284452ac4f35b451cf56fc53e200fcd9e506c62d8c4a87bc69557e2e7ea0f8cdc678ccc373814d8bbdc9911e89c836130bb27ab8160c91263a65582c9ba4f69eb3047e7547ae47c5349fff871b32f789c414d6bf0560ecdc6017549944c9b2c0b437613fc8b60af6c7fc9ebc8cdc3f19ae17f5ab92b9e8ddfda65c594ee98c33a2beee816cb88e1116dc19ac090444e9fdb75ea1ec15c210350e52f1af1a6c479b3580392aaf89e6067060f5e08bcd1a80cb99426ed7a6b06d994a63913ea4da486dceacdd954587ee348c116694472c1c849630d09d4da94b61ba624975e0f3ba05ac779a1583ae6ccaf6c6120ab2948f46dd714385b03b9749a6d9c6a6114af84a91ece1d703c74455337aa91f4fcfad0fb719a33ae619a655aa6f4b984d8bad85e89732b3ec69b53f8b49a63da6c09c49be1809ca3e445283366a6a7705919e58d5b4a367f52757217d9c1b7c99d17040ed4b6b729bc7d612ba51eb12fdcbcf3670bb0d9fe47de23d334fe9a92b51b04716b8c230d8549274389147f49dd2af58c25b0780f69c37542ff42148bca582f714b9670971c16a95ad08b93303653736add4a3a16e9e661a261308912bb9eb0c806f688c16dd1834c18b7492ecb76e7c619b20ed3664826e6bd469bd541cc08719144c1c3ada508fe72c7aa5ce903850cd6ba07761ad781da5e8ebe818248dc3420ca720b4a09f90bcfdfecd399e584a19057cddf31e0d29792634f259f1365c434eff5e9823837045c9ca37b39745cbd59d10ca138c5996a9600296edddb8563eddfa2532a278ac55418ff921c1bd95a488aaa96a5e50d9a626079e906324f48a0e35fa6a7ebe3e56a2d07794601b14cbcea0c9b2e77278eb7cd71e0d6d8bd612aa7c10b142a4d1ddee0151ed284a74fae07d27a5fa27d20d1d011bb88e1835e784c15540f6a4170276e30de3f9d300e96ee5515a9499800d7bac8c4e8c52d2590cd0111f3aeddd8f2448002f59773694761bbb4509c8e6b22a78258cf9e7c8740ac71dfaedc5982daa93495704dcc80250500623ca33e04ab88a59f1a06459b1b1c3a35c578d7204a6829735df84f4d66b9724514f65c4901fdfbfa0889b6aba422653da683039230b2ee17458e466486aaa75a73591fe8929d7a92688ea2b50144d4d9c15e100c14ec868112ff0f9a76690eadf3bd3c3dc736061b2ebcd247565cd2166e1a456db3d2172e69e3b073202b901eac331cb14bed421d39d7fb01f82e2c5117b86b2796facc9307fdf2164396983c01cb533518386d1a846aa06df8261413d6e518e4064303a9a032d0fe32b7aabe88e23a5fe7f40c8b3b40872537dbc77e33a3fac4a2338cb285cfb9ebaf5102b66bdf6d3d9a8dc9a75cb65d5c98da2bba772ba90a2668ce5c804401e6d0b2361c6988666ac09e5d2df63295971e219de3dbfb00c172402f730dffb2bcaa8c40ff59188e598395affe60a3099da8983b2e4f229a850d3836b1df50ea81974723dd1d8f2f0d3d48dc5199e7d1a6325abd1bb018ab417863f50df0c8cd817d040a80edc240f16ae7d9cf806cd57d626cfdba9b45743c9d3a54ca08270613dfc3568a2eb752d04c3bea8ab353683f8cdf899229869234c93d5c38cec2f5e9211c140d69d21d83ce4b67c50e30bc9ab4a832de6bb4fed15d34ec2ecda7352a859ea02cfc2339c9ba6999cacf8ae84c524e49d4e83b21330be228cea246ba28837e509a6df7544a5b2dd7139bc9791488ed915d03439ccb07ccffbde0140e6b715f5cc0eb1a691fe1189349c720890f08d74e95e49977c723f45dbe25fc9c18be7fc7689419c3d2183ef39259f9cc7a94c24e2572da862127a679f79bcafbcaf0d60b128ef6ee1b7977281a68bf069afe570bd45a949779427400dddf7091acd5875cefaba2684b011a72c44fb8b586c2e21c0631188608b72fdbf6d9fb484fd53838a45a8847e0703087ecf6c02812cf9ff1133764558261dc69a0772192ddb8b7d794010/usr/share/shogun/data/toyrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootshogun-4.1.0-2.fc22.src.rpmpython3-shogunpython3-shogun(armv7hl-32)@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@     @ld-linux-armhf.so.3ld-linux-armhf.so.3(GLIBC_2.4)libColPack.so.0libarpack.so.2libarprec.so.0libbz2.so.1libc.so.6libc.so.6(GLIBC_2.4)libcurl.so.4libdl.so.2libgcc_s.so.1libgcc_s.so.1(GCC_3.5)libgcc_s.so.1(GCC_4.0.0)libglpk.so.36libhdf5.so.9libjson-c.so.2liblpsolve55.soliblzma.so.5liblzo2.so.2libm.so.6libm.so.6(GLIBC_2.4)libnlopt_cxx.so.0libprotobuf.so.8libpthread.so.0libpthread.so.0(GLIBC_2.4)libpython3.4m.so.1.0libshogun.so.17libsnappy.so.1libstdc++.so.6libstdc++.so.6(CXXABI_1.3)libstdc++.so.6(CXXABI_1.3.1)libstdc++.so.6(CXXABI_ARM_1.3.3)libstdc++.so.6(GLIBCXX_3.4)libstdc++.so.6(GLIBCXX_3.4.21)libtatlas.so.3libxml2.so.2libz.so.1python(abi)python3(armv7hl-32)python3-numpy(armv7hl-32)python3-scipy(armv7hl-32)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PartialHardlinkSets)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)rtld(GNU_HASH)shogun(armv7hl-32)3.43.0.4-14.6.0-14.0.4-14.0-15.2-14.1.0-2.fc224.12.0.1V͛@V&@V=@VHV_V@V0VwVrVf@VP\VA@U@UĝUĝU@U`kU[%UXU@U@U8T@TTTY@T_SSuSSǺS@S-S[S[S,S,SwO@SwO@SXSQSKS(5@S&S$@S"@S!S!SSSSSSS@S@S R=RʚR@R@R1@R1@RR - 4.1.0-2Björn Esser - 4.1.0-1Fedora Release Engineering - 4.0.1-0.11.git20160201.03b8c1cBjörn Esser - 4.0.1-0.10.git20160201.03b8c1cBjörn Esser - 4.0.1-0.9.git20160125.0382808Orion Poplawski - 4.0.1-0.8.git20151219.af8c1dfMamoru TASAKA -4.0.1-0.7.git20151219.af8c1dfBjörn Esser - 4.0.1-0.6.git20151219.af8c1dfBjörn Esser - 4.0.0-0.5.git20151217.7e4ac13Björn Esser - 4.0.1-0.4.git20150913.d8eb73dBjörn Esser - 4.0.1-0.3.git20150913.d8eb73dFedora Release Engineering - 4.0.1-0.2.git20150808.779c3adBjörn Esser - 4.0.1-0.1.git20150808.779c3adBjörn Esser - 4.0.0-7Björn Esser - 4.0.0-6Fedora Release Engineering - 4.0.0-5Björn Esser - 4.0.0-4Peter Robinson 4.0.0-3Orion Poplawski - 4.0.0-2Björn Esser - 4.0.0-1Kalev Lember - 3.2.0.1-0.35.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.34.git20141224.d71e19aMamoru TASAKA - 3.2.0.1-0.33.git20141224.d71e19aOrion Poplawski - 3.2.0.1-0.32.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.31.git20141224.d71e19aBjörn Esser - 3.2.0.1-0.30.git20141223.c329375Björn Esser - 3.2.0.1-0.29.git20140901.705b7deFedora Release Engineering - 3.2.0.1-0.28.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.27.git20140804.96f3cf3Björn Esser - 3.2.0.1-0.26.git20140721.81c0008Björn Esser - 3.2.0.1-0.25.git20140717.1ba2924Björn Esser - 3.2.0.1-0.24.git20140618.2f7681eBjörn Esser - 3.2.0.1-0.23.git20140616.31f5609Björn Esser - 3.2.0.1-0.22.git20140604.98900c2Björn Esser - 3.2.0.1-0.21.git20140604.98900c2Björn Esser - 3.2.0.1-0.20.git20140526.7587570Björn Esser - 3.2.0.1-0.19.git20140523.681b5ecBjörn Esser - 3.2.0.1-0.18.git20140516.96b815fBjörn Esser - 3.2.0.1-0.17.git20140516.96b815fBjörn Esser - 3.2.0.1-0.16.git20140423.68a5124Björn Esser - 3.2.0.1-0.15.git20140418.34f9672Björn Esser - 3.2.0.1-0.14.git20140414.b0146f8Björn Esser - 3.2.0.1-0.13.git20140318.6134bc2Björn Esser - 3.2.0.1-0.12.git20140317.6ee3991Björn Esser - 3.2.0.1-0.11.git20140315.55912daBjörn Esser - 3.2.0.1-0.10.git20140313.9b6dcd2Björn Esser - 3.2.0.1-0.9.git20140313.e380071Björn Esser - 3.2.0.1-0.8.git20140312.d9c535eBjörn Esser - 3.2.0.1-0.7.git20140307.c281eaaBjörn Esser - 3.2.0.1-0.6.git20140305.9c67564Björn Esser - 3.2.0.1-0.5.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.4.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.3.git20140305.9b37dc1Björn Esser - 3.2.0.1-0.2.git20130305.9b37dc1Björn Esser - 3.2.0.1-0.1.git20130303.df06a0eBjörn Esser - 3.2.0-2Björn Esser - 3.2.0-1Orion Poplawski - 3.1.1-2Björn Esser - 3.1.1-1Björn Esser - 3.1.0-0.13.