% [INTRO_OCTAVE_02.tex] <[FORM_INTRO_OCTAVE.tex] 2014.06.29 % This IS the modified form from <ma famille> % The sections heading are those of 52 [sect-01.tex] %%%%%%%%%%%%%%%%%%%% INPUT OF *.MAC FILES %%%%%%%%%%%%%%%%%%% % CONTENTS OF THE THREE *.MAC FILES % [format.mac] shortcuts for horizontal and vertical spacings (\th,\mni), special symbols (\club) % [fonts.mac] fonts% % [macros.mac] boxes, time stamp, fractions \input fonts.mac \input format.mac \input macros.mac \input pstricks % need for centring \input epsf % need for importing eps5.94 in \topglue 0pt % p. 156 \topskip -10truept % p. 141 % this works for my famille \nopagenumbers \pageno = 5 % \headline = {\centerline {\running \ifnum \pageno > 5 Section 02: Common functions \fi} } % end headline % the foot line appears on the first page of the section \footline = {\centerline {\ssi \folio } } % end footer % \vsize = 8.50 in {\hsize = 5.94 in % FOR 8.5 X 11 %\vsize = 21.6 truecm = 8.50 in %{\hsize = 15.1 truecm = 5.94 in \pni \voffset = 1.0truecm % linux \hoffset = 0.70truecm % linux \topskip = 20 pt \baselineskip = 14pt % default = 12pt %%%%%%%%%%%%%%%%%%%%%%%% SOF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {\rm % %%Type . %\phantom{header} \centerline{\bfsixteen Section 02: Common functions} % title of section % \vskip 12pt % \centerline{\bf Trigonometric functions} \mni {\bf sin({\tt a})}, {\bf cos({\tt a})}, {\bf tan({\tt a})}.\q [{\tt a} is measured in radians, multiply by ${180}\over{\pi}$ for degrees] % \bni % \centerline{\bf Logarithmic functions} \mni %\pni The ``natural logarithm'', usually written ln({\tt a}): {\bf log({\tt a})} \pni The logarithm to the base 10: {\bf log10({\tt a})} % \bni % \centerline{\bf pi, e, complex numbers} % \sni % {\bf pi} % \sni % {\bf e}: the base of the ``natural logarithm'' % \sni % {\bf i}: $\sqrt{-1}$ % % FORM FOR OUTPUT \mni % {\tt % for programs \obeylines \parindent = 0pt \parskip = -1.0 pt %was-2.5pt THIS LEAVES MORE SPACE octave:1> {\bf pi} \qq\q ans = 3.1416 \% \%\qq e, the base of the ``natural logarithm'' octave:1>{\bf e} \qq\q ans = 2.7183 \% \%\qq always use {\bf (\en )}, even when not strictly necessary octave:2> (e){\bf \^{}}(2) \qq\q ans = 7.3891 \% \%\qq square root of a negative number octave:3> {\bf sqrt(}-5{\bf)} \qq\q ans = 0.00000 + 2.23607i \% \%\qq cube of a complex number octave:5> (2 -5i){\bf\^{}}(3) \qq\q ans = -142 + 65i } % end \tt % for programs % \bni \centerline{\bf Displaying the answer} \mni Octave stores values to a very high degree of accuracy. If you want to see the answer to 15 places, use {\bf format long}. % \mni % {\tt % for programs \obeylines \parindent = 0pt \parskip = -1.0 pt %was-2.5pt THIS LEAVES MORE usually writtenSPACE octave:3> format long octave:4> pi \qq\q ans = 3.14159265358979 % } % end \tt % for programs \mni To show your answer in ``scientific'' (``floating point'') notation use:\pni {\bf format short e}\pni \qq or\pni {\bf format long e} \sni To show the answer to 2 decimal places, use:\pni {\bf format bank} [money in dollars and cents is shown to 2 decimal places] % \mni % {\tt % for programs \obeylines \parindent = 0pt \parskip = -1.0 pt %was-2.5pt THIS LEAVES MORE SPACE octave:6> format short e octave:7> 1/7 \qq\q ans = 1.4286e-01 \% octave:8> format long e octave:9> 1/7 \qq\q ans = 1.42857142857143e-01 \% octave:10> format bank octave:11> 1/7 \qq\q ans = 0.14 % } % end \tt % for programs \bni \centerline{\bf Absolute value, rounding the answer etc.} \mni absolute value: {\bf abs}\gl({\tt a})\pni round to the nearest integer: {\bf round}\gl({\tt a})\pni round downwards: {\bf floor}\gl({\tt a})\q [=\th ``greatest integer function'']\pni round upwards: {\bf ceil}\gl({\tt a})\pni round towards 0 : {\bf fix}({\tt a})\pni % sign function: {\bf sign}({\tt a}). This takes on the values % 1,0,-1 %depending on whether {\tt a}> 0, % {\tt a}=0, {\tt a} < 0\th.\pni \sni The following function is not built-in; we will create it in the next section. \pni \bibl decimal part: {\bf decimal}( ) % \bni Octave has many more built-in functions, and we will see some of these when we talk about vectors and matrices. \bni % \centerline{\bf Try these} % \sni \item{1.} Find $\log_{10}\Bigl({10\,}^{271.6}\Bigr)$. \sni \item{2.} Compute ${10\,}^{0.5}$. Compare the answer with the Octave square root command: {\bf sqrt}(10). \sni \item{3.} Evaluate the numbers 2.71 and -2.71, first using the definitions of {\bf abs}, {\bf round}, {\bf floor}, {\bf ceil}, {\bf fix} and {\bf sign} and then by using Octave. % % %%%%%%%%%%%%%%%%%%%%% KEEP THIS ENDING!!! % %%%%%%%%%%%%%%%%%%%%% \vfill\eject %% } % ends \rm \par} % ends \hsize \bye