
Speaking with Cryptographic Oracles 

Daniel “unicornFurnace” Crowley 
Application Security Consultant, Trustwave - Spiderlabs 



The Speaker and the Presentation 

A quick introduction and a few distinctions 



Copyright Trustwave 2010 Confidential 

The Speaker 

•  Daniel Crowley 

•  Web application security d00d 

•  IANAC (I am not a cryptographer) 

 
dcrowley@trustwave.com 

@dan_crowley 
 
 



Copyright Trustwave 2010 Confidential 

The Presentation Topic 

•  Finding and exploiting: 

•  Encryption Oracles 

•  Decryption Oracles 

•  Padding Oracles 

•  With little to no cryptographic knowledge 

•  More crypto knowledge, more useful attacks 



NOT the Presentation Topic 

•  The Oracle 

•  We are not being harvested 
for energy by robot 
overlords 

•  Maybe 

•  ORACLE 

•  If you Google “<any crypto 
word> oracle” it’s all you 
find 

•  Google, the Internet Oracle 

•  While awesome, not what 
we’re talking about 

 



Copyright Trustwave 2010 Confidential 

NOT the Presentation Topic 

•  Crypto g00r00s like Adi Shamir 

•  While also awesome and totally related, not the topic 

•  New attacks on old crypto 

•  Mistakes are easy enough to make in implementation 

•  How Padding Oracle attacks work 

•  Too much time to explain 

•  Too many good resources 



Copyright Trustwave 2010 Confidential 

For the people playing drinking games 

•  APT iPad 
•  APT China, cyber-war 

•  Cloud mobile botnet 
•  Cloud cloud Twilight APT 

Sun Tzu 
•  RSA HBGary botnet cloud 

APT 

•  Cyber-war? 

•  LulzSec??? 
 
 
APT China cyberwar weeaboo, 

cloud mobile LulzSec. 



Primer on Cryptographic Terms 

And some basic mistakes 



Copyright Trustwave 2010 Confidential 

Very basic terms 

•  Cipher 
•  A system for scrambling and unscrambling data to protect it 

•  Key 
•  A variable used to permute the cipher 

•  Initialization Vector 
•  A second variable used to randomize the cipher 

•  Plaintext 
•  The data in readable form 

•  Ciphertext 
•  The data in unreadable form 

•  Encryption 
•  Turning something you can read into something you can’t 

•  Decryption 
•  Turning something you can’t read into something you can 



Stream and Block ciphers 

Stream 

•  Encrypt one 
character at a time 

•  Key is used to 
generate pseudo-
random numbers 

•  Those numbers are 
used to transform 
plaintext to 
ciphertext 

Block 

•  Encrypt X 
characters at a time 
•  X is the block size 

•  Key is used to 
directly transform 
plaintext to 
ciphertext 



Very basic mistakes 

•  Using a keyless cipher 
•  Completely insecure if 

cipher is ever discovered 
•  Reusing keys and/or IVs 

•  Makes Oracle attacks far 
more dangerous 

•  IV reuse can seriously 
weaken stream ciphers 

•  Think WEP 

•  Leaking data from crypto 
operations 
•  Foundation for Oracle 

attacks 

Flickr	  Crea+ve	  Commons	  -‐	  Rosino	  



Copyright Trustwave 2010 Confidential 

What is an Oracle? 

A system which takes queries and provides answers 

•  Queries might be 

•  Plaintext 

•  Ciphertext 

•  Answers might be 

•  Corresponding plaintext 

•  Corresponding ciphertext 

•  Info about operation 

•  Sample from PRNG 

Picture	  by	  D	  Sharon	  Prui;	  –	  Crea+ve	  Commons	  



Seek the Oracle 

How to identify cryptographic Oracles 
From a black-box perspective 



Copyright Trustwave 2010 Confidential 

Decryption Oracles: Identify input 

•  Identify where encrypted input occurs 

•  Identify all points of user input 
•  For Web apps: GET, POST, URL, Cookie, headers 

•  Identify those which may be encrypted 
•  Encrypted data is generally encoded 

•  Base64 

•  ASCII hex 

•  URL encoding 

•  Decoded data is likely encrypted if seemingly random 

•  Modification of values may result in decryption-related errors 



Decryption Oracles: Find decrypted output 

•  May be reflected 

•  Normal output 

•  Error 

•  May be given in later response 

•  May be inferred from modified 

output 

•  May be stored and not shown 

•  Additional vulnerabilities may 

reveal output 



Copyright Trustwave 2010 Confidential 

Decryption Oracles: An example 

Scenario 
•  Consider “GetPage.php?file=<encrypted_stuff>” 

•  Opens a file to be included based on encrypted input 
− Allows for quick page additions 
− Prevents file inclusion attacks…? 
− Assumes properly encrypted input is sanitary 

•  Errors are verbose 

Usage 
•  Feed the script some ciphertext 

•  Record the “file” the error tells you wasn’t found 



Encryption Oracles: Find encrypted data 

•  Often found in 

•  Cookies 

•  Hidden variables 

•  Databases 

•  File resident data 

 

Flickr	  Crea+ve	  Commons	  –	  Gideon	  van	  der	  Stelt	  



Copyright Trustwave 2010 Confidential 

Encryption Oracles: Determine point of entry 

•  Frequently encrypted data 
•  Client-side state variables 
•  Passwords 
•  Financial data 
•  Anything sufficiently sensitive 