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.12.git20131226.1c7fbaaBjörn Esser - 3.1.0-0.11.git20131219.207a709Björn Esser - 3.1.0-0.10.git20131219.207a709Björn Esser - 3.1.0-0.9.git20131219.207a709Björn Esser - 3.1.0-0.8.git20131217.70f2657Björn Esser - 3.1.0-0.7.git20131217.70f2657Björn Esser - 3.1.0-0.6.git20131217.70f2657Björn Esser - 3.1.0-0.5.git20131216.7230f07Björn Esser - 3.1.0-0.4.git20131216.7230f07Björn Esser - 3.1.0-0.3.git20131216.7230f07Björn Esser - 3.1.0-0.2.git20131212.70e774dBjörn Esser - 3.1.0-0.1.git20131212.70e774dBjörn Esser - 3.0.0-1- fix serialization with JSON-C >= 0.12- new upstream release (#1306079) - fix build/testsuite with gcc 6.0.0 (#1308270)- Rebuilt for https://fedoraproject.org/wiki/Fedora_24_Mass_Rebuild- udpated to new snapshot git20160201.03b8c1cc3b8f4426a2fe80055fdfdc9e156953b6- updated to new snapshot git20160125.038280845fd7fb886f4459996f1405f8ca8c1612 - re-enable mono, issues with mono >= 4 are fixed upstream (#1223446)- Rebuild for hdf5 1.8.16- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.3- updated to new snapshot git20151219.af8c1df859ed3d5780bbea5615a5c523e5651db9 - remove Patch0001, fixed in upstream-tarball- updated to new snapshot git20151217.7e4ac1327cc3ee4b09f498c1b778d13f37ff0956 - updated %description - add modshogun.rb to ruby-shogun - add Patch0001: revert removal of migration-framework- changing name of python2-subpkg- updated to new snapshot git20150913.d8eb73dd89f47e0da28f07163c4f635b96d0ec00 - removed ChangeLog from package, deleted in upstream tarball- Rebuilt for https://fedoraproject.org/wiki/Changes/python3.5- updated to new snapshot git20150808.779c3ada68ae535062346ef71e6c1c39e482a8ca - drop all patches, applied in upstream tarball - add more testsuite-excludes for ix86 - disable memtests on %arm- rebuilt with full hardening - add Patch11-13: enable CMake-policy CMP0056 - add Patch14: fix handling of C[XX]FLAGS- temporarily disabling Mono-bindings on Fedora 23+- Rebuilt for https://fedoraproject.org/wiki/Fedora_23_Mass_Rebuild- fix: Build fails on fc23+ because of hardening - fix: BR: mono >= 4.0.0 - exclude tests, which are failing on aarch64 (#1222401)- Rebuild (mono4)- Rebuild for hdf5 1.8.15- new release v4.0.0 (#1105909, #1183622) - add Patch0: fixes double delete[] and tests with swig 3.x - add Patch1: fixes to CMake-buildsys - add Patch2,3: enable python-debugging in testsuite - add Patch4: optionally disabling sse and sse2 features - add Patch5: requiring 'rubygems' in testsuite - add Patch6: testing Py structure hierarchical multilabel classification - add Patch7: replace deprecated json-c functions - add Patch8: obey $ENV{R_LIBS_USER} when running tests - add Patch9: reduce debuginfo of swig-generated bindings - add Patch10: make sure all modular interfaces are build single-threaded - add automatic CLASSPATH-export for java-shogun - add automatic MONO_PATH-export for mono-shogun - add pkg-config file for easier use with gcc - move headers to versioned include-subdir to avoid collisions - retiring octave-shogun on %{arm} - R-shogun is stable now (#1043885) - use atlas' clapack on <= fc20 and <= el7 - narrowed the list of failing tests and don't ignore fails anymore - remove obsolete sed-kludges - use temporary files instead of pipes to pass data between different gcc instances - builds are running multi-threaded again - use %__isa instead of %_arch for file / dir naming - add memory-tests to find reasons for possible segfaults - run memory- and unit-test multi-threaded - use %license when available - use %bconds instead of %global madness - spec-file cosmetics- Rebuilt for protobuf soname bump- rebuild for so-name bump in protobuf-2.6.1 (libprotobuf.so.9)- Rebuild for https://fedoraproject.org/wiki/Changes/Ruby_2.2 - Once reduce debuginfo verbosity on arm to reduce memory comsumption - And once mark -doc, -doc-cn arch dependent perhaps due to above- Rebuild for hdf5 1.8.14- updated to new snapshot git20141224.d71e19aa5a575b2b4e52c908a694eb1db7afc973 - reduced number of make-jobs on %{arm} - conditionalized and disabled OpenCV-integration- updated to new snapshot git20141223.c32937574df1c560ce7c10f1b8860679ce011a8b - added BR: ocl-icd-devel, opencl-headers - enabled OpenCV-features and R-shogun - purged light-scrubber.sh from repo, now shipped with tarball - updated documentation-files - build mono-shogun on %{mono_arches}, only - install documentation-files to %{_pkgdocdir}- updated to new snapshot git20140901.705b7dea7093cb094fe90fcebac20b7e7d1debcd- Rebuilt for https://fedoraproject.org/wiki/Fedora_21_22_Mass_Rebuild- updated to new snapshot git20140804.96f3cf3ce58514299f98e688b7c43e057ad4fa41- updated to new snapshot git20140721.81c00087da6f05d36aec410fef0fcef5be490f42 - enable SSE2 for %{ix86}, because dSFMT-build will fail otherwise - switch back to a monolithic build with limeted parallelization - temporarily discard errors from testsuite- updated to new snapshot git20140717.1ba29247b850adef1b866a6c2112a6483c88428e- updated to new snapshot git20140618.2f7681ed0c1849088ee5bcc48b91a1c970ff3a9b - excluded segfaulting tests- updated to new snapshot git20140616.31f5609f7a7345ca05b5c1f8c7425236da2270df- export additional C[XX]FLAGS on 32Bit-arches for SSE and SSE2 - fix typemapping for Mono (C#) with swig >= 3.0.0 - exclude testing python_modular on Fedora >= 21, segfaults related to swig3 - build libshogun with full parallelization, but the swig-bindings- updated to new snapshot git20140604.98900c2996ccc4509099a6a337a71d7ca9991bd6- updated to new snapshot git20140526.758757094c30ae249f5ddc84f3cdc11b4b4203c4 - dropped obsolete BR LaTeX from -doc-pkg- updated to new snapshot git20140523.681b5ec17c0ca9c98cb54047dcd679bec9171989- adapted the logic for finding rubygem-narray on Fedora >= 21- updated to new snapshot git20140516.96b815fd1fa9769a24122f9016ff5a685a8a6944- updated to new snapshot git20140423.68a5124bec8df5a013b2406e8c00d93ab83bf88d- updated to new snapshot git20140418.34f96727f343b7f7f5e0426dbbf579f5dbc0f51e- updated to new snapshot git20140414.b0146f8b7314a4de25273dab2d6da4a37044bbec- updated to new snapshot git20140318.6134bc2e1e721726102624b372c1f8e7a31816df- updated to new snapshot git20140317.6ee39918dc99e72c23a30419a608f11217146e26- updated to new snapshot git20140315.55912da6dd499632ab2371cbbde9fdafaa913cac- updated to new snapshot git20140313.9b6dcd2a077868259029ce2f28b306e56b30bf2f- updated to new snapshot git20140313.e380071f5a8a5d35c0b33ea0ab55810ef9845354- updated to new snapshot git20140312.d9c535e85ed8dc61d537052a9abce200782b87b2- updated to new snapshot git20140307.c281eaaf51f44c16c9a7ded0678cbbac265714f6- updated to new snapshot git20140305.9c67564278abd5a13efe9ae016f8b3e01bf209f9- use new macros provided by shogun-data-pkg- use `CMAKE_BUILD_TYPE=Release` for the Python3-version, too- fixed year in git-snapshot-date- updated to new snapshot git20130305.9b37dc1e630d54a9c16f2d19b6a10c34d8aef73a- updated to new snapshot git20130303.df06a0e1a7e3551b0bee218246cfc4bf1a4696d8- require java-headless on Fedora >= 20 or RHEL >= 7 - exclude some tests on %{arm} arches only- new upstream release: v3.2.0 (#1066944) - enabled build of Java-bindings (#1043882) - enabled build of Python3-bindings (#1043884) - dropped Patch0 for Octave 3.8.0 (#1047053) - bumped required data-version to 0.8 (#1068941) - split-off scrubber-script to seperate script - exclude some tests on 32-Bit arches only- Add patch for octave 3.8.0 support- new upstream release: v3.1.1 - data-files are now moved into a separate package - added example-applications to doc-pkg- rebuild for octave-3.8.0-rc2- updated to new snapshot git20131226.1c7fbaa732c8476b2df26bca2ae93de666959092 - updated to new testsuite-data git20131222.0bbb04f354a29ed3ab43ce002388b79bb274e886- rebuild for NLopt-2.4.1- rebuild for arprec-2.2.17 - added a line about `no-SVM^light-support` in %description - minor indention improvements for the list of bindings in %description - fixed `macro-in-comment %{mono_arches}` - added %ifarch %{mono_arches} for mono-shogun-pkg for building it on those arches, only- updated to new snapshot git20131219.207a70972e794df28f0fc67309f217f7fbf3b4e7- copying and packaging the prestine examples to another location is better and less error-prone then removing the clutter left by testsuite afterwards- remove more possible clutter from testsuite - re-enable mldata-based tests when there is internet connectivity- updated to new snapshot git20131217.70f26573a501791e11097615296127c1c36904d7- temporarily disabled mono-shogun on all arm-arches- enable build of mono-shogun, since it should be fixed in current checkout (#1043859)- updated to new snapshot git20131216.7230f074751a97842170b8a5f9c69fbd9b8287ca- remove cluttering *.map *.md5 in autodocs (#1043856) - remove possible clutter from testsuite- updated to latest git-snapshot (#1043283) - disabled shogun-mono, because it segfaults currently and has some severe problems on ARMv7hl- Initial rpm release (#1043283)  !"##%&'((*+,--/0122456779:;<<>?@AACDEFFHIJKKMNOPPRSTUUWXYZZ\]^__abccefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~4.1.0-2.fc224.1.0-2.fc22    !!""##$$%%&&''()***++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++----++++++).///.00.11.2.3.4.55.666.7.8.9.::;;::.<<<.=.>.?.@@@.__pycache__modshogun.cpython-34.pycmodshogun.cpython-34.pyo_modshogun.somodshogun.pyshogunClassifier__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoClustering__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoConverter__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoDistance__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoDistribution__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoEvaluation__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoFeatures__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoIO__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoKernel__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoLatent__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoLibrary__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoLoss__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoMathematics__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoModelSelection__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoPreprocessor__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoRegression__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoStatistics__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoStructure__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyo__init__.py__pycache____init__.cpython-34.pyc__init__.cpython-34.pyoshogunexamplesREADME.txtdatapython_modularclassifier_averaged_perceptron_modular.pyclassifier_custom_kernel_modular.pyclassifier_featureblock_logistic_regression.pyclassifier_gaussiannaivebayes_modular.pyclassifier_gmnpsvm_modular.pyclassifier_gpbtsvm_modular.pyclassifier_knn_modular.pyclassifier_larank_modular.pyclassifier_lda_modular.pyclassifier_liblinear_modular.pyclassifier_libsvm_minimal_modular.pyclassifier_libsvm_modular.pyclassifier_libsvmoneclass_modular.pyclassifier_mpdsvm_modular.pyclassifier_multiclass_ecoc.pyclassifier_multiclass_ecoc_discriminant.pyclassifier_multiclass_ecoc_ovr.pyclassifier_multiclass_ecoc_random.pyclassifier_multiclass_relaxedtree.pyclassifier_multiclass_shareboost.pyclassifier_multiclassliblinear_modular.pyclassifier_multiclasslibsvm_modular.pyclassifier_multiclasslinearmachine_modular.pyclassifier_multiclasslogisticregression_modular.pyclassifier_multiclassmachine_modular.pyclassifier_multiclassocas_modular.pyclassifier_multilabeloutputliblinear_modular.pyclassifier_perceptron_modular.pyclassifier_qda_modular.pyclassifier_ssk_modular.pyclassifier_svmlin_modular.pyclassifier_svmocas_modular.pyclassifier_svmsgd_modular.pyclustering_hierarchical_modular.pyclustering_kmeans_modular.pyconverter_diffusionmaps_modular.pyconverter_factoranalysis_modular.pyconverter_hasheddoc_modular.pyconverter_hessianlocallylinearembedding_modular.pyconverter_isomap_modular.pyconverter_kernellocallylinearembedding_modular.pyconverter_laplacianeigenmaps_modular.pyconverter_linearlocaltangentspacealignment_modular.pyconverter_localitypreservingprojections_modular.pyconverter_locallylinearembedding_modular.pyconverter_localtangentspacealignment_modular.pyconverter_multidimensionalscaling_modular.pyconverter_stochasticproximityembedding_modular.pyconverter_tdistributedstochasticneighborembedding_modular.pydistance_braycurtis_modular.pydistance_canberra_modular.pydistance_canberraword_modular.pydistance_chebyshew_modular.pydistance_chisquare_modular.pydistance_cosine_modular.pydistance_director_euclidean_modular.pydistance_euclidean_modular.pydistance_geodesic_modular.pydistance_hammingword_modular.pydistance_jensen_modular.pydistance_mahalanobis_modular.pydistance_manhatten_modular.pydistance_manhattenword_modular.pydistance_minkowski_modular.pydistance_normsquared_modular.pydistance_sparseeuclidean_modular.pydistance_tanimoto_modular.pydistribution_histogram_modular.pydistribution_hmm_modular.pydistribution_linearhmm_modular.pydistribution_ppwm_modular.pyevaluation_clustering.pyevaluation_clustering_simple.pyevaluation_contingencytableevaluation_modular.pyevaluation_cross_validation_classification.pyevaluation_cross_validation_mkl_weight_storage.pyevaluation_cross_validation_multiclass_storage.pyevaluation_cross_validation_regression.pyevaluation_director_contingencytableevaluation_modular.pyevaluation_meansquarederror_modular.pyevaluation_meansquaredlogerror_modular.pyevaluation_multiclassaccuracy_modular.pyevaluation_multiclassovrevaluation_modular.pyevaluation_prcevaluation_modular.pyevaluation_rocevaluation_modular.pyevaluation_thresholds_modular.pyfeatures_binned_dot_modular.pyfeatures_dense_byte_modular.pyfeatures_dense_io_modular.pyfeatures_dense_longint_modular.pyfeatures_dense_modular.pyfeatures_dense_protocols_modular.pyfeatures_dense_real_modular.pyfeatures_dense_zero_copy_modular.pyfeatures_director_dot_modular.pyfeatures_hasheddocdot_modular.pyfeatures_io_modular.pyfeatures_snp_modular.pyfeatures_sparse_modular.pyfeatures_string_char_compressed_modular.pyfeatures_string_char_modular.pyfeatures_string_file_char_modular.pyfeatures_string_file_modular.pyfeatures_string_hashed_wd_modular.pyfeatures_string_sliding_window_modular.pyfeatures_string_ulong_modular.pyfeatures_string_word_modular.pygraphicalclassifier_gaussian_process_binary_classification.pyclassifier_perceptron_graphical.pycluster_kmeans.pycluster_kpp.pyconverter_fastica_bss.pyconverter_ffsep_bss.pyconverter_jade_bss.pyconverter_jedi_bss.pyconverter_sobi_bss.pyconverter_spe_helix.pyconverter_uwedge_bss.pyeigenfaces.pyem_1d_gmm.pyem_2d_gmm.pygroup_lasso.pyinteractive_clustering_demo.pyinteractive_gp_demo.pyinteractive_kmm_demo.pyinteractive_svm_demo.pyinteractive_svr_demo.pyinverse_covariance_estimation_demo.pykernel_ridge_regression.pykernel_ridge_regression_sinc.pylatex_plot_inits.pylda.pymclda.pymetric_lmnn_objective.pymulticlass_qda.pymultiple_smvs.pyprc.pypreprocessor_kpca_graphical.pyqda.pyregression_gaussian_process_demo.pyregression_gaussian_process_modelselection.pyregression_lars.pyroc.pysmem_1d_gmm.pysmem_2d_gmm.pyso_multiclass_BMRM.pyso_multiclass_director_BMRM.pystatistics_hsic.pystatistics_linear_time_mmd.pystatistics_quadratic_time_mmd.pysvm.pysvmlin.pysvr_sinc.pyutil.pykernel_anova_modular.pykernel_auc_modular.pykernel_cauchy_modular.pykernel_chi2_modular.pykernel_circular_modular.pykernel_combined_custom_poly_modular.pykernel_combined_modular.pykernel_comm_ulong_string_modular.pykernel_comm_word_string_modular.pykernel_const_modular.pykernel_custom_modular.pykernel_diag_modular.pykernel_director_linear_modular.pykernel_distance_modular.pykernel_distantsegments_modular.pykernel_exponential_modular.pykernel_fisher_modular.pykernel_fixed_degree_string_modular.pykernel_gaussian_modular.pykernel_gaussian_shift_modular.pykernel_histogram_word_string_modular.pykernel_inversemultiquadric_modular.pykernel_io_modular.pykernel_linear_byte_modular.pykernel_linear_modular.pykernel_linear_