•  Being encrypted is not enough 
•  We need to be able to manipulate it 
•  And see the ciphertext 



Copyright Trustwave 2010 Confidential 

Encryption Oracles: An example 

Scenario 
•  Consider “auth” cookie, encrypted 

•  Username + “:” + password_hash + “:” + timestamp 
•  Assume usernames can’t contain “:” character 

•  No delimiter injection L 
•  Timestamp to control expiration 

Usage 
•  Register with any username, log in 
•  Copy cookie value and replace any encrypted input with it 

•  Can’t use colons or control suffix 
•  Might not matter 



Copyright Trustwave 2010 Confidential 

Padding Oracles 

•  Input must be encrypted 

•  Must be a padded block cipher 

•  Valid vs invalid padding is distinguishable 

•  Padding Oracles are essentially decryption oracles 

•  Using the CBC-R technique they are also encryption Oracles 

•  May be limited in that the first block will be garbled 



Exploiting Cryptographic Oracles 

Against bad crypto and bad crypto usage 



Copyright Trustwave 2010 Confidential 

Attack 0: Crypto recon examples 

•  Check for static key, IV, and deterministic cipher 
•  Encrypt the same plaintext twice 
•  Check to see if they are identical 

•  Check for stream vs. block ciphers 
•  Encrypt plaintexts of various sizes 
•  Compare plaintext size to ciphertext size 

•  Check for ECB block cipher mode 
•  Encrypt repeating plaintext blocks 
•  Look for repetitive ciphertext 



Copyright Trustwave 2010 Confidential 

Attack 1: Bad Algorithms 

•  Occasionally, people try to make their own algorithms 
•  And they’re not cryptographers 

•  And it doesn’t end well 

 
Real homespun crypto seen in the wild: 

 
•  Each character is replaced with a “random” but unique 

selection of two or three characters 
•  Characters are separated by the letter “K” 
 

“hello” might become “KqIKefKPrPKPrPKuJXK” 



Copyright Trustwave 2010 Confidential 

Attack 1: Bad Algorithms 

Is there substitution? 
Submit “AAAA” : Get “KLoKLoKLoKLoK” 

•  There is! 
•  We can already see patterns, too 

Is there transposition? 
Submit “AABB” : Get “KLoKLoKaBeKaBeK” 

•  No transposition 
•  We can see more patterns 
•  The “K” seems to be a delimeter 
•  Substitution doesn’t change on position 

•  One replacement per letter 



Copyright Trustwave 2010 Confidential 

Attack 1: Bad Algorithms 

Submit “BABA” : Get “KaBeKLoKaBeKLoK” 

•  Exactly what we expected 

 

Submit “abcdefghi…XYZ0123456789” : Get entire key! 

•  We now submit one of every character in sequence 

•  The Oracle tells us what each maps to 



Copyright Trustwave 2010 Confidential 

Attack 1 and a half: Revenge of Bad Algorithms 

Others use a simple xor operation to encrypt data 
 

P xor B = C 
C xor B = P 
C xor P = B 

 
 

Wikimedia	  Commons	  -‐	  Herpderper	  



Copyright Trustwave 2010 Confidential 

Attack 1.75: Bride of Bad Algorithms 

For some simple ciphers like xor 

Encryption = Decryption 

THUS 

Encryption Oracle = Decryption Oracle 

THUS 

Such ciphers are made completely useless by leaking output 

THUS 

For God’s sake stop using xor 



Copyright Trustwave 2010 Confidential 

Attack 1: Bad Algorithms 

 
 
 

DEMO 



Copyright Trustwave 2010 Confidential 

Attack 2: Trusted Encrypted Input 

•  People tend to reuse keys and IVs 
•  If we can encrypt arbitrary data in one place 
•  It may work in another 

•  If devs don’t think you can mess with input 
•  They probably won’t sanitize it 
•  Encrypted inputs with MAC aren’t totally tamper-proof 



Copyright Trustwave 2010 Confidential 

Attack 2: Trusted Encrypted Input 

•  Encrypted password with MAC in cookie 
•  Checked against database on each request needing auth 

•  Find encryption Oracle with the same keys & IV 
•  Use encryption Oracle to encrypt ‘ or 1=1-- 
•  Plug resulting value into cookie 
•  Laugh all the way to the bank 



Copyright Trustwave 2010 Confidential 

Attack 2: Trusted Encrypted Input 

 
 
 

DEMO 

 



Copyright Trustwave 2010 Confidential 

Attack 3: Let the client have it, it’s encrypted 

I.  Find a decryption Oracle 

II.  Find encrypted data 

III. Decrypt that sucka 

IV.  ????? 

V.  PROFIT!!! 

This attack also relies on key/IV reuse 



Copyright Trustwave 2010 Confidential 

Attack 3: Let the client have it, it’s encrypted 

 
 
 

DEMO 

 
 



Copyright Trustwave 2010 Confidential 

What encryption? 

•  If you can find 

•  An encryption Oracle 

•  A decryption Oracle 

•  You can encrypt or decrypt any data 

•  As long as keys and IVs are reused 

•  Algorithm doesn’t matter 

•  Padding doesn’t matter 

•  Cipher mode doesn’t matter 

All encryption which uses the same key and IV is now useless 



Copyright Trustwave 2010 Confidential 

Questions? 

 
 

Daniel Crowley 
Trustwave – SpiderLabs 

@dan_crowley 
dcrowley@trustwave.com 

 