string_modular.pykernel_linear_word_modular.pykernel_local_alignment_string_modular.pykernel_locality_improved_string_modular.pykernel_log_modular.pykernel_match_word_string_modular.pykernel_multiquadric_modular.pykernel_oligo_string_modular.pykernel_poly_match_string_modular.pykernel_poly_match_word_string_modular.pykernel_poly_modular.pykernel_power_modular.pykernel_rationalquadratic_modular.pykernel_salzberg_word_string_modular.pykernel_sigmoid_modular.pykernel_simple_locality_improved_string_modular.pykernel_sparse_gaussian_modular.pykernel_sparse_linear_modular.pykernel_sparse_poly_modular.pykernel_spherical_modular.pykernel_spline_modular.pykernel_ssk_string_modular.pykernel_top_modular.pykernel_tstudent_modular.pykernel_wave_modular.pykernel_wavelet_modular.pykernel_weighted_comm_word_string_modular.pykernel_weighted_degree_position_string_modular.pykernel_weighted_degree_string_modular.pylabels_io_modular.pylibrary_fisher2x3_modular.pylibrary_time.pymathematics_linsolver_cg.pymathematics_logdet.pymathematics_sparseinversecovariance_modular.pymetric_lmnn_modular.pymkl_binclass_modular.pymkl_multiclass_modular.pymkl_regression_modular.pymodelselection_grid_search_kernel.pymodelselection_grid_search_krr_modular.pymodelselection_grid_search_liblinear_modular.pymodelselection_grid_search_libsvr_modular.pymodelselection_parameter_tree_modular.pymodelselection_random_search_liblinear_modular.pymulticlass_c45classifiertree_modular.pymulticlass_cartree_modular.pymulticlass_chaidtree_modular.pymulticlass_gp_modular.pymulticlass_id3classifiertree_modular.pymulticlass_randomforest_modular.pyneuralnets_simple_modular.pypreprocessor_dimensionreductionpreprocessor_modular.pypreprocessor_fisherlda_modular.pypreprocessor_kernelpca_modular.pypreprocessor_logplusone_modular.pypreprocessor_normone_modular.pypreprocessor_pca_modular.pypreprocessor_prunevarsubmean_modular.pypreprocessor_randomfouriergausspreproc_modular.pypreprocessor_sortulongstring_modular.pypreprocessor_sortwordstring_modular.pyregression_cartree_modular.pyregression_chaidtree_modular.pyregression_gaussian_process_modular.pyregression_kernel_ridge_modular.pyregression_least_squares_modular.pyregression_libsvr_modular.pyregression_linear_ridge_modular.pyregression_randomforest_modular.pyserialization_complex_example.pyserialization_matrix_modular.pyserialization_string_kernels_modular.pyso_multiclass.pystatistics_hsic.pystatistics_kmm.pystatistics_linear_time_mmd.pystatistics_mmd_kernel_selection_combined.pystatistics_mmd_kernel_selection_single.pystatistics_quadratic_time_mmd.pystochasticgbmachine_modular.pystreaming_vw_createcache_modular.pystreaming_vw_modular.pystructure_discrete_hmsvm_bmrm.pystructure_discrete_hmsvm_mosek.pystructure_dynprog_modular.pystructure_factor_graph_model.pystructure_graphcuts.pystructure_hierarchical_multilabel_classification.pystructure_multiclass_bmrm.pystructure_plif_hmsvm_bmrm.pystructure_plif_hmsvm_mosek.pytests_check_commwordkernel_memleak_modular.pytools__init__.pygenerate_circle_data.pyload.pymulticlass_shared.pytransfer_multitask_clustered_logistic_regression.pytransfer_multitask_l12_logistic_regression.pytransfer_multitask_leastsquares_regression.pytransfer_multitask_logistic_regression.pytransfer_multitask_trace_logistic_regression.pyvariational_classifier_modular.pyipython-notebooksclassificationHashedDocDotFeatures.ipynbMKL.ipynbSupportVectorMachines.ipynbclusteringGMM.ipynbKMeans.ipynbcomputer_visionScene_classification.ipynbSudoku_recognizer.ipynbconverterTapkee.ipynbdistributionsKernelDensity.ipynbevaluationxval_modelselection.ipynbgaussian_processgaussian_processes.ipynbvariational_classifier.ipynbicabss_audio.ipynbbss_image.ipynbecg_sep.ipynbintroIntroduction.ipynblogdetlogdet.ipynbmetricLMNN.ipynbmulticlassKNN.ipynbTreeDecisionTrees.ipynbTreeEnsemble.ipynbmulticlass_reduction.ipynbnaive_bayes.ipynbneuralnetsautoencoders.ipynbneuralnets_digits.ipynbrbms_dbns.ipynbpcapca_notebook.ipynbregressionRegression.ipynbstatisticsmmd_two_sample_testing.ipynbstructureBinary_Denoising.ipynbFGM.ipynbmultilabel_structured_prediction.ipynbtemplate.ipynb/usr/lib/python3.4/site-packages//usr/lib/python3.4/site-packages/__pycache__//usr/lib/python3.4/site-packages/shogun//usr/lib/python3.4/site-packages/shogun/Classifier//usr/lib/python3.4/site-packages/shogun/Classifier/__pycache__//usr/lib/python3.4/site-packages/shogun/Clustering//usr/lib/python3.4/site-packages/shogun/Clustering/__pycache__//usr/lib/python3.4/site-packages/shogun/Converter//usr/lib/python3.4/site-packages/shogun/Converter/__pycache__//usr/lib/python3.4/site-packages/shogun/Distance//usr/lib/python3.4/site-packages/shogun/Distance/__pycache__//usr/lib/python3.4/site-packages/shogun/Distribution//usr/lib/python3.4/site-packages/shogun/Distribution/__pycache__//usr/lib/python3.4/site-packages/shogun/Evaluation//usr/lib/python3.4/site-packages/shogun/Evaluation/__pycache__//usr/lib/python3.4/site-packages/shogun/Features//usr/lib/python3.4/site-packages/shogun/Features/__pycache__//usr/lib/python3.4/site-packages/shogun/IO//usr/lib/python3.4/site-packages/shogun/IO/__pycache__//usr/lib/python3.4/site-packages/shogun/Kernel//usr/lib/python3.4/site-packages/shogun/Kernel/__pycache__//usr/lib/python3.4/site-packages/shogun/Latent//usr/lib/python3.4/site-packages/shogun/Latent/__pycache__//usr/lib/python3.4/site-packages/shogun/Library//usr/lib/python3.4/site-packages/shogun/Library/__pycache__//usr/lib/python3.4/site-packages/shogun/Loss//usr/lib/python3.4/site-packages/shogun/Loss/__pycache__//usr/lib/python3.4/site-packages/shogun/Mathematics//usr/lib/python3.4/site-packages/shogun/Mathematics/__pycache__//usr/lib/python3.4/site-packages/shogun/ModelSelection//usr/lib/python3.4/site-packages/shogun/ModelSelection/__pycache__//usr/lib/python3.4/site-packages/shogun/Preprocessor//usr/lib/python3.4/site-packages/shogun/Preprocessor/__pycache__//usr/lib/python3.4/site-packages/shogun/Regression//usr/lib/python3.4/site-packages/shogun/Regression/__pycache__//usr/lib/python3.4/site-packages/shogun/Statistics//usr/lib/python3.4/site-packages/shogun/Statistics/__pycache__//usr/lib/python3.4/site-packages/shogun/Structure//usr/lib/python3.4/site-packages/shogun/Structure/__pycache__//usr/lib/python3.4/site-packages/shogun/__pycache__//usr/share/doc//usr/share/doc/shogun//usr/share/doc/shogun/examples//usr/share/doc/shogun/examples/python_modular//usr/share/doc/shogun/examples/python_modular/graphical//usr/share/doc/shogun/examples/python_modular/tools//usr/share/doc/shogun/ipython-notebooks//usr/share/doc/shogun/ipython-notebooks/classification//usr/share/doc/shogun/ipython-notebooks/clustering//usr/share/doc/shogun/ipython-notebooks/computer_vision//usr/share/doc/shogun/ipython-notebooks/converter//usr/share/doc/shogun/ipython-notebooks/distributions//usr/share/doc/shogun/ipython-notebooks/evaluation//usr/share/doc/shogun/ipython-notebooks/gaussian_process//usr/share/doc/shogun/ipython-notebooks/ica//usr/share/doc/shogun/ipython-notebooks/intro//usr/share/doc/shogun/ipython-notebooks/logdet//usr/share/doc/shogun/ipython-notebooks/metric//usr/share/doc/shogun/ipython-notebooks/multiclass//usr/share/doc/shogun/ipython-notebooks/multiclass/Tree//usr/share/doc/shogun/ipython-notebooks/neuralnets//usr/share/doc/shogun/ipython-notebooks/pca//usr/share/doc/shogun/ipython-notebooks/regression//usr/share/doc/shogun/ipython-notebooks/statistics//usr/share/doc/shogun/ipython-notebooks/structure/-O2 -g -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong --param=ssp-buffer-size=4 -grecord-gcc-switches -march=armv7-a -mfpu=vfpv3-d16 -mfloat-abi=harddrpmxz2armv7hl-redhat-linux-gnueabi directorypython 3.4 byte-compiledELF 32-bit LSB shared object, ARM, EABI5 version 1 (GNU/Linux), dynamically linked, BuildID[sha1]=c568a778a4b928f8d17a5c5adbe90d2a8cf10fb2, strippedPython script, ASCII text executablePython script, ASCII text executable, with no line terminatorsASCII textUTF-8 Unicode textPython script, UTF-8 Unicode text executableHTML document, ASCII text, with very long linesASCII text, with very long linesC source, ASCII text, with very long lines)*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`ab'R%R%RRRR R RRR!R RRRRRR"R RRRRRRR#RR$R RRRRRRRRR RRR-R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%R%?p7zXZ !#,]"k%{^E) `>a@80  73枸6<) rl'S+nF&`wq `. /*Q+± [C)1쩭TIu9GL%$lR^| ӦYʗ?aT*F_AIc P&5)Nd-'¡z'nK4H|G0-Ǔ[ENn6N fiyi6`nnKljqc32ZWe,Қav4IQ1Q b SܻR7T }Uk(XT5ꗇ‚CJ븇ٟve} Ou Z르EjJIgq-6L3Yk;qU\.tE5\K? K{fO- xO (bɇS|M잤#l\՟vR /uyҌ`D(_l P{MM=FmVAi^IPT̎LWY-ۤ<ͪ/۳[J昆g#F&f| ο-nͬku89}>vcQ9cX6.8bIdT@-4EqAnDa 9D8>wO<G @j=`lP:h{fq'O}:ф)ıKbpR` G+~yP32 )-O˝ZiA2Ocz98 ~Pfς-`c}pA%N|U7OS]6sO [t[ױKj1yt;*dX4qЧ:hwUKUS^f 6O'Sma)Hu,b̓׌0Zew39O6l8[69Ԡ45;+F#_NP9FۡBf``\STh;uzNEρ0%$05 Cf2 e"ĺ2"b{G4%=q{u%kͭ׳WdiXEd`#/ɹtόVl% (/Z-CNgبFe_ßl3*ɲ*w0 Onz2c_L} @C)ѢP-3X zW3 doq ׁǼ8jc8Sxap״h'"J @Z*$x4٪*ted؊hխ>fI{o0bN{~s}ڤG=оic:zvi=#VR/S^X.xP%6mkۖ.t=lP壪π~e)Cj(jxY^3b5vGTu=sHeG][6Z ^| m |M&75%f2UEtz)1cW =? }{:<I@*"yU#s{#TEm 7Q M<$sZmj2m3azJ&WѾ&9(ysg/ ֮{zÈ_Ԗ/iOSחy>*Fpģ`B<Ɉ*w Fdmce`}Zз Q0EpFўf܍=_ J13DɉiS5?2M쐃-nc[$-AI@1H.QWV2}bk3`h@r$}$ -r`rT%7߀F7@} Aci3#l)CSS5H^ZhB}6n=6G. oX a%>Hn3UuWӺ9ȅCp.jʛYQ(F[ˆ~y6<2d]'TÕPj2/bn[, >/; @4ӓu͹s$W y0c4F_m>zQ\hg3[ &*#Q7I5ƕ\K~=|GK3$c;iFQ RąI?8KRF r4>A!y@@V¦+^;/e0o-ȨA|6 ĉ&j}7xj2U)BxW?ڬj4׾1; EY !~ )0sLBlw{xܿ(R%P#816'K1<3t|f/<-gp1 .,̰UIO<9rPH{|xV-Qkm?@/b&:9DVxDdFȓ'xVm3^EttRiFr)h bN{h@}Mp\gT㔏s( g ڗ bqO Z,}~PVnEkv2}9qI#&wCn Zq k0Q 18%Uci.Z2'l$KijwDֲ6~^ګ>0 Tz-cmڹ069ܾZW CaJnƥ(uPr9o AVBW/H$1]pBO4-tOcm{Jꁱ:q|7x VJOk,rrXіҵ5J]"?"8v6`Za_8֥c:StܚxV,K\Yo?;SS"1pRq-&<_0X@<3Զ+BEJMˌv-lQ ocP"`)ہ9Z!) E>QRD.z:1G{ \ PZ l}M>*eE<6Ƅ  NEׅ`tjG؛GvGVR o*|$\1̢u~>3J_l3`Ϋ< ؅V>3\9T}XO'TX!J(8ebm+/9}oeKl Ӡ`Fm4hj-a }1ln=^\8cIxF*|qjtռ7R닠97G>Y*0X5OvҍuF@P BJ2L6)#N?^y ٷ5wjiJ^"@3+.Xwc*5---PBAvDh#zG双!c 9 zTr>B|+US.ro =E7PkD=GaUtO_pf r`<9y[}!U]e,K.Ql.(;XoEP엤 4Mm9:qW?}.2,1m%ݧXSUW'?\..j%IcmHեRt)j^NsUȞuT|~[$7J= UU8_Zh\A;]ڀp}bB3I4 HMȤG҆+d3m@YÙ!ֻ~& 5euʰ[`ㅻTix`Չgt~٪qѢ@,%S /h:*yJa"ָ xYao"zmt|o6`4VG޴" $p_`*wl[ kGj !f%|U\aЃ#ܓ4>a-S;yO?pLFY 85ԼԛMrJ1d 2Q&^&{'}R|Y;N%ܢsdcwG{ DV`ݢװ@Y|^>˥*n%1U L&bS 7?F6 |k)}'}gŁ~y:)@P;r;c3I2HS43ôP~j (Rt'^'Ql4 ]CӗW,$*<pe+i$W '8TGLP]nx$8'lீ/f~q;{] `"r=0oxX5O/#x~AC5w8^6)@낥 UeqcQxB$9zld<~gC$R;3yu$!>*t|+,\H*ٸD7xQ]ږឦ$ m,t"&6I+X.)ן7/Dwt=j1vcUF7_d;t-[r &G76jy.tsusbߕ72P^']?hFhq܏yiWW>Y%8}U+ 8$By+0A-Rhu-h\Q(;BJY$`(##ڴ'_O/S_g*T9k j%PK PV-rӯX,N6bER lF r@dћk )MÓ^ns ϖ[w!nC30»I#tne$2y!*KR&  l>.f9h??jG+^Ȑ`t >}" *cB| @ԕhŋ+¡L|r{m5~eާ09JҡR1}tt:jI]=qK{R- ذ`Klt!V*j _^z`ڊ: 6Fs>o"ԃT9y;]݊a J/@([4d85)ÑDxS (X5N}ʼntZ:6b='bZ<æ(t҂d ^5KD8=۷E2WAHU4]0oP<"q y ]>21ANyӍ3&RQ?=3>\J!y51&{OxlGr I/B5:n]b~\A4|[Ǩ'Eeڨj%{/Ji _7Y7ǀN *uf/.)^iT|85LڇJY=.k%V~NX+Qa~l -kX{kJje#ǥ5&dv˷"\tzlQoN7e ,jv% _=âGL :-ֆt P'em(|MW2*'?Ǡ!jC|6)b/o1fRB4BYv2֛V-,O"[10'lq P}!:΀!Mt#e|j9>m'p GZa-i pc<<N%C}n$-)/)qdIOR?CI=Vi}Klhx`b赭X?͂D: p}?/pĶ^?1[p0Uk?n,q]'̈́2RdeJLB.s8;E +([ ɰuLIk|V';n@C>Toߣn %[rCz6J,a+CݵjsGٴŠH3;gS `GyCX2xK놘i^#7P74^C }5V;,Vռ|m^aaDQl~1JhGa,)TY W^UM#&;vpnvLwBErW87\`3F^E .jT'0cLN𷻆UFˣCN4_G鏶/oX߁N{C纀ʊs`< @򜩣 nb?n{um브H8H8I,4_ "5Zǻ,T0h ~1oT :&20톏cČK @Y'/_YbXti](e鯸sPȗ0@UB 0bCofGtkUS0%];wrx'9\Dn(/|V6NYV,ǝ 7 c̊WHLGn[_ƫS4ܥ.HHИgXԲApC I1')Sa{@ {).CF{Ue9Ġچ]X,M;@#\_5Q8C dxC g/ x<Mij/K$;L]yRgeoLj5\ې.SQV}4R[`edS,$ͺ t=ǖ:\ZCۑ{vI gIJ'FeJy\[)E!zuwd)^nxi)[H@[[ewJa7WOM~gJNvy:eRx;˦vꮌv{ك;3=/ A/}5@_:g-ؓf.:N5n9:͸M᤯/ꍃ1UsD4V^R`?6l`E~b; jIcj}3y)p6}<֗wqI݁;Dtoaq; 6€i. ΐV-Py ?jAiCې[)[q>E,}<5= `ɉ 0yYtfݘY7E>`n݀6LyIb%6NU y I%@#đ p*/P\,r3 xٗ1LO}re]-Zvryh2u5'?kGwaGd@NkMQ. X OilXΞu_t{n:֘k`C'-2 / ?tN pޝ*v`řAn@9 Eks̡b:$()1sׇ5h`β yhbNMQSQP6{6a.F0ߊI η>vHңy:id?%G̓l,""fnA\Jhtf;۔[3h2z C<+>@E6$ūm_|m1NͬYXKioz}m҄d_"t9I{zG1û^L Ft E@PKzV|iT0ד-,ҾaG78g~(O *VJ6PSԥ?=_l8qxNeӶ>^DLwK(7쭿jMYmNljQ/"-W~S2r`9ˎq48+jNX|0ty@-oBj%+r28 3$%@غNSȋ >։^Ne;a&rj3֗#ڌ;֏ИSZRx[U9%%OŒZPsia1sTt X+D6Mg%>d/ڻ>։a \X871v`:tuGe'c(l/<"~;`;qfS&/  xٙ#_*?]}ˢP.)eE`1΅)mޕc/euoiڐKf=zXcjY0oh4,#Of,Ysi1Plv?!s.Ul01r&O\";2^6o㏭BWXBE60 Ud6vLͬC5?p~QznZ|9C6J&SkI0L&CmÓ9MrQl3V'ъ_/b jɅm`YCz >QV&3`h(egא]Lp{):MA1C@7Xz >>2b? /uy*~EGY[@Oҳ'g5"$І蟺L1-F*vYRʀYRiM;uA2Fʙ69y :>lo7t AԱmE"۟3~Gқ43 Y?/f 02LYW/QY]U q]K.jBZ},/Q 9<[F}'_.? 򅊔ݏ:j= -Q;S{i N ׸'NQĚ_~HP9fK DrFֶ~Xur\rJR/g5ʯ'a`%`J flDV@CS`_^g$~亯X>EA߂BkuI{q %K75)0 wEѻ3?7Zi @XR2C^x孱[E ?"kaq{/Rdzىr$w}hCIg(F3!4 Uq#;jaAjve3ƚ  nc޷{TRhY;K@+IS6HVkI|/v@FCznC9 ; 8Gvu'-UH|H$Wx2XXZCa{6̐0rshzÚ6a츽sˑ-J?yy-N{;˔bGuh~C`5|0qg,EkXp+(lJ*$tz3"En!Zљ=둬nVADJ_#ks (lnKҺ, f,nq>fASsI1XG:ԴY8Ttg6c%`c>u&,Ƒ3m3J- S]!Yyt'~yw"½;3N_AV!B*[sɧŊF/z;~XKqoYocЮ]Eao$QDhpl9$*Ϡu_lg|a^:eDMWbHiC c p'}Wqobg/ i;MM择 Zj^N`ttots$U?-}xAR'עD_я4` CQnvD Se\GW y; .b#؋ ݭ,O$&sler{=Y5HoB(,Ľu_ ʹ n!)FWE:Nw%H-:/讧˒qpE<<4rQ`PG㆗/vY #i@ݹwi)lK5 w'󘩸]n@*i1ͳqq6 [K:ekX.7 ̫(*P*"Hfy\;ےEdS K|mH{v2q.fEJN*xt3NO`\cEWujwZl pטA @j9aod$eA0=44ʢNzHj0WKCRs:U#1$|.CFՄm("Zhwl寁uCp>QF/@.~ 2ɤBTB8ډp(#?_&T6kjʾ Xp4+uU^/1|I8y0m‰?q(#Tc}GSLd-co_V< g? Z+]fUs֞}b-`U{5h'd.=HQzvC8BkH45= \.R*ơ fh?LY8b~JN@Ԃ mCi*z#ec3G` ܘFYB!3짍ƷBc>o U>j G<ݳ=H cC-au37 ? s>n!Zk߀Bs)J. :b)ր"#Ds/dk,!y9t M^TЕuҾP,|OL>!?k~ݑ$5{+D~7i 1=)&5.Qa~%D~Sh+sFW~A_ 4r Q+.%Ek&xb¸Үmˋ&\L1v8k۵g6tPp:'ƅ|P|f62NFcߤHe*o%p`7q/{b8 ;`E梛+7ExI,!zoZy&U@W%LN=)pyҋQLѨ'uj[=[;1 #W/4 Mנ@@@d9Y4z] ?Hj! й HZXkXw Ei0G8 $az7gWC7uiJPX/I3l.(OvԐʛȟߊ Uqko|vĻs~?*'$0C3=bDyaR]R?:H'-n@u*ʫ>UQcpӻ똬 rc?d"ӮREGWV6 8[}Ip'aL&КWTe:VGzfe_%c$xW{93bgLĄNhZfUTduqw@X9Qi,nW6ᣇy6PQ`R8-ekhT Kpa1O\qȦkMDF7"/1B)_@Њ tz|f0v 0[ր0"+ෑo$[T2'B|k.x/ dO{mPg~%f0jٿ>>68 e=A(eV.E_*$t&VO>ßL4t&#qiw6GJ*th'[ D-l_kJJ=#2.fj1UO*fׇ!uo: *3GC=-G*30+>rkGc'৐Ϯ5x &%!Pzyh़_;L1u߂X%B8!kH睳rS0m?Vctj'o}"H  -]g6>/Xѝnhcm{uld %6 ǧ36oA0۝lf`LOKkk`yjs0Saٲ5Vpj00ȷJLt@xefsk++րkʪYW*{:N'2`Ge[mvNSil#](SGƛUzqjvׁ@UVXW9bϘ:%Jȃ +e'DBR+qI)5QP_JC+dPSf Swn~[/FKDjwLWra*D^6|ЫT18kؖ;ǿe8oyP-xO>(n/6;k>8vU&g"9\$KLx"`'2B*_|-A]j wڂ*]F78ot+nS }+nZX+ܓy* )?}:-?Q1ψGtLu {BKQ2Sn0N>!a y49m30?A(~4q28('dv|$bvw`w_CuE:Y}Щa;1YJMŷ1Mฬ 4r jc7dP\-=xHnޑ*&}Tg]A;bgbT-4H1r(wxp/s&<70/~I(!$ =~`.ErN{Gi '! 9D@6LgṣWIހpk7M`VSf^!)%L&R2,94 B_2y) 99`W&9ElM-&~~^-y/ E~+ 00*z8J+WaZso[3M6 Ƈi8_M#@'0j뵠UU/;c?vD>)W]|>S)U7z4%%-aWl6@OYZut ҎppFEհxg}dWyYo*]A3,E+S.1^,^O0jDj륮-I*)3E) }/Jq8~.ܵΗ|)BGo G~:ޢlS/ZqӦrO;|~N0e%,r8ZHh%ck*7LnJ>>g A?XBb QJ<(:g#zA}Jݞ?6\k6@nDGj(0A㣫 Cϛu.Nٱ}NX; k^݀5HIGU?`^Xk(1jӶP8;y*zdd(` B U@cLchl.aW:ݨ (sn"p \rg'~s\Pc%FN3e7<&F_-5m@ w$5aGr U4Y{@e;Ւ{o!`/qDȘ8*2aq|plLM F__Iy@U?mfCD0Y)y$ʏ$.-߰Sa YNx ~;eGFJ2!}qFS}!?:1)w}J\^ ,Y}`'s N97iNW*I`:юUXʙxS]4רxbf#㪜1vN{ҕ.7=qŞ:ܤ ( }cSO'yIB,jG^Xp  ICNID&zY9'v*LY``RvԒ-^{>TH%FOڙHc^FxMyKȌ~R^!|Ic] )۹b#gWLmԏvvs'uS,Cs\Vo84pgeu#~䵺ormJ\.:r[m]6 bpЉ`תI|bKq~wIHm)|҃*l0; /j-@[(E11{z  L,Vxn(dƘ03]/9qؐdNH0XVTL8Au :o/t!.JoH~^/sg6M=v㣜͊4Y6. G|_v5ySJq6GZ~SњFnÆ,-Jd'UJޡ}/;HmORNq$,TE~ȥN煿v]{3quDdƋwv+d]g0|*-yb2"$;w;ȱ}I` G_-VmO1:2ef{.b922EIWBԨ[G8d Cߊ&3cDY(~Ὣk1p)J3~W| S6j$}=DtoIGp*'}6&et9|DaDVE(V֘ai/ $xG4O1*_~*q9n^|ErcU y*Skl)j=W7a^fڅo۞Oo5,rRƺ70ş,N'}lGi+-8~cNLdo/\TJ|E'sd gNKn%pxϠg dfp- \Wv2{/3Eof=s$+i2YN~[PM/[lCv{|Vݽv+:lG 9d]=mmŖ VkmwĈ)koS"W α54<+PWQ`%gX#Lt"l) ?oyս?q4Dz$ I|9Or=u3{S9w {ڵX7JŗEjE"<ـT0 4'rϗHjZÙp2Uⶃ9غ%n`KYjYPQDon"um^0 =JɚIǽ'FV3oQj(@5Ć =5KRNe0\A?b[퍕118MDR'0͢Zۨ\mINY) H%rLdwjF=0(H*䳍s<2GMjtxׂr*J'D8F^H+t[k8P>wTnJi_R}pTIAv#&#y~E1h `$kaqt.+(Xnąp q{}ຝiO©<-@mA*}񭯗qQf+H01VHxͺe7SbbMr"EƢe۩YSG)3D e%aj_w~R~ W~Q}vc?m<؇%`/+i f/Vj lG[~/]Ν!a‰ܬ\&rưw*r17Vo…6 ¸]M^f̓==~m<oJfrBPq^:}7@!'.hi?# T^J1wF@UCY BCxg ogo Ƙ;HKEAʅ{ذ:Gu |jʅܝ7 -SoFƝULGz3r^67P}s#jU҉AcҿsrJvX<]^X QndPÑ.QL$_"go]jZ%u& ˝,qJ 6^KA d$~ä1gR GӋTPeǹys%b;6v~Ŝ/_DJT$TL;Vv3]M1F ĩ=OO Μ+{q. _ұ阸d-ŋSž%zz& ؀ބm,AIƴeMaxxLǏq2lCX6)ԘmjHG(꾷QWcpBԸ5[sF KY_6EH߂+6Y3U29uKOR/5]ﶈ顁#:y'4{:R)@tMJF;L8S~zf;n!; CB!Av~pg.̵$r1r٠XzCPޝqs*FGcG&cn٤đo1KzMaq}vCž_/GE+pބSr؄yB'I"'[Du*MLd҆IqE|gֳuUϒު$dȤ_qKy;8/XKm$5U%Z/p5D@x I2S Y52 #PK5zM Z gZwdK鞔ijPJQV77Ȁd% i2ydANt^W,!ts#0V Qb-<*vv:2-[Y-DR- ~TOrfu^K$޸}WNj>< ( M ~ 쿑33Txs O|R0DWah ^JetBbj_XZS5]40dD# kGj nv[y'Wqġi P@NjņO5wMO*D7z:bI-6@VNVxtN¶QW g*E+, ;˞_B{X>6R]"gc_} 4{Lqv4_'qJ{Ej1׸)>S]VߡmH(,T.>c˚\fdli;?t4\BJ 3D+2j>UfweaJmե4ĨZUAOn!SZx}\Vg3 ~g#DTo#paUw1(Rk)7@!@u^X]>2IAleEU/ހݛ`u&冨!Kr#UL9U |vs[J)?$yŅMbu&,"U`ۖKK^1%m>9pgpp(^W"`M1-Ȓ9Wzy4ey=ș#M`+N1p#YO7~9aDŽJW*bÕkG=1l|INc4gqD[-Jm8(L'n` RW?lDb/AqU{W6w1T$V[ Y0}nF85s3xq)'ɩO1?¤|>nwu޽Vgh\37sr7T]rĥnrӕ$L`U˷!c@)D&:*۱g_IiR!jMoM¢C4vbTNj5^cF!LMw4 &q"S ӿLJ%^!" IW{ PW7/& xՐI2E`Dr6>=_QT_u`[ǢeY29ENC&t~b5L讱@6-^AllPMRul x]Ouԗ0{^xhv݌PI*T_ݳfsRrˉb[qu }C4ߪ Vr炕y=7a?ό;LI]^ ayI`j#Rl\ {7 IQĤḻB^Y[DA`ټC@a*o㱫uؗ]Dpk’`"OIQ%,rh41w_R ෠8lFD /oqAN247dd(i9TX|)#g`L^l!aR v ^miY&kM0Rq8)!Ur*8c:C6{h489NZFyZ~c/3?>rv7ВN+qeJN by.xUNAS&ڜu){^)D T}bHxҜۡn=n|ǧQV&WdjsdjlJ=|gV\ V,,4UCM`(񂬵zs2e־]jd(#J Nf\&m&żs&O.کVTAJI(~k\ /)S7^]C BC1+$ >͌6^+oY}o#8I#砟Tg}&Ԧ+A_[OVS G}S@]l@J~dG$x&K6`TwP6ilË-&]ҠHӮFr[,JK 3w9IxW{7;~䂼5QXP/AhkՕg9?]0b7b&XuɊ-dr@{ȑhgEQPkNʻ;8fWT$DzzQf Tf.VhkZ9? b W]RxXE=vOvKz`bBF bMKG}9>S\!sjqEyTrizTw?(-Ar8 *\0pȠ-հΕXt^6CH c>(Vl`&tX$}㌠ۓ6;Sb5eĬ cs42m7p Pr~GbFL'}9gW\uBg7!xrOP1xR(+RnO-0 oaZ""5m*ʖ|eI(vlݮ`_gvOީ׊{6̋B^^TfZs"~4"gHB{m _BgYIYA>'|h):D9Z(t\pIN=XqIzī1MtE_1iBdAbUҀ1Rs-{k}dx8#>z>*'U98mv5V-fF'*$p>`!mjYx&y琚JaTj;VpP]x+ hìԳRݵzWi)'g%@7J0.#CKܘ_ 5g5矿H)ĝږ15zZgT`7ୂ=gӵ֮;DHsP8rߣQP9ܲ(. jkWEEt4dj/L*" ;Gdf- 0$85 _[>h I?q:ޟMcr$5͛hCEڸ K6J Z iZMҁ{"۞І֏4UwiS8q]t诧HK۪sQ4QK6_gS.hѸN+pLg{ĸ;#Bc۽|R ]#b̓,h2okLӶbzZA˅rBs8}'12SYo$$zx8 GS 6  cu֣ߘ֫^Uj+#~gB!Lġ,7,]ieilD=| D0խx:o\\_X[~7y+yqo0,V]BȜ@؆9ixOM鷀0&7aK!*,0rs}+9&IϜ ^pKҨ )Wz e/yƻfx30A̢6YS!NM"AQΤǜ($J7B%.xȐ(h^񽻇].ŵ^M쉾V'NNr&GYlMEK,)= @aRygbsڙUrمkHb,;̈Xc'V&x`ؚ/jJo}%^\AөCD'79ħM \C zN^3/R·w C>"<0yk"} ~j[f X&d]WVw5j:T8xAEF "} l/]x }&lFȲ5@(CbF<,튍; ܊5/jai0?  O8^^\סF7 "[E|ӁMf~t"(CջI} dpYamC#i$B`|6`AEAJ闬ATcfG+xz?ߪĺ,dn,II5#7 6/N1$,\ `qpegYxw! ^h`|q.̼϶LC򩜲>crR,ꪑ& 7q㱐XT_m grgT1#D/}.n r?>[Xf.ZKNmo<bXtĨjA{;tP.AW ? 3\d^"r.7Ö2&FP فYWM0*wMx+, }}w߯y٘U9Ǥ9(aGt2OR%з?g7,|FIw(I1Aֱ6F3Hn'Z霐*#j;݌ F/U Hrׂ,3?hVMâ><vEi.W(3{n*؁40w%nj4"ye<[VP "^'8uG5nS!aU=)-HLG⃻&YBb "&yG#f$a_U$UQh~ŞfZgAi؊eTpF ?^$ngŕ:stUSS\˧c5dTuY'Jd(z+aJM(f~Q_}m?-"sne*kM"|&rzX,P@=X>1tKcﭝ10 b @lOp#! gxv(6+|kBVԜsݖYO啞~+@6oyE $y bg84"JK ~LtX+-;)SQF5+Avb~0tY5h;ZL#?$E-4J)?Y5vxM; 2)+7IOf, :&ʤe sj :3ۖvMU\QsjY8v>We 1Uãڳ{SJCweyw}dX;V=3&Nݥ=pqr`uηߖ:ԑU;?^)27rCHNXquP,:u~YxZb#a}RTq;OoVm)VSUfQ`e៎h.9Nj'}C#_O]X0HpZ gӠ6"qA~UO+#dlnzʢư r2Ҷ2I7bTmSR۪tTr"|#K?d7& z&EM؇:7-5mondpFʡLR&ؑͩoF1/%[RZ!|Uh"a"2'GՑ%q RD=θ\'#A?CATj Bm8J8sv:P* ~.ߌ1f2ҽ1}`>55(A;ˆ:ZMӕ\  Q/X@ RW3I4x9Z,<,ftƓ*'5r# ,ӝ1kTf 5wj ^%Y$1oZNg0{ɮn56 'L$vDQ~̩9zRA {H*0߹ژDbF޼ 9BʼQɕ!xV$7?\7Ȣ`OLZ{dN&/Iʖ^s iYV*)jp͈1ޅE! ى*eH!nTFfw44fYA4RC! g+^&Lm6V@8ȒqC}D~?GJ~?w/hE .5ajiMXR0EiYTܺ@ZhDmӢQg[WOʠ{Q=C"E4iko^ myM$~o7j kpp$n .laC1/7 5YҺjWe3˓%7mk ֍$PPwBvfCmM4@. MwƲRrM^޹Æ;t8ѻMׇ_t=廔P3"J$ GIZeTGls>;Km UDG\R>:o "K6Ըr4` 9`pv z퀳,ehs*wR- S~oʈzKF5jC(@.6[:]3`1 xF!7^iHBfњW&Uˋ6o.k QR]H~/;9`ʡ %Q;C>5g}#ohkJR, hi=F堑UkEo@miJ"2].Fvy;:dj}ŰgR}.aa@Y:ʬH5V gS_R6>e4K X!ďL%%I$\8E[ z naއ|=NA:ƖЯg 2WvMUja?<|9'g`c !$d yAA,i!D{We ^F?Z] ty)7}Wx\v>?w `\*ˌϛ?VZYlr \_B;؄N 2<`ƃ4N< lj *;Fk1<,:"yMd.-VuKu܌F,dYWc;']t<=!,uǡ;қm{|bX:{6Ⱥu. AQ2%avqW̝󇐦VP?\fAo~U2a h,1R_[=R YB.8bVw.|&XP?#&q.$Dsv+8#;%$k$~]W9g=ɑZQKg"*5ѠY黻ҟ[&d[BO?:J-٩u A uħSN B$~v2'wrި -t>)jf0=]n5CyymJ% #ǙJ/po- 6+D{5O+iZp>OM#!"V28kf٠>rI`MaGrv%oC&{tQ)Y=eh#-1H'DJ*ЏƕUwkbB^E6ݤ9X<≳M65pj>?[(ϒ`XO;fͷϬ rU?ĴBcyi\Chz﷫w#lK7I)O$By t6HA' M `D}"qp5Ŝ"U6C@"rcyj+;cyKyǐıJ_+uj: V|ƾD6Q~ao.Ч|+n׎['FɩoMꆮ1C!SgE:t*@Sp$8xQd_2Xd# bHy>g~1K #fL#+06us+lMvT&֔%1C(-ԗP*hDy[\r]C!+!t۝9aH&w b>,Zg|o`@|iyQ}ju[aCX)\yC[8E>v^vr"Mhed6`G` Ne9߿ $Ku/ַniqne q.KB/h>Iq$aTѯil'nۓe溫ucw:-t 1-xoq-rvu_|S޳FA^GIS HV51,Zmɛ*kT8 mwQs0 ֻD< Z@SՍ0QU}A3Z!`8E>aO5L+mko$@ ݉,| ߳d.+T6Z 7ҕ `6{a`~No<.رy?s5XO](4tPʥ9QĨ%+A?]f`}ZT3|3!5U{4'MacˆnNgS+i{_q$6΁>`6V14>F]>g;*%2A Vj]\9UUS3X[xVvdq+TLlEyЉ?JT*뺏gef!Sg6Lz_lw4j\TWR/e8B[">?-Rӑ6lm x}N3IY+Jegn"6H*+a1T%NYk:񏽈)B( -s{\6ALk:ERۃ|_T ,~Y"A޻uـBKdr85ͬ38Yь<5H@]3DN>co! 嚞6coI:!k[Б4'g 8sxjzY72]IJ{YWr.ddnu,}衴_җPD/oco .E!?A#$6z9 l2Il+X*1 o+.R5hM`&7OL֮7؆i\Τh2Ԝ疭9ABE/&wIQ/\V;ek!txkhGѭJ9w65 +QU<@[R2u j5cGԄzŒ|-3 EfO[-!`_h@|71.Aεw/W㸖?'ZԳL C. 1Yq#a'EWQXt_B׻'c g0{6ZN/cW'B_˄~aVi;XxEjא1ڼMWL^#]{R=3voRz~Eµt0ױ(K =!̯;|oBstȦ2)SGy b2>◝F|-DI<2et4\CAI=2/; ϶BV-&@$tF BuT*38ͮZr]c# `EGB?'gdŒ#E֏W2:(ng0Xa:O ܘո^IiT;v.ʶazE)6҉tlJFn#6𪓂gND JzToQG~NheX+b%"ѷTOX/`"uVId4w@?EGzK]!0seˠE* 95aO2R.ʖa-חsK povvInuu-2|wA{E5w i{hn'sW_)gѲ*3%~+73YB{`>ֺ"5j7judؠWLoTZ<5&y"F])  L?xyַc{Ĕ@'}u)4)FҪ'KV_|yMWB4ev Rc:FNIPĥ APpGғKj=.eikKohJbyZ';%Ɯd݉qozV=&k7IFL^읃e7/0FIf!5u6qmp^՚WF缞l#+ J,p?.BSeuuHiOWwFJwߞ Ė]vw+~?p"3TU{lmUGE2ŶQEb'Ni 'Nc⩷T zpaO7c`ffq* +P^3pUCoŤsl\`k*4I?>ZK=~T:Q.U)|/VR{3,UϫnDT._0cM~P焟۾!d>L&IB{x?“?N dBF"f%J{mmDa1rd_*VW>Imx0ؕ>yC%;y_D;D|K/'M;J#}˕nWSl3K0['v,wTȐ΄}];n^R#_  B獸 nMߋie1E&BbiSs1e1b.wEJtrpL c V(O-mP M6Wv8ƣPU]'I磺+T&;9>q{4-m@kկ{Y ?'[##;(9<\-zP)2=>ptvMVSbMNUZgX³(>Q^ 4mVD#4 N)l$rxGxf HlwBdX}A &Fm. 3#BXmOݗF;R aCLk_4M7 >l+^s֦+A_!aa>>Ic=Wl̑B'wSB%Hvpo7С떏n*7rG>T 21g m1R1&}*N#Z4!WvNٓŞ1|OR!*c#,ksrĥLd-8&j]oS&@^sse~<²i]JCj(-C(3mI9M0ςjK,"$5 KZ*&&vk3{Hq= gQl? 3 ߓ0̔1i[ Wj\fXZ,QKvv!"9 D.BYBM[-`KQB㤚䡗CT(q/iȍd[4BV"A`Z@w 1?IW>ۃT{y(|ǻKGwrK$XX3Q`E};",q>kY3g 9 c(7p|`uIF LHd'w&GQ H.a"E}ڭ)Ҕ@^ѼfAN7PjfmW,u1k?hHFU:]WkOn6vi`TOQDPۡ_Y1_ `KhgfTcl#T+ ~)JE|L3N,ϩW9*x/ةs%`3B:Jޒ8&j< fgɶ@{..R2, 2||`J; ؝BlIq 22Zyfݶ_^7'Pud,=t "| N>/8 ^IIiS]PKqpD蟖Wvk! i+99qU'AbYB6dhH\M3bĵ "O"Dyr>%Z;g3L~G'4QG72ewsL#ܜQ6 .`I6,F=ܒ##Y,T:ZY۫%+YvAs{e6!`4 ܺX}&n_+T5Y{s<\:Cơl#|;&˺@/SkDž/FS6m%>2sX)7Hcwp06(Cl8ul},\ sfLM\:(yx~[m|9[:q`jes0 rAU~EHeQᮓELGRu GY>cja<-Ҏ/W!hkb8"OW 'qj579 "MMRX0A(y R{hRl9m[]ݸY# ;f4j=ϮBN6 5 c߆`/} JY#ԣ~رɜ  NBFFn$j"o"Z.`~n4=E7UeQ"(ULT5$_>("\F~n{7;mcE_6g^Q2f#Lsf>mxj S<ؠy_š1|# M5bh20"*0dj[;ش ;) 9 uYm59^v+ 72QkrB7vVuGYXǾ璥d(XE'>&00qhi~w- >ԃMjФޕz(v@GUQ OhtXªq̯sjS$(.?lń..*U>H|c9#^Uub(1 *5͡κ}80BTĘ䭐0l8:x P=D4tJPfI|©SpnGɮ0lcI?oRkNVmOy h/ܖnT9lm2B\Dty~dlzNjda@>q!1n+KH1O3@i.BQM{>^5aAMi; ױ|ſG$ do[Dž8Zy׌2j!:tLJC:娾̞] K~ELJʚW3O-0{V= Y<.#L>P6S^I# s`QEmOW׈xHRqh Tqc?s| fᗚ[D#qѫ7ݻȑN=8,# X;4cPGaKwjA| ^0!rC[; ”R3z_異ePFu%i9[k?+Ot: sK5v4J^H 6V2DFB$^"|V<00CUeJt}-a͑X}\PZ}&)d0/evb1,ϐF)yZ+2 P?sT{v53 )B4Q`qvt؟=V{Q7\XЋ1"rɟW͔}>' I\'"gOM-D#3/hgi go,m 4[ۑb1Uwv6@n"%ߵb=8n/1#j=kzmb3Ql|9t4 r퓱e#bXa/u_XHŒ7D%K_Ӊ5|eWo!-LuV@â.L ۻnq'7Kċ Iصz*D`Y6y1lKq;# Ϊ,(}`0`Arv>x,:|41>]#޲߶IA/:g1I.^9 CNb&Gwhwz5aj䭫"ѯ׎΂|ӯn jZ(Y?W 4caX3IR'|{ y\Lѫg˲&{0_`Zx-?ykM`KH ռeAȅx9+ Xb)Rqe`^T)&!@q1~-0^uPp7'Tm^MC6wtb7?h<ށ.{bsn(f(`݁˩?^mo٪k\Y eg҇$"XP @w+zKN-9am0(]+ E6Kp,!e#[c8(ȿKye}}'@Ɍ0d9e"6^:|W0oRABjm΍7 1vO10 jmP u%pl3C'~pN}`de>2f 0s<+ME#% n" eSփDžH6l!l"M5;Y2Ei_cַ9o/9UHÌGh] r0DO]gsn<pA% /WK#pdAFw˭!;Ⴃye'.mPc.ۥt _-RM yIRJpcW1P: l 8 5[ =,:Mt i^Y7>XX(O7UDf >UOzb:Vok/Z-'H`]لzcl.h*)؆Yv8 B& M>9XKġ!v (;8D+ů\Qb@(hl7dwBxJ$م殏TTpX87INTn facM0&wjpnkӛe 5rAW!9>ȏwWTz7׼9) ѭLn8LcL\Һ"y 1^~bn $vHPy2 pP m5%(ƒZRfc>~av~For ȇk yvp%*Y`Ŭcv cY4xEZW~i1d~@`r DNGn"v6Z.0ΤЈB)X0EWcL3QxHםV7ʦBK (ӚĹsFÂS$zJ{PO#J>1LνR/ƷQQڠZ6C5_f]"Z\}"-mVf13ȗ: +=WLq Qj]t*/~Tuɶ71{d]15$SIj3 [d_gٲw82ˆVʥ$"rle^)t"ִeHj Z0,Xt&\:<2L^Wjю 8}bJD J'*:KO}mC残 t֤mր6f"u7B"wU^~4HXmz)Y ]n` $zjmn3sD96hӬi0vUR$ 69tr҄55߹6kFmg}"~I&|0iQحVc;$> q w+mq$X7_2p&OULCemD(f[:^ :R;^ $x[[5)TR]z"'=PGud g݆+faq vj[*x 6@fViokN:>';!bmiCBATvC#Y9 dORr)lNIAo=/$c4e 󵡢ɒJXeoK8UlO3}/iCMe<v0D{1԰M[ht=: F)tl!g*49#ܱv X6TBsc$)tFޚ?qSdGdfJt{\VwaU! .r|}bKHV' u%('WWӶ_A:)3u;”qDQVs El .a݌H1d>o3S`GmTP%-O.3me <E;(-nmbmrtm2kɆu-@ )㠔ߜ*s &JiɒrPy[j^ 7CU ]pqk,3ץ惜"K>aL TO޿b+R=?kJ~++b@mNމ~oG=F[>ӯZx$`ZZl"6`䥉ضu2 j|]R8z%eBg:/ &cm G$#whnzx|&gâ(|ؠ#@H'] (=BMِ4||5YVǏX῜PuCpWi+p$l2Ϡ$[7왒I4}SmFQig6*"{/an \6i!\r@BNoju^x̌f{ۭ`P͔:|=ߢL83@H\Eċ)hTЍ>&Nrhݸ2Wª ui$8ՒOp3&j[l/4$zAy$;WѬD$}ڵ? i UTNLtw&&k^ J n=&Y(3(+`VOLT[. 3oo* ڑOwtg̫Y'"-N6I2:ͫmܻe/qRfbyCNOr"@ ^A#*n܉ws+hR4gi1DN60^+Ǯ^].5<JwBA+l#Ө֦5i7h*p!y]}_>)b`ik֬^\H 'l-N7"Sܖ=x W_ ے]s?[ϙ1G3wIK)Ġ#Rr,5 K@JfNq-=ٰ~ԍ7XNR"w௒dâjxHzNEuȬ#Q^M /,xpHof$ݞW]Jݓ=n컛 .`zwF7#&^jW/+=PV%tW-OPS0УM lF6:U ,%OK L(OT Dv3\ }V៽lD:䡗A]Wi(GHL_aj(1_hj1~ل2:(` d܏l) 7/3];s0r=,,c\Fy^u@l7%uz2M*3sD^v}03]c見M+[ѡ|&mQ'5uÀO" d*m(X8fUgd7Gn_lL{ȃ{ЎqҢa? nw~>,ьSn)Ӕg5{:Z% J_)56R`$(Rp}1_C:;'l?knZ\(c 's92XS6O?紆"' ›iJ^?ܢE|5P%5'Cw%;cBf°̘4!6@b7vxd"5W!&*U,pĞ'4US^+!Ʋ -xf~0pl|X"H8zy lhFyOC옿o6?>@Uʐ`_U;gCۤ}G`Xx!Xk2fo ;Ծq~\ ۗI,T ae5ǃ!=2C~itGR9زHM*Œ CV*yT4xdܑLZ2Ch wp>n `Fulb_pߊi #WX6bÏiS9Oi20K@ 䉕i$J=Ve#li v8I~N")G&`֕yТ咗[QY<ܳޕhdFm_a ҰBGdr Qr]%o%<l)E "yP_Sn{Kb\5{i~4`c* `U Ch`w=g"_O_vtV"~"OZ1?g9, jm|Vh>id:?WL|s+&S񶠮)ѱSϺYRKc;\POB°>209c 8gmWU[[S&3#FA]']n@oS_(T Ӏ? u M?Ƽmɇ`$w.~Uŭ U kKxu MUNg|h"/)[vR orl7@uWDDDsFE'MWq^ZBe= Wq+yUu?.D2]XKX Lpziٟ\?^Xu1F]Ӝ; AFpkl iqmtC4'՟JsDJ`y>yVv,TYrah~F_do1D=fϠ|"λ4j `zEn!%\dyU!<4#!F2-0\6č*uI2 )v:ɥɇaBk" ؞52b&{! /!sRhO穫>sbƹknC;V?'4`bq2W(+wS48M8D攼sRm x>x[t/2W.L[F+)>pVO=g4QO3P@79eCMStI~li)U v@D. E4m }s~W;1zaB'Uh?uA=v[ $Z4tdVK'iOZ/Y(Z!RoK1ˀv@1"mq?{3l ܦ!C4O ?<";¯P(K-cu#z&eN:Ԓ5+6SFX-N(4^oGU Kn㼘s,Bl.&g: ֐уi];{4C>XPkԒ[k֪$ Jp3"\oqPt1Xo/0n$>H x3lͱ̢[7l/_q=0޳Bw$=ypw9-oL@E3bOT;k6R%;* 8wG>"౸ZK@'0oIVN m w*2,yP E (@~X\m%./wf"..6n~Q~^յhl| kLc w'ǴVJE늳4 2meBǔi^e/eӇ=?=wj:a'ƻ<'sȂ^(ѣGrpK-C-`z{CPr 6b=KmH5hC<+z6K6z(n M?IЦC4ʒm0P݂W@0ʨ:Wt iI{?SEouTe]wk3&b="&Zbݣ| qmђjfV}j[Zl^[fTyTgT[G9 ޏǹW(9ɚ=a$Ӄm@A E SgVG*'K;VWX@+?V# NT{aΉgHY ZdKaSe/EbQh.Z 0hII CQ&Y b_}̃8B[$W%: l&.)귣8`oCĔPMa|W'PivoAqjV/+Mටro!u'/mYW*SOؚ;ں\۩`VQ+C5>* \F\=Umam8٢Nu>x> G{S쯓C+5/J*5?5q[\Kb菙 4SĤ,$䓠-z AN^=3ōgP̭ \^ 8V҉$85 AKH&&W]eD ƍ)Jf"[m%:O׮POoa/aLA j[rY OY̐6&+C5T]A{ᢺxv<H)t}7"B:M6 Ie5/HV⧏>q_g \]e3SK=Q79Y7N~OjFݑsɐF-U[JOGw|alޓaC>Q^Qz2`Sw9Ad[mE[cGX,H|tlWы IO Oi_ϕ A@Vy^3bSksB2;ΰ<֮H8Pz62d~)HMG47!9S3?x^m/"eQ9h=| dʾ4M{$0oB)Nisץ3^؛g^`e^۲攼- N8lg+*H:?{ b7no66Rk\@0kQ.FH?fOlQ9.*0k.6! ~\bm{Y\ "2EN;I2'Bڽ#/sr7wdp(F5zmͮտ'Mj4 η<@62p}2N_&'t0s &XGxALH-zQୂR5饭Dr+I]'|T?G /&$zoQIHDi(rކ Нkd~g1h0RE0Ūx5op<0=6"Le*x ~ƪmRb vSoq佌AZq*0Ahsp']k,7|\h@NST0R+?+P ~g"F_mJ я;J4 m 𭄸Prx}k|JݽmLPoH6юݸ)_ pKf,7c,z@܁hޚan( QC(]#-~ME@C$)Ծ)(DE+%v]A>NGےz w_*.;ʥ (~D@Y޲kʚEbJV= xuFb3U̒Vl[|#Tm/Ӭ`!|V“攻RK3T.sꪅQ䖅{+6QJ%6ڝnr1kOčBGF^` E3 5zΪ2%͑yۮE MicG I#՜4~[ڤ]Zbqtw҈M9GA;Ʉ-}4w`ҽ[WC[mA8mdl(aũ5ݚrpo|R=,ZHnY5nȡVw`8? ,ЀgﴖP͔ G8n"G| ɔgy?5xrq(V4C($ϪnLtcF> b%φЎ=ʔ׊s8wӝZnтONi#L;8Lx l'Vr8W돘ԖgmE[?8ڟfIII}h/Ü>O??o%n mʹS3sV-nnvTԠ ly|ܰW!P¾&uuLV`ץO 3Sj\|g5T Ә{N- ˽$QWo K\E%ЖBQ'༭#Q7w8bjr:~a9e/♄tnoHMpln1 sF'/m&aO ";OzqӉ姩[iQM>ɺ.ANBi/-Pɞq']Kx否zA,xf2KY#a$su~Dqc4U8AaAq$xMly>wV[׏,{hqOH>|0΋}w X 3EXs!+*se NPs8A!b]+Ruak:P_0񎱖fӹk;Fe<}Am> [T]!p#y* Mx4s}4ID OZ)51*TD:r\~̾zU?E&5@, nqQ7 I,doWoZӨ6z q0BѴNj}0b}qNxKpyJ !X7lO1!6_$ĭQǧn*En9ILtE!#!Ac;m+VRl|/CNKſu7'Ot%^JV&] .!-9͗H?0 /18[%0.%"?5F|ƹfaˌeIRnO͈Ć3)BEh]]z2-q:u,1=nN9&]a -_% "]B1v6X"&&~DՍ]0KH^.㓓{ˢ- }AMQܥo[ev&+*#g1-5Z7 k:w?kѮ +ΜKQ_1$.Uy`&óuzx/Y"iJêN&q[mꠕ({ǫpe 6>c b? EU%,VZm4H((Cd7I :^ߟ_]UWKA1xW?]F(j#zh[ǩ LSf:3U =~3̌N%>P~G|y [ƩO[}]>Ih2Ϟ`s}v+5l5^%'G`d;y+AIJL|EYV| A5f zYc)(}MfHOY*J@ɶ_Z"R2?ogt=&v ʜ5R1⹭ڍn=IzvzgӘFN 2B#geʠ1!s):Okӟ)O E`ƂBp(oߴ!Iυ+Z6˦Rd`jk oOR}5cNɨU*q[WCUb !pa ks.N<7@Qn sޱ ׹_`O +A8 ) ؠUq͡J|܊vS7῝O1Y>8Sa,`l7ǝŶ_&ᓉ"7>rd.@+l`kĆH׾IT\$#1Botj1[}t-">CLkNBx7-\wxY{(0i&g?_ XHYhDq8'QOj-0"A (GyX"E18Kб@8sk_Mn fq< h&ƻq}\򴖆1 oFu~.]CʏW;E(;T#S pDyca}Vz-qG]xॺxI@ɖ:Pf+y)फ़UJŨrѷh[e`Bw.VE5kPڭSE=c[VPE~¸9rtw;yHpXjABKяXai=bXw qάJF+%%2K%dyd3Gv:莦pG^,P}b3K7Rl5Mo9c r+]hBy?e:vHU$$ԪTyKa}>mHB%0nDnT:qLRL%\ 옂yVx]<ؕM4ح&ekV:9W$ړ.07,!**՞o};H\&>!"Hx/'~Gpu–瑍c\Y/޼cx"󛭴J8fu4鶒vZ?d6z&^9d8 L9+W|O&-pJ{p@{Xb*F/MGU&wWyL> M:!t-o L53\Hh§iX_sTe9dF4PϘDfWq$ǤWD-buG G信^R11uP_ w Y\bA*8wu)o7k'=X]a (`-DEc\ퟳˣZ[-^h ӦpVo:E L`(z]\}hbrE8եE<jrZ]r< Eu+G_g[q((1lRC68h@ځed^A0SP"kcԮ8yĹ]voNv1'EqO1zIbjVuom,Y%+hX]K}r FK٪ڔ$bGy,vyp'HA~Yt#"բ1,*ݲ 0[<P t*LSCx$LHR-!i)Uu.<~ |#R-0c,8O_$ ;ѣQ煑1-S qEں(j7i!9YF鷏2?dز;+[=(VbɾEi'S HapŲ˾m+v} );mG؛c zY-D IDOB枂yX7WJ6džUӔgaYEctZI~jy] N:}c!Fl>.iTCϟ;?1V vLaJv&&T5i `ӊ9@U#`Ir5&3k _[a$NvoAS\ѭtZ,o](/).~Ф`{!.M(juݙ'L<Iϣ?qI*S!5Lr `Gx ]{73muٵ5Mp4 sU؝~'S+Pd3< # h/E4QFXNjr˘u|:8 ڌ9Sx~Iy~XF!\d3 **=aŻ}zTpKX\4@\c)::ч˝ } 'VxOrlz2%ѭKQNUt6aJT:P0a:irȮ]Cv캿Z:u4Ja?gǻfNXHׁgi+FIk`0|Li'DrcKu3\T.&/s5؅|cНpzfjD>6㭩~FwV+!|ctZg:ܻ=97K'5ӊ$GFѮ/"Iޗa(7p|Z"{ץj(p#bsxpRM3uHMQ٪ЖZtB]#dEό]V # д6TMv#NŒhL;(GF6e<> dV=1 McP 3~hVb:[lAhDOd^N7krO+}E;@XKBYwAm+WlEKi'=IX=t81+m5b NǝpKrW m~O@lOa1)_zwK_\1HZ>*kC.Jw' g>>r;u$1p4yX=©opabri^hV~_?IG5~}`9.&/&U͔j`s@u5m:&Ii(@; qD{0-kӏiD0&KJzI~Z%XsIBMlz'?Sݬ~)imL6ȞXÄTKHwӘn/#I|6 x[D F|V]6I/ B[#Bmkw-c7i&d*ez֪|Sp2罉;l;6e!¬3r#a-|R껡uYb 0uFWPZM, "H}s4FDMToX _Fc)JrןS5=ˑq _ lR)oyy]A^\%誂TGdp1}Nc²5h-V\0D.RزnXkc浶`moANҟ6ĵ+7ىy·ه)'*Z?HUv4RkoSﹽr{Ӫ1jp(vhaeR*YV*8ύU).,v[T!=MkUPua:zբ1*~Z6t;6I^'SKKYGt%~E{|Zekb deWaoDΟ jҘ0j#t\>˛`%HhGH>&AW ϹxEfPC@*Q1ó%ūRV7igniB`Ͷ!x8.UvVt;^̬kȚDBJ[I{wJaWV=705b|EuǶr K"ٯ k<6gZS?Ws"UY OHE_:@w-Ϛ\.mD`n"0T/Ҩ∍[)%T&g+zPQњ1+率쳃*ӊJTn}u?x7N9| j[{u%58`J {:*ٿ2aCDj]I\' Ik@+{ dX>Ut7 ڦ룮L նo=tLޯnz4 5[>ʚ@~jc)X_ՊJׇYR}~i>xQ򸯜 PEm)f*o<PZ݋T ~@A" ]MD(g>>@e&.*@֡7ce f)  U۽瞵5B\ʖ`'o9RH8.WWS[X KX?_ ]-Ubc8T(T񝠰*ru; qҩǃE̕.~XcY ZKD,9Ur`EL4tk%O/fڙ%=7ť/־>| R#.FTsy9u`0ݔyq-gx=aƛ)K`Sτ9HRT8mbmX^y.R2hhHփ[bSrt}Z3{4-ŠP ȣ[UMyӖ`DɗWt~8x'Ԯ?b@T=-,796ff/̆sX-ɣIJb d)u=/8hΣ h+ɞ&dHHU}jF%cczt:JX>i\6ײV-dHӪ:߬7-t( ˜ˌ?'^yp5'r C;eH-Bbj-x*0Ly!ەZtf=@}g+4hꪰʠoT2p$5?BYdWioD9+iZ TԄf#F0"0Yndn ڡQac>a[<2^dX_bR i.nG(8֖_?ӬD6{x<*7;р u8w[DaغV)I*k< {5jқ- m8/_^LEחd;e !8,cfApcMArJT_Foq-J?.(k( Ä̲Oc~)!EJHmں40G$|h|͠?p̃pΦIhE5+\8K3{ԳM_[yHqͯCx/x_VHĕi״WLzǰf%/MZyU6_c`@IO4b#_^O@_ DzKzb`GW[B>^AyDUV((~u6R' [y@BK)Q)w;ah2_p"( \kJPNF #g-i-g#}HlL.ȡ ]B\w#9TXl{=Hڡձ.)҅fM|U1Ґv{Ji" t#)޹B:+>d vDÚ6sVDok B]%X}a?n\3uAk{2HheZz)U{{ua0snv5RPVR9Ak. Ƣӯ9Bְ:QQ_\y.E:Pms{ۿ p d&]כaۤrLB$)X믶G…aV?5ou&tWŹuk !߼zCl=gTA/p F9 6ݵAW5qYnK[WGQ#JY%(_2d^-JYBE=Xewt@_"w LTUTB4fqǯq:E={ ~]sp#_ t]zXA_ QR.~hp J%:AvInV~}לlVm *?5"Wv f6淽T*047J-m-$/,(X-})}":Z/GzV/x$*բ:U 5DbQU/.Sh M%Ab2U{@WJ{v󟈱~ۂ&Pn #Rz N;m$s;MI?og?ƗZhT"w^KQٔs N~>d^laUpZԶ{WUO}e^?oBo 歌Evp"iMI<̒Hi\KQQUZ"eqVL|d8̳GwTAu< =8ŧ 9C/~a͢ ?TX,7)Q] rBuo/QD=|nmF&RfgVzpJyi,UYΌ~E wF| +Ӹ_h-z#vZ_Z =Vxa$݊Fo0M‚J ㇌TOCM<~eTq?,jEmީ(a,r[r6 L{>lҎt_bEm@H׌hvQV~WZ%C:bۿDAm R⽭Mp IE}f3y< 1MhV:tU_"Hڛ{OaXFxQn~|JP ƿS.CoϾK#  Xya.NwOoylò(]3|B7}بb\ I)W"ZB 4W![0'[mncf.k{~sVs=2E'|m0{ .~001=[pRvvBQn{ep \:*&67y*$2L?>>@iihFR<640?AՍ4h1QޣnF>)xqѠl4d&q;jJ]$' :?l~Tc'TH#VC TXůtƩ][@?c(.~v>S [OHl$x!2EdB*oEKѬ4 ^"n;qB 0|hR)k/*&s(SC*1Ag8J%vؤc =ݨ;byY9F=,-`a%(ޝpVGDPŵq\YqdVLOj~ti_&J<ìTvH)g4 ['8XhP*g&XDeeܵnf+=KCp 1_ԡKV`Emq.FHƤ O}Q/eh6f0]!T%[KZjV/Õ =z{HQWKk޽sSҠsc4j}6L(5*$}0: H7)YG@6|-PddcZi>r)/ Bgq΅ݔxHbk@esz."(4TDBඊ=#(cG:PK& bQ`Ia$#NQ]YLcJiWq@JX[~#dẺ# 7lz93IqwaWL1H.Yf)9Xۢ|YTot'w=#63x>Pv3182 ct jtȎO>jܘᵂSgzg éLs%)='ǩ ēw7FJ۩)}gkvBkzS5j5kPCO?%iSw*÷Tv9{**xR0[]&,(Bb01{`X A!J9 =[&`ȍߋq*Qn5֢wI^wyUW02%BXgt 9a'0N#EM׶]U~ҡ> %/?=Ϡ#VKl芠2 Q*湀G2}І8[ׅkl;~\A*?'k;b *_ٱ t _"@c4 \ϴǒvFQW*M~_GE[RcA|0Ыܰ{Q}uk+ /w^\aOD M"20+9֘٩Xy؇xI 5HNޒTy*%uJĹ-)G?mX!Ửٛ߻GU$S!S׮1wԏ|t@ ORRsdzB{w 9tͤM n;.e +Hw&7 s M}&nx"VN! oTLTO.<֟ޞTe]P:NJyYꀖ>'\aJ#7X 'KX4=|5W],@Qh|WgژDŽf6j9GS~]HvׁiB8,^f+ h ^=i` (Xpk"pDLӖxpX6/2{X4 U$8 鿌>0w6QmF@'/II5pbjf*$֢%hvnζx'~c LMs++l ;] SDfMaa+_kc576w,+IԳ8JK% mS䑈!ƏhT‰BĖ:E$q@8X ;)n>).ӷc=\j@uMeAX򔂮(?8DÕ x ůg&↕=pvbPj҄ YP YTFM6^o BLګ2ِ_m/g3Ra=xaapkHgqEjZPĊGi 4S'֏v;+'N SG>*񻶢aDiƊ W_O]>J{>劥tMQinxlalSקvBdkwlD8L~=&m<@95ɻlxNe:Y6\7Sᣆlրq[}JX vb?n8jHRr5 uIq t*FTᯇqT8z*p[.o?/Ño~kRP&9F!Y WX-H\MRF# $FR]ȓ sH!!F=>0'hpu!϶RU R9CCD6@g ,EAd2 VkWr_ѵ}1nFnYTst6'2h!6%ɰv3?OI㞶FwR<Rb%!ZaͿd¯$!}]  (҃D[Zo{ri3٣uui,b4M-r}KL,U% [6"gQ!*6 |6%FE}hl-^=zc&CC< NlрRO W: U CA>DݰWPTqڱCrfZ?l"XWUgR)1,㟦lxd)x0(.kir|M/+Y (|P9AG';×K=B.ޙ(45VDϹuv9kAoaQpSt9>xY> iBϳdoD+c܄!(+)Z* ɼtR[1^noѝ*@)ׅI&?'( N}΅՜Sמ̌5=e jëiC\<\בKֵ(~hscӛ|^YQM[ =1 -wc43RYdd#L37Ѹ''1FV)aU& };dfzϟ#ƛN 8DE&Nz!tﳡ;LhM*q'.eAjEJܸ|7XIDHۿva" a:tvfv7כ TOYdUo< =ӭㅒ?mKzǡ"U}-UƝnb]Ry! -#ǀ_&^%cQdq#Iw4[`g7Ź9ʳv !{B+ʟM ~| jPy-+`1%/@8"k{7X==:Tyd6ڮ򫧥-a슌h"- )pm]FǂnKXuRٶ2+X883&qd;y;$գ9c4"5E~t9Z"ލD"A"Ow IN!V,蜲n#*=?I}/DZq 2σlx ز^H-C=\/F#ByK5cb:͜&-ٚ_׫]ʝ<:}ZA4lDi- e&[_Dn-Zup,x!oxn.ό1|{HFґ) θUuP|AnE@UIP<#.堂2.[(W%*F]"bTCX$٭t{~UP]dA-G$~##<X4\Vz? d^\{:p?sO:N kuD-#{>ٰ\ jk\ #+}}4~B v瘴j `jZn{ګd/t:kIÒK9ODzȂDˆt$Atjc8^kAWU'bV b6 ] A+fμ~ł )7E&$(Լr1:Lu4ia9j84}ӽx@\)ӴIz ckc__(ka~o7V@/E=A/PphNG4?};=#erwJ!റjz-% 5rx`ܼՊ'l=I]zs?&@)?H>A_{>cfͥYKо ұlP` *'HycwGm2`O#I_6yQGOЦr 3끀0_+*>xbt!M@{0*EwhyW ZvɖB HP?a(;$tkKZx (0k;'yo91WQ5^bk3Рj(\ z$dC=xұmЋP`sh8+t xADt_]J)®̷;yё!)5~}gǝ 9S6[de3Ox8在@s˚|O>t7&CS2^x4lK[`^Ɖpy(K}`R$xH@,\bt1TqwW7@AE+K>cwQT_xM/p|< Pa. %z k=dE>/e8U$o,BiG1enqsDSBYВ%VWsͽiGiξd‹T(Fxi"6ETexRB3l8=j_".Dg͜%!JH KOSP_ xZjP)QybojHsltD-&0:ju)I)i6 Ih~9W6QwkQԇR|'-?o?2!6ڝ&ZQD YqM%yIs]8`UIk^/ˌkPkDJ6L JCܢw,_!iA3.Sz֢l_k g ѳp U\Lm/e$YI[?n.neJ,>L\-մ)ZXZ`K0(Ǒ%azg-#mUy:T,tHOG7 0Hp ݜ21zJ+k\ϦlFn\LV:= Bp[^TlWDXX5mٞ/ևm#Wky۷Um=F\`GVrTq]?LZ[;YВ Ш}q,X"+3ry6_ 8xU&l )|[Ϥ~TY1=< DXݗ'яBKC*Sl2Ps[5 CZ$omyd4ZA/~Pp͌ ][ ~Oڞ5-&Fcqx'M P;e.㷊PHMa̪Qi-sf`#E(x-hВOoܵ+K',j֪$86<&s`}k'us[x# oi5NZǕbVFw/b)Bd0a &Mmu=vY, k}X,+{sEcT7U%9qEqTrj:׶8M,{LVv WɖL:ˍi“GgqR=10k$Vㅾ|d?`erhkqoo ?G;uC='fWB L<9~{!V!L3DG2'- }-m"z%ňEMA`bF#Y#^9`Yc|I`"/txz dǤ$b GW7E#E~gZ.h"͢8y=B#qm?:shq{f L'SL S>Y¹_:D@Vi`ߘh-O"x|~݋I2evbZkcmP"8y1dlOG':&C0 ߅.DC! k{̤Z{$epVFhq?~Ea3[_)&TtUwoPDIrԮ)bϘ(f3A|yJ5]g`%CdлVCtk[8g?:cya^J-M½^5mSSlˠMiD` gbV޻$#eTqVZق'cmȏW/:,uo|%n)_`DgkZ6o.X|[)[N-4d' /yvEP> _[)[Dp)_Rsخ~JLJNj

73N) hX-o]3rm\EC6>K_p015LSOIO\-6)G9_QY* 9آCgeL3u+:iES ֽQnq+K\NFSwO6~ A`UfLo9"W )U<ԑMRn;\fhPcL^ʗ8W&c7"JXURW=] .7p'#s?);?It )s<""wbQJt̹qƤ Ϊ76BF7 E au$Zl',,RPUNbF]S3\:FU jdY(?ݕ|*l3Uq:W`L[$c핷/p,*U8n.ȇ_Ž)O40X6*(>,=Vu7.=[9TmgHy$pc%-ƺ|D@wSuVaj)c :y]`DDf$D6n4p)xR֒-+r87WV\ J{Z&&cLBG(A $У&o ֬c+hR"z~ښXyjŌd_nRV=YpߠhmaAz-c?s4) YCsXjWCzfj!9^yU aY3u'/rS^0BZ" ) r}v_4؜7%œo=: `XT _nܣam[ Vx^WXb4Hc9 U:µLztң̩/\PoRP6ek,"8|}٨gХŬAs7TE3YhjNS!W82DJ2N=^M ѭe-bA^M_wTV~NE B]6^mBCj(Za'_{-'!6k:!;Qu9[ `>s"k ^ Ӌ%nxڏ0V;1"<6X-_׀Io-{}yv?|||uߔ}"~lRyЉ[7^ rtJ1wNAH7rկHpQGkfƳC^/(v{ y$BM06k1U$j{vETtftӜ+fES7Hʧl8>H2-DԊ)EBGRϳBFf>I42>,8*@ucn$-)/dO{q΢xߏu#M֡" "8fRo)ŎEb )$ہ o[P|r X=ƺjj.ЮMsͩ;Tgx{@BFpm$ıSⲛ8/w\EmD ZigY^O0TMx+AmW;:(?^ \6%212h VB;(:ƒSiӽ`B-E_7S ak~'oII\{7v@y=5WқK J։QU,i"9H^6j< tkM˦;+>}myKJgS(H2*ʼI KTfx5>]EW.̈5`Vq5>͑5]XHUQC\y4NQɢq`FDdi$b~q0jlJo=jw"qI2SW@Z ߹pW*lq-2r⪑ClY4$i0}fsm$ C~eγJ@s$U {Okw$'^qWU,aqj`JO@u{YtDC[@"KHs|n}%.?@K}US= fA8;U»wcxg fߊ8r~Bf0+`,y WQH(r{XLeC_gV$I14]WIN@BjLܿ%ց WU ;q05ˆubt8FS53fZ- GX 6ta'޲8 T@W/?O i]\[|J0)}\UGqD$9#cEx5zXuMQ'% ѭJ])Rm@Y\fq"/$gc55I2ZӒ6(y)ٙWǝY繻2NO+S>VR,=jӤ†naBvxN0A\tDHl2]59,}o GcXB ` )^iIP$+dW;?V01pb_s+͆uit/Vը*0?G"=p/'f2Ն ϩ%77U}hbꇡf@wYe) e':~Mb}Lo06Ap~.F ^}U%Oud%Mf)̾Fx9qI.ի_l`&ddÁ3R#Nw5oTv!\~^JuƻA'"_rg%j;~짓:~.e*$*Fd^+mܯgbNDD0(P@o>!LM?r7HMRkBAEOB^ccU#C8 {9a횓 W:a2β]H ۳}8y)4ϔ2[m[92da:R6UD9k~rq ,>DbCh/j{=oW0v4Ks>G2.uIoʖ&4atu6-JH-iذm wRj#|'r u:nG}Nf78~h ~.Buj1dZ'ЈVԈ &?S 曊hSoMR֕ȥ.i߻CAJ*0d:4ؓgy;CD!\Uu$7msJSg@k:,@v" ˔[ߛnb;3IY|ؿJ|K8"fǘ˞j}_lQo! RYu#^8S>Y,7L<>ŭv6!!YWan<_"+}=#܀H Xgl*܍^Qԗ %,z`Xyu!A+s{ˢ n!r"<+̏s+BD#K Z& tg7~A:O,۫ˤ[yC2j(1jVͱb&9fgQj3f S՘zg-SqdžPv?CMcDׄYMp<ؔN|?Q:!Gk-- %&Wÿ2G˗$ͩ= %yƽDoPdG45 h;4!WIۂ>_hOmJ|Wk)&vۭz ޥ.M4ϦbTȣ C81W?ʉ8e]O{L8A 6Yǁ̞eA\D.::-/ilo#M,0Q.^Y1`Ra"YX6pZ^RaALoǽǹ5O0o8G }g\PJm3Ȅ!T, 3r2uj:ŀN ybIj+!cv z B-n ]"\q pAAzTK2:b,l#Q\ `z0̓IzjhFs*Ian9£:8n>ͼ`nT嬏$.1yߜU|ڔa`.W (+q(_GA 1C4Yjvql$Xho_ g[˲ewxʾ>Dwζ+k٘e'?uI괍"lraw_vrT&q B#FsJ! Nrdȼ%_+ }&suȤr:19oKD",EiU@q\I\iC_$^УOoCM*sJa݈0G)ՍS: *hKp)dlO';ͳ Y8h6DJK.3cg$eU$x֨t -T &NF-/&9f&y=xcZ & fikG.c~#ypd:2@!a3121צ(K7w(ǍR|C8/$> (ث@, <͔ޮ8|x|NZEJT-3(ܬ^f!M)2]9V7ns2|O2A5gS} ;IK31'#%xk_&7Nӧ.[ǰSS'HXzlzgvm-uݪLڸ\7kc/n"@Û R 5,AMN_O0Ŋ5T[k) at$k@ut&UY1q0I\tGW˜d$Qi܈Tݱ0{9@L8FLM΄}5 JϜ 1XpaXWnlV(gOr-`=c:i/z>(֒䜬_fk_:q )L8ܨp;;MOPB=.Tj.i´$'@Z2vio*$ʑCQ<0J^{Z*]{MWT {7u.*d&8π"~ k҆>_+m^e\2>`Δ($߁2ִF%~&-+ 쵖|c>6:c:W&Kc<\;@fk}R _؋pmr7b8̯5) 2t|r1ϼ|)[q<a^̩W%z})خtAe|q}2 PuIukTbDZ>ڢ9Y@դfb8&a]懔jKS~1e )OZib "崳g/wl;᝕\VR;ӌ)ڏyDLu_nW[r4h8)JLkJ›/Em<*6hКgM8~Rtq.3MNH܍U[*4|j&h(8"q<4.G`{0b2|Ih0 Mvَ{W[m'(ey Sx<4)o(Ɖ*OQMLc8'v yqbZ1? N`{ @+72\2%!/>^dpnMBi"g4}\_Abev ikF,C-RAx (p"'ρ Fn^(xc5Xh9C/L%D'k!Ňx;Tq}NNL9[IHj4xmdD%Ed9V2 6nMk]Kcy0pEtbF?{q{aUhMzd/ٴe1(bb;R;p13i-0|DI -n8j*\[AE}땝C9-*[+?yyF蓮vVz#nZ)bGRG\H7u*F#Y{˟'L5EAu~|ѕpHsI9D1kok9|Hq\nP\wB$~~"U1a>X+&bn\M>ʋFh/E8J? erD(EЅs&P}Q '*- tC@j!k9ki$yl7 L |O=3-iɽZز*ND Oڹʼ9Gi1aE?TE|؍i86oRB`>{:_w`LCF7Y72pOQ$P [YfoAZ٫JߺCgnRKg8XulxxiK\UF#Guhq0K1?ޡqv>uKeexr$ɭcQy~@3rNݫT-'nJOEn]S$gTy9{hN Fڸ`D,Fu%ol?8LIs/k\h$ \zF_"R m:(ٴ5Vͦrڲr4^#>y7|;6x'sL".ۃˌRRǨ%.ԕqF,_oU4Y+Bn-%ncSĦA~ۢC#rk ޺ 6mt<(%kLTcٵBoQEsM2c[KyNzmXcW{ۑ:B*<. 0nn7 ;\AqE|vMqKkY\'Q-}~'r+\&[?}vr!XfBDQ>i .޽f~YzF#>^@Nfax7ñ; צܢ9t?3Er+R2\u/ KxԼe߲3+wkST i~hSװ8ьgbr ^j^Іb WFjg!Nǧh-Cĸ[IK:?uXl>$˨=}NdSv]{sgF7)X$jقgq;Qh Rc1 zM<'˗4o}p1d$ &=sFpr@L,r'T)G#=l%g@;>aa*a28cfCXB[]5ok3q<$HT^M8&LA6KI(dJ+8?+<"fqМ(qa5VExD^}w`*&X*U[K@ÊN^݇xTc !4h"''[\M'3Nd]Y:Z Nc CwIs9띶vNIaDž5-,ܞ::~Jkg>1AΚgQOnXoD8Ia,tV.Шce4yN 47+" Nvl}hA<}^wTŕ%ҭ\ZBg2}> +'–JfvuDQP.`>oli'®\Q9$=4n!9ߣ.DḱcqMvN@AVlhZ):#VB4+W|PV56'ܐhwr-0|5'³CSCbSucGkvxJk bR{5,!+>@^ PW򭫱wpU w+;-${ ?U ; Gq!c$ET5M-х1(\)]эP<0KEbWyo:}_5jI Vg/x[0T(kqcGkV_1"gG5h$wKHn|A4fn HwzbZ#1<|C4!Kේ}&|  %; [-Is\ *9ySP+!?":fxY] Hz@gZ#=CEJOt3$nH0LPζ yd{& (x?wTJ d_4L'xWąW a"W8ZX%`ۃeԦ@Vx t?KSF-۴ykWpF-Rǃ oM<%5^bp2.KZL݌ =ۊa1%BuH&5mJΕqIB0q^?\>W^i{+ZNtC>kFa-R&|`EH%B_,{HpjLe~TVDh|%=TGS*>W]kw4ߝ"Жz6UgO*.VZVp|]e&e84x*5+;;n?6=|js .ުKj=u82 A '7Iw>Te]x8r5'sY#$h "m3?`tvLk I]b8g2ĝRY!IVq#<ΜM'[E\ I b J +‹\hmN O_L*<[-I<z /./xBBb2T".2+e?f qR|Z׶E*3rNj ) Ya¬S}˲a؄ _$UqO?o Pszk(*Hs؀@Qr[k|gĪ|K)!֥6lrU(H˱@v!U |[./eS(8Zs.t#RtXǛ^dJ.wf<(ݏżNV,e:&.I]UZ iVҬVf9Ƭ pHny;d@^[qw 6Tqy%)0ڤZQ.A&$Nʈ|@}'͔4tktTy;ȓ/xp>/&٩`g h4n~ֵizKM?UG;ڊ(*0j]ĜXҠO]=)0~(nW^45d;Wunl'If;q99҆f%Az6uۍ)PH9D,̊FB?y;5n wO2om5G0sU3e 4<` =NO40vYj|X/4>(lI-k}C`$lb{E9Id4Bp&V JN0Pj1JU;aҦhtSO٫|a=ۉj69UnC{vJtB.3X璐f3]U{0Lg$ t? T~iABƶ.!i:h |-__X%Wz]|i\Zv_'Žlc83O^sXM[)W:}@K#+'RC3u u Ӛ8 ٺfE`VM;PQixİgXrNIJ|k fyݠabUaQf'虀 NMwJs$c*;}S_#[&47r&cÕRxΪtw:w|%jvźr򽕵B)s!|OG~\[RUޚ|c_y1೔I D֝ MvO9c֓hi])y;׈C)YJ="f+: V`:6A.]hXNYK[F'chC>DU&'KO rk"՜UJ660$])8O'|g%Sʼx {ޟwY~8ݛ/Xʄ~ÑCUmc%עla txlT\C`(16`K(bƬ uJP&XSEc ʛZk^˪[\6H\7J$#q*3:.ߦsq=|h0 % F{z"t0 w)Ҋ_D$pkߵ#IK`}HN#839_B<65R>CT'"L5UO96n\[$"EC e9Mk7NˌAlS(ZKh"N܆=To #hQ>%Cyu8+c2+ PmKWhٵ`[]:ې˟E%?qLdn601'M-CTCW/Vy*-;>YIhH;fyD;M? uBr, fuyJTY6 i{$yG6Z>e٢B~Szpfdk#(8 ryᦤكlNgLb74|3LܼJw֍;46^EY$誖EO4&Z%0x(A8BE9Dhn3;WP}hlgz '_R{f ;/C~U"[dqmG!|>il gj47<{"vi\CN@@%b8{[Vdj#:ԙ-:W1lcDWLaJ;#<@Ɩ:^Ve IMH \NldSbQ*UWk\>xb&m-Qa{mVaIH=-rb/GrVpP{*`'i1d 'BsD| e+MfO(C ^>)ނBԻN}N9Z}n&$EHИU= Aэ)%ZXG r !qT[98sʵDqS>1l(B:.?GGB̗t(ƒ }w}^:V$b39ݯt?(? p/rhZ :FRT!1} '0J11Vp tV&cscscg-4DBVq_.*pp%7hVb@F'h'KHDNPЌޮ-죦~}[1Ө"d+WB?IgTߴQ:6Rhw 98 %_b@Y٤ڠ@ =*Oiu GJ2(o )Tzɛ8?˙Ĭ"yݾ{N > AfJ('(vʁ .VA@mV$ ,@_Sy9ǧ2]ˡ 'UEO@٨X5yjr% $0#@~U>F*{|hVCyVq@㥌g:&WI #|I 7Eu A{c{u@҄?5Ϥ*>~1QŞϕkzRʄu]T mxmBz@NUSXWLQ%vJ<MJ醚;\eP_ʮ`t^Qh$.=kDy 12o|.v*e|FBVg` "ǐ rŒxxOĄXv`J:YJ#$9K \e%4E1`8yXW+Ok`qUWߣlM/L4)nVj+#SH-S2`!XGY7W Wc]k.ZUI=&ܶJ\&H8GfӾVOT3c 9"a99ԄOP/c5HJJQ%gQ9 OZ2Jve`1 uz %[~^hV }4"CA5`t"m\](wZT>H,YEU-*~+u̞ >0Ԝު?2b~f%*RRDVD L5\mڷͧl"ХJ~+P_9@fW~Շ<+\MnGc-\yZrޫj+iq#g'goC)8,7O}ǫ }fM39~iYꖑ6nՍ[N{i$qmҢ/ :=8woFcOe]`4 '6^ەN ˰q2!QV};tv _I-rp J9DhK_7EL'g;Yr= Heʮ^]c) ϓ ^urL!ˣ-(+猭8J[-&wC}qn>{Vʤ+_T9.zpRs .⤍)s ^!ZlOVY퐌FbԚh1>E٣Kr-#XyNKCPqC\Ƥmhއ;zL "x{'못检ddt-޺jƉuE;#{Wm,;,Y7BBt\/crn/}G/w_Iiu׋}W>ϔTRxrbW2  h'm*}x= |G!;۟jN0 νMjdqIK }=#Ŵ`rN&Ҙ'Ժdfd!+1fR'25Jy]OF—IHL8|1y]dH~_]r.TܺfY0:tKw5h5YBūRrFǿr`p*d/็jh_Dg`3T*Q,BmZ |ZGqc4 hdh"U3q[  Rw4u4? Ъ'^:܉܊MċV*o&R'wonBcOtgo7N|[dU !$Bw~A岛L +D{tPmx+Y$2Fz$,f-%`ù\•%: at-̂'EM3tQxaA$(1  B\mDVo%"0@O-P`U{H|ZݝʊRH9pkpCn۰%2lZl̗ 6K&>^hyluHqWD)!Qi7'N4nOQxz}DT+!>/y4J[pdE:LJJEa@Mf*3FG_MQKZQAjg8/LL+UWG?*m8.Vv:bg:xh'B [܅ANjO}9KǍ݅ m)t _VeMb0 "0ԓ3{xyC#lɹŁ8a4wg|.+\$ |u*ik(oS$tX[IbR!3r61 U7f+^H~5كE%͋>D_nGWP 3j,:N79ȬBb٤cQ@ 6E{W$20YVKQVUWQY'cL<&t&է>~̣[d֧Q(tx!@q)_}᤼ݕ:8O62qbe!a1//eBG6qd?e;Ҕ9&jYgD#dyd'}%(EtY\Bf)aU4Śja\^/n`GQZך?ɈU=e!7a~[*t&w"(H8-|070701007070100000032000081a407070100000037000081a407070100000041000081a4LosLoss0707010000004b000081a407070100000063000081a4vOCk >56{