% tkz-obj-lua-points.tex % Copyright 2024 Alain Matthes % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3 % of this license or (at your option) any later version. % The latest version of this license is in % http://www.latex-project.org/lppl.txt % and version 1.3 or later is part of all distributions of LaTeX % version 2005/12/01 or later. % This work has the LPPL maintenance status “maintained”. % The Current Maintainer of this work is Alain Matthes. \def\fileversion{5.10c} \def\filedate{2024/01/23} \typeout{2024/01/23 5.10c tkz-obj-lua-points-spc.tex} \makeatletter %add ExCenter %<--------------------------------------------------------------------------–> % Specific points %<--------------------------------------------------------------------------–> % barycentre %<--------------------------------------------------------------------------–> \def\tkzDefBarycentricPoint(#1){% \begingroup \path[coordinate] (barycentric cs:#1) coordinate (tkzPointResult); \endgroup } \let\tkzDefBCPoint\tkzDefBarycentricPoint \def\tkzDefBarycentricPointTwo(#1,#2,#3,#4){% \begingroup \pgfextractx{\pgf@x}{\pgfpointanchor{#1}{center}} \pgfextracty{\pgf@y}{\pgfpointanchor{#1}{center}} \tkz@ax\pgf@x % \tkz@ay\pgf@y % \edef\tkzcax{\strip@pt\tkz@ax}% \edef\tkzcay{\strip@pt\tkz@ay}% \pgfextractx{\pgf@x}{\pgfpointanchor{#3}{center}} \pgfextracty{\pgf@y}{\pgfpointanchor{#3}{center}} \tkz@bx\pgf@x % \tkz@by\pgf@y % \edef\tkzcbx{\strip@pt\tkz@bx}% \edef\tkzcby{\strip@pt\tkz@by}% \edef\tkztpmx{\tkz@Dec{(\tkzcax*(#2) + \tkzcbx*(#4))/(#2 + #4 )}} \edef\tkztpmy{\tkz@Dec{(\tkzcay*(#2) + \tkzcby*(#2))/(#2 + #4 )}} \pgfcoordinate{tkzPointResult}{\pgfqpoint{\tkztpmx pt}{\tkztpmy pt}} \endgroup } %<--------------------------------------------------------------------------–> % milieu de deux points %<--------------------------------------------------------------------------–> % possible \coordinate (#3) at ($(#1)!0.5!(#2)$); %<--------------------------------------------------------------------------–> % \def\tkzDefMidPoint(#1,#2){% % \begingroup % \path (#1) -- (#2) coordinate[pos=.5](tkzPointResult); % \endgroup % } \def\tkzDefMidPoint(#1,#2){% \begingroup \pgf@process{\pgfpointanchor{#1}{center}}% \tkz@ax\pgf@x% \tkz@ay\pgf@y% \pgf@process{\pgfpointanchor{#2}{center}}% \tkz@bx\pgf@x% \tkz@by\pgf@y% \advance\tkz@bx by\tkz@ax\relax% \advance\tkz@by by\tkz@ay\relax% \divide\tkz@bx by2\relax% \divide\tkz@by by2\relax \pgfcoordinate{tkzPointResult}{\pgfqpoint{\tkz@bx}{\tkz@by}} \endgroup } \def\tkz@DefMidPoint(#1,#2,#3,#4){% \begingroup \tkz@ax#1% \tkz@ay#2% \tkz@bx#3% \tkz@by#4% \advance\tkz@bx by\tkz@ax\relax% \advance\tkz@by by\tkz@ay\relax% \divide\tkz@bx by2\relax% \divide\tkz@by by2\relax \pgfcoordinate{tkzPointResult}{\pgfqpoint{\tkz@bx}{\tkz@by}} \endgroup } %<--------------------------------------------------------------------------–> \def\tkz@simicenter{0} \pgfkeys{/tkzsimicenter/.cd, ext/.code = \def\tkz@simicenter{0}, int/.code = \def\tkz@simicenter{1}, ext }% \def\tkzDefSimilitudeCenter{\pgfutil@ifnextchar[{\tkz@DefSimilitudeCenter}% {\tkz@DefSimilitudeCenter[]}} \def\tkz@DefSimilitudeCenter[#1](#2,#3)(#4,#5){% \pgfqkeys{/tkzsimicenter}{#1} \begingroup \ifcase\tkz@simicenter% \tkzDefExtSimilitudeCenter[#1](#2,#3)(#4,#5) \or% 1 \tkzDefIntSimilitudeCenter[#1](#2,#3)(#4,#5) \fi \endgroup } %<--------------------------------------------------------------------------–> % Internal Similitude center % Two circles have two similitude centers namely the internal center of % similitude Si and the external similitude center Se. %<--------------------------------------------------------------------------–> \def\tkz@numhomo{0} \pgfkeys{ /tkzSimilitudeCenter/.cd, node/.code = \def\tkz@numhomo{0}, R/.code = \def\tkz@numhomo{1}, node, /tkzSimilitudeCenter/.unknown/.code = {\let\searchname=\pgfkeyscurrentname \pgfkeysalso{\searchname/.try=#1, /tikz/\searchname/.retry=#1}} } \def\tkzDefIntSimilitudeCenter{\pgfutil@ifnextchar[{\tkz@DefIntSimilitudeCenter}{\tkz@DefIntSimilitudeCenter[]}} \def\tkz@DefIntSimilitudeCenter[#1](#2,#3)(#4,#5){% \begingroup \pgfqkeys{/tkzSimilitudeCenter}{#1} \ifcase\tkz@numhomo% \tkz@@CalcLengthcm(#2,#3){tkz@rt}% \tkz@@CalcLengthcm(#4,#5){tkz@rf}% \or% 1 \def\tkz@rt{#3}% \def\tkz@rf{#5}% \fi \pgfinterruptboundingbox \pgfextractx{\pgf@x}{\pgfpointanchor{#2}{center}} \pgfextracty{\pgf@y}{\pgfpointanchor{#2}{center}} \tkz@ax\pgf@x % \tkz@ay\pgf@y % \edef\tkzcax{\strip@pt\tkz@ax}% \edef\tkzcay{\strip@pt\tkz@ay}% \pgfextractx{\pgf@x}{\pgfpointanchor{#4}{center}} \pgfextracty{\pgf@y}{\pgfpointanchor{#4}{center}} \tkz@bx\pgf@x % \tkz@by\pgf@y % \edef\tkzcbx{\strip@pt\tkz@bx}% \edef\tkzcby{\strip@pt\tkz@by}% \edef\tkztpmx{\tkz@Dec{(\tkzcax*\tkz@rf + \tkzcbx*\tkz@rt)/(\tkz@rf + \tkz@rt )}} \edef\tkztpmy{\tkz@Dec{(\tkzcay*\tkz@rf + \tkzcby*\tkz@rt)/(\tkz@rf + \tkz@rt )}} \pgfcoordinate{tkzPointResult}{\pgfqpoint{\tkztpmx pt}{\tkztpmy pt}} \endpgfinterruptboundingbox \endgroup } \let\tkzDefIntHomotheticCenter\tkzDefIntSimilitudeCenter %<--------------------------------------------------------------------------–> % External Similitude center %<--------------------------------------------------------------------------–> \def\tkzDefExtSimilitudeCenter{\pgfutil@ifnextchar[{\tkz@DefExtSimilitudeCenter}{% \tkz@DefExtSimilitudeCenter[]}} \def\tkz@DefExtSimilitudeCenter[#1](#2,#3)(#4,#5){% \begingroup \pgfqkeys{/tkzSimilitudeCenter}{#1} \ifcase\tkz@numhomo% \tkz@@CalcLengthcm(#2,#3){tkz@rt}% \tkz@@CalcLengthcm(#4,#5){tkz@rf}% \or% 1 \def\tkz@rt{#3}% \def\tkz@rf{#5}% \fi \pgfinterruptboundingbox \pgfextractx{\pgf@x}{\pgfpointanchor{#2}{center}} \pgfextracty{\pgf@y}{\pgfpointanchor{#2}{center}} \tkz@ax\pgf@x % \tkz@ay\pgf@y % \edef\tkzcax{\strip@pt\tkz@ax}% \edef\tkzcay{\strip@pt\tkz@ay}% \pgfextractx{\pgf@x}{\pgfpointanchor{#4}{center}} \pgfextracty{\pgf@y}{\pgfpointanchor{#4}{center}} \tkz@bx\pgf@x % \tkz@by\pgf@y % \edef\tkzcbx{\strip@pt\tkz@bx}% \edef\tkzcby{\strip@pt\tkz@by}% \edef\tkztpmx{\tkz@Dec{(\tkzcax*(-\tkz@rf) + \tkzcbx*\tkz@rt)/(\tkz@rt - (\tkz@rf))}} \edef\tkztpmy{\tkz@Dec{(\tkzcay*(-\tkz@rf) + \tkzcby*\tkz@rt)/(\tkz@rt - (\tkz@rf))}} \pgfcoordinate{tkzPointResult}{\pgfqpoint{\tkztpmx pt}{\tkztpmy pt}} \endpgfinterruptboundingbox \endgroup } \let\tkzDefExtHomotheticCenter\tkzDefExtSimilitudeCenter %<--------------------------------------------------------------------------–> % Harmonic Division %<--------------------------------------------------------------------------–> % A , B , C ,D CA/CB = DA/DB %<--------------------------------------------------------------------------–> \def\tkz@numdha{0} \pgfkeys{/tkzharmonic/.cd, ext/.code = \def\tkz@numdha{0}, int/.code = \def\tkz@numdha{1}, both/.code = \def\tkz@numdha{2}, both, }% \def\tkzDivHarmonic{\pgfutil@ifnextchar[{\tkz@DivHarmonic}{\tkz@DivHarmonic[]}} \def\tkz@DivHarmonic[#1](#2){% \begingroup \pgfqkeys{/tkzharmonic}{#1} \ifcase\tkz@numdha% \tkzDefDivHarmonicExt(#2) \or% \tkzDefDivHarmonicInt(#2) \or% \tkzDefDivHarmonicBoth(#2) \fi \endgroup } \def\tkzDefDivHarmonicExt(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkz@VecKOrth[](#1,#2) \tkzGetPoint{tkz@px} \tkzDefMidPoint(tkz@px,#2) \tkzGetPoint{tkz@py} \tkzInterLL(tkz@px,#3)(#1,tkz@py) \tkzGetPoint{tkz@pz} \tkzInterLL(#2,tkz@pz)(#1,tkz@px) \tkzGetPoint{tkz@px} \tkzInterLL(tkz@py,tkz@px)(#1,#2) \tkzGetPoint{tkzPointResult} \endpgfinterruptboundingbox \endgroup } \def\tkzDefDivHarmonicInt(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkz@VecKOrth[1](#1,#2) \tkzGetPoint{tkz@px} \tkzDefMidPoint(tkz@px,#2) \tkzGetPoint{tkz@py} \tkzInterLL(tkz@py,#3)(#1,tkz@px) \tkzGetPoint{tkz@pz} \tkzInterLL(#2,tkz@pz)(#1,tkz@py) \tkzGetPoint{tkz@py} \tkzInterLL(tkz@py,tkz@px)(#1,#2) \tkzGetPoint{tkzPointResult} \endpgfinterruptboundingbox \endgroup } \def\tkzDefDivHarmonicBoth(#1,#2,#3){% \begingroup \edef\tkz@k{\fpeval{#3}} \path[coordinate] (barycentric cs:#1=1,#2={\tkz@k}) coordinate (tkzFirstPointResult); \path[coordinate] (barycentric cs:#1=1,#2={-\tkz@k}) coordinate (tkzSecondPointResult); \endgroup } \let\tkzDefHarmonic\tkzDivHarmonic %<--------------------------------------------------------------------------–> % golden ratio %<--------------------------------------------------------------------------–> \def\tkzDefGoldenRatio(#1,#2){% \begingroup \tkzDefPointWith[linear,K=\tkzInvPhi](#1,#2) \endgroup } %<--------------------------------------------------------------------------–> % triangle center %<--------------------------------------------------------------------------–> \def\tkz@numtc{0} \pgfkeys{/tkzDefTriangleCenter/.cd, ortho/.code = \def\tkz@numtc{0}, orthic/.code = \def\tkz@numtc{0}, centroid/.code = \def\tkz@numtc{1}, median/.code = \def\tkz@numtc{1}, circum/.code = \def\tkz@numtc{2}, in/.code = \def\tkz@numtc{3}, ex/.code = \def\tkz@numtc{4}, euler/.code = \def\tkz@numtc{5}, symmedian/.code = \def\tkz@numtc{6}, lemoine/.code = \def\tkz@numtc{6}, grebe/.code = \def\tkz@numtc{6}, spieker/.code = \def\tkz@numtc{7}, gergonne/.code = \def\tkz@numtc{8}, nagel/.code = \def\tkz@numtc{9}, mittenpunkt/.code = \def\tkz@numtc{10}, feuerbach/.code = \def\tkz@numtc{11}, circum } \def\tkzDefTriangleCenter{\pgfutil@ifnextchar[{\tkz@DefTriangleCenter}{\tkz@DefTriangleCenter[]}} \def\tkz@DefTriangleCenter[#1](#2){% \begingroup \pgfqkeys{/tkzDefTriangleCenter}{#1} \ifcase\tkz@numtc% \tkzOrthoCenter(#2) \or% 1 \tkzCentroid(#2) \or% 2 \tkzCircumCenter(#2) \or% 3 \tkzInCenter(#2) \or% 4 \tkzExCenter(#2) \or% 5 \tkzEulerCenter(#2) \or% 6 \tkzSymmedianCenter(#2) \or% 7 \tkzSpiekerCenter(#2) \or% 8 \tkzGergonneCenter(#2) \or%9 \tkzNagelCenter(#2) \or%10 \tkzMittenpunktCenter(#2) \or%11 \tkzFeuerbachCenter(#2) \fi \endgroup } %<--------------------------------------------------------------------------–> % OrthoCenter %<--------------------------------------------------------------------------–> \def\tkzOrthoCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzUProjection(#1,#2)(#3) \pgfnodealias{ort@pta}{tkzPointResult} \tkzUProjection(#1,#3)(#2) \pgfnodealias{ort@ptb}{tkzPointResult} \tkzInterLL(#2,ort@ptb)(#3,ort@pta) \endpgfinterruptboundingbox \endgroup } \let\tkzDefOrthoCenter\tkzOrthoCenter %<--------------------------------------------------------------------------–> % GravityCenter modif 3.03 %<--------------------------------------------------------------------------–> \def\tkzCentroid(#1,#2,#3){% \begingroup \pgf@process{\pgfpointanchor{#1}{center}}% \tkz@ax\pgf@x% \tkz@ay\pgf@y% \pgf@process{\pgfpointanchor{#2}{center}}% \tkz@bx\pgf@x% \tkz@by\pgf@y% \pgf@process{\pgfpointanchor{#3}{center}}% \tkz@cx\pgf@x% \tkz@cy\pgf@y% \edef\tkzcax{\strip@pt\tkz@ax}% \edef\tkzcay{\strip@pt\tkz@ay}% \edef\tkzcbx{\strip@pt\tkz@bx}% \edef\tkzcby{\strip@pt\tkz@by}% \edef\tkzccx{\strip@pt\tkz@cx}% \edef\tkzccy{\strip@pt\tkz@cy}% \edef\tkztpmx{\tkz@Dec{(\tkzcax + \tkzcbx + \tkzccx)/3}} \edef\tkztpmy{\tkz@Dec{(\tkzcay + \tkzcby + \tkzccy)/3}} \pgfinterruptboundingbox \pgfcoordinate{tkzPointResult}{\pgfqpoint{\tkztpmx pt}{\tkztpmy pt}} \endpgfinterruptboundingbox \endgroup } \let\tkzBaryCenter\tkzCentroid %<--------------------------------------------------------------------------–> % CircumCenter %<--------------------------------------------------------------------------–> \def\tkzCircumCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzDefMediatorLine(#1,#2) \pgf@process{\pgfpointanchor{tkzFirstPointResult}{center}}% \tkz@ax\pgf@x% \tkz@ay\pgf@y% \pgf@process{\pgfpointanchor{tkzSecondPointResult}{center}}% \tkz@bx\pgf@x% \tkz@by\pgf@y% \tkzDefMediatorLine(#1,#3) \pgf@process{\pgfpointanchor{tkzFirstPointResult}{center}}% \tkz@cx\pgf@x% \tkz@cy\pgf@y% \pgf@process{\pgfpointanchor{tkzSecondPointResult}{center}}% \tkz@dx\pgf@x% \tkz@dy\pgf@y% \tkzInterLLxy(\tkz@ax,\tkz@ay,\tkz@bx,\tkz@by)(\tkz@cx,\tkz@cy,\tkz@dx,\tkz@dy)% \endpgfinterruptboundingbox \endgroup } \let\tkzDefCircumCenter\tkzCircumCenter %<--------------------------------------------------------------------------–> % InCenter %<--------------------------------------------------------------------------–> \def\tkzInCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzDefBisectorLine(#3,#1,#2) \pgf@process{\pgfpointanchor{tkzPointResult}{center}}% \tkz@bx\pgf@x% \tkz@by\pgf@y% \tkzDefBisectorLine(#3,#2,#1) \pgf@process{\pgfpointanchor{tkzPointResult}{center}}% \tkz@dx\pgf@x% \tkz@dy\pgf@y% \pgf@process{\pgfpointanchor{#1}{center}}% \tkz@ax\pgf@x% \tkz@ay\pgf@y% \pgf@process{\pgfpointanchor{#2}{center}}% \tkz@cx\pgf@x% \tkz@cy\pgf@y% \tkzInterLLxy(\tkz@ax,\tkz@ay,\tkz@bx,\tkz@by)(\tkz@cx,\tkz@cy,\tkz@dx,\tkz@dy)% \endpgfinterruptboundingbox \endgroup } \let\tkzDefInCenter\tkzInCenter %<--------------------------------------------------------------------------–> % ExCenter %<--------------------------------------------------------------------------–> \def\tkzExCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzDefBisectorOutLine(#2,#1,#3) \pgf@process{\pgfpointanchor{tkzPointResult}{center}}% \tkz@bx\pgf@x% \tkz@by\pgf@y% \tkzDefBisectorOutLine(#2,#3,#1) \pgf@process{\pgfpointanchor{tkzPointResult}{center}}% \tkz@dx\pgf@x% \tkz@dy\pgf@y% \pgf@process{\pgfpointanchor{#1}{center}}% \tkz@ax\pgf@x% \tkz@ay\pgf@y% \pgf@process{\pgfpointanchor{#3}{center}}% \tkz@cx\pgf@x% \tkz@cy\pgf@y% \tkzInterLLxy(\tkz@ax,\tkz@ay,\tkz@bx,\tkz@by)(\tkz@cx,\tkz@cy,\tkz@dx,\tkz@dy)% \endpgfinterruptboundingbox \endgroup } \let\tkzDefExCenter\tkzExCenter %<--------------------------------------------------------------------------–> % EulerCenter neuf points %<--------------------------------------------------------------------------–> \def\tkzEulerCenter(#1,#2,#3){% % mileu de orthocentre et centre cercle circonscrit % passe par les midpoints par les pieds des hauteurs \begingroup \pgfinterruptboundingbox \tkzDefMidPoint(#1,#2) \pgfnodealias{eu@mic}{tkzPointResult} \tkzDefMidPoint(#1,#3) \pgfnodealias{eu@mib}{tkzPointResult} \tkzDefMidPoint(#2,#3) \pgfnodealias{eu@mia}{tkzPointResult} \tkzCircumCenter(eu@mia,eu@mib,eu@mic) \endpgfinterruptboundingbox \endgroup } \let\tkzNinePointCenter\tkzEulerCenter \let\tkzDefEulerCenter\tkzEulerCenter %<--------------------------------------------------------------------------–> %Symmedian center Lemoine point Grebe point K %<--------------------------------------------------------------------------–> \def\tkzSymmedianCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzDefMidPoint(#2,#3) \pgfnodealias{eu@mic}{tkzPointResult} \tkzDefMidPoint(#1,#3) \pgfnodealias{eu@mib}{tkzPointResult} \tkzUProjection(#2,#3)(#1) \pgfnodealias{ort@pta}{tkzPointResult} \tkzDefMidPoint(#1,ort@pta) \pgfnodealias{eu@mid}{tkzPointResult} \tkzUProjection(#1,#3)(#2) \pgfnodealias{ort@ptb}{tkzPointResult} \tkzDefMidPoint(#2,ort@ptb) \pgfnodealias{eu@mie}{tkzPointResult} \tkzInterLL(eu@mic,eu@mid)(eu@mib,eu@mie) \endpgfinterruptboundingbox \endgroup } \let\tkzLemoinePoint\tkzSymmedianCenter \let\tkzGrebePoint\tkzSymmedianCenter \let\tkzDefLemoinePoint\tkzLemoinePoint %<--------------------------------------------------------------------------–> % Spieker center %<--------------------------------------------------------------------------–> \def\tkzSpiekerCenter(#1,#2,#3){% \begingroup % we need to get the midpoints \pgfcoordinate{tkz@m3}{% \pgfpointscale{0.5}{% \pgfpointadd{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#2}{center}}}}% \pgfcoordinate{tkz@m2}{% \pgfpointscale{0.5}{% \pgfpointadd{\pgfpointanchor{#1}{center}}% {\pgfpointanchor{#3}{center}}}}% \pgfcoordinate{tkz@m1}{% \pgfpointscale{0.5}{% \pgfpointadd{\pgfpointanchor{#2}{center}}% {\pgfpointanchor{#3}{center}}}}% \tkzInCenter(tkz@m1,tkz@m2,tkz@m3) \endgroup } \let\tkzDefSpiekerCenter\tkzSpiekerCenter %<--------------------------------------------------------------------------–> % Gergonne center Ge %<--------------------------------------------------------------------------–> \def\tkzGergonneCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzInCenter(#1,#2,#3) \pgfnodealias{tkz@ptin}{tkzPointResult} \tkzUProjection(#2,#3)(tkz@ptin) \pgfnodealias{tkz@oca}{tkzPointResult} \tkzUProjection(#1,#3)(tkz@ptin) \pgfnodealias{tkz@ocb}{tkzPointResult} \tkzInterLL(#1,tkz@oca)(#2,tkz@ocb) \endpgfinterruptboundingbox \endgroup } \let\tkzDefGergonneCenter\tkzGergonneCenter %<--------------------------------------------------------------------------–> % Nagel center Na %<--------------------------------------------------------------------------–> % INa = 3 IG. Nagel point % correction 02/02/20 \def\tkzNagelCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzDefExcentralTriangle(#1,#2,#3){tkz@a,tkz@b,tkz@c} \tkzUProjection(#2,#3)(tkz@a) \pgfnodealias{tkz@tgta}{tkzPointResult} \tkzUProjection(#1,#2)(tkz@c) \pgfnodealias{tkz@tgtc}{tkzPointResult} \tkzInterLL(#1,tkz@tgta)(#3,tkz@tgtc) \endpgfinterruptboundingbox \endgroup } \let\tkzDefNagelCenter\tkzNagelCenter %<--------------------------------------------------------------------------–> % Mittenpunkt %<--------------------------------------------------------------------------–> \def\tkzMittenpunktCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzExCenter(#2,#3,#1) \pgfnodealias{tkz@a}{tkzPointResult} \tkzExCenter(#3,#1,#2) \pgfnodealias{tkz@b}{tkzPointResult} \pgfcoordinate{tkz@ma}{% \pgfpointscale{0.5}{% \pgfpointadd{\pgfpointanchor{#1}{center}}{\pgfpointanchor{#2}{center}}}}% \pgfcoordinate{tkz@mb}{% \pgfpointscale{0.5}{% \pgfpointadd{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}}}% \tkzInterLL(tkz@a,tkz@ma)(tkz@b,tkz@mb) \endpgfinterruptboundingbox \endgroup } \let\tkzDefMittenpunktCenter\tkzMittenpunktCenter \let\tkzDefMiddlespoint\tkzMittenpunktCenter %<--------------------------------------------------------------------------–> % Feuerbach point %<--------------------------------------------------------------------------–> \def\tkzFeuerbachCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox \tkzEulerCenter(#1,#2,#3) \pgfnodealias{tkz@euler}{tkzPointResult} \tkzInCenter(#1,#2,#3) \pgfnodealias{tkz@in}{tkzPointResult} \tkzUProjection(#2,#3)(tkzPointResult) \tkzInterLC(tkz@in,tkz@euler)(tkz@in,tkzPointResult)\tkzGetFirstPoint{tkz@fe} \tkzRenamePoint(tkz@fe){tkzPointResult} \endpgfinterruptboundingbox \endgroup } \let\tkzDefFeuerbachCenter\tkzFeuerbachCenter %<--------------------------------------------------------------------------–> % Orthogonal center %<--------------------------------------------------------------------------–> \def\tkzOrthogonalCenter(#1,#2){% \begingroup \pgfinterruptboundingbox \tkz@VecK[\tkz@koeff/(1+\tkz@koeff)](#1,#2) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkz@VecK[\tkz@koeff/(\tkz@koeff-1)](#1,#2) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \tkzDefMidPoint(tkzFirstPointResult,tkzSecondPointResult) \endpgfinterruptboundingbox \endgroup } %<--------------------------------------------------------------------------–> % End Triangle center %<--------------------------------------------------------------------------–> %<--------------------------------------------------------------------------–> % Projection center of excircles %<--------------------------------------------------------------------------–> \def\tkzDefProjExcenter{\pgfutil@ifnextchar[{% \tkz@DefProjExcenter}{% \tkz@DefProjExcenter[]} } \def\tkz@DefProjExcenter[#1](#2,#3,#4)(#5)#6{ \begingroup \SetUpPTTR{#1} \foreach \name [count=\i] in {#5} {% \global\expandafter\edef\csname tkz@pt\i\endcsname{\name} } \foreach \name [count=\i] in {#6} {% \global\expandafter\edef\csname tkz@ppt\i\endcsname{\name} } \tkzDefPointBy[projection=onto #3--#4 ](\tkz@pttr@name \csname tkz@pt1\endcsname) \pgfnodealias{\csname tkz@ppt1\endcsname\csname tkz@pt1\endcsname}{tkzPointResult} \tkzDefPointBy[projection=onto #3--#4 ](\tkz@pttr@name \csname tkz@pt2\endcsname) \pgfnodealias{\csname tkz@ppt1\endcsname\csname tkz@pt2\endcsname}{tkzPointResult} \tkzDefPointBy[projection=onto #3--#4 ](\tkz@pttr@name \csname tkz@pt3\endcsname) \pgfnodealias{\csname tkz@ppt1\endcsname\csname tkz@pt3\endcsname}{tkzPointResult} \tkzDefPointBy[projection=onto #2--#4 ](\tkz@pttr@name \csname tkz@pt1\endcsname) \pgfnodealias{\csname tkz@ppt2\endcsname\csname tkz@pt1\endcsname}{tkzPointResult} \tkzDefPointBy[projection=onto #2--#4 ](\tkz@pttr@name \csname tkz@pt2\endcsname) \pgfnodealias{\csname tkz@ppt2\endcsname\csname tkz@pt2\endcsname}{tkzPointResult} \tkzDefPointBy[projection=onto #2--#4 ](\tkz@pttr@name \csname tkz@pt3\endcsname) \pgfnodealias{\csname tkz@ppt2\endcsname\csname tkz@pt3\endcsname}{tkzPointResult} \tkzDefPointBy[projection=onto #3--#2 ](\tkz@pttr@name \csname tkz@pt1\endcsname) \pgfnodealias{\csname tkz@ppt3\endcsname\csname tkz@pt1\endcsname}{tkzPointResult} \tkzDefPointBy[projection=onto #3--#2 ](\tkz@pttr@name \csname tkz@pt2\endcsname) \pgfnodealias{\csname tkz@ppt3\endcsname\csname tkz@pt2\endcsname}{tkzPointResult} \tkzDefPointBy[projection=onto #3--#2 ](\tkz@pttr@name \csname tkz@pt3\endcsname) \pgfnodealias{\csname tkz@ppt3\endcsname\csname tkz@pt3\endcsname}{tkzPointResult} \endgroup } %<--------------------------------------------------------------------------–> % Point on circle %<--------------------------------------------------------------------------–> \def\tkz@numptcirc{0} \pgfkeys{/tkzptcircle/.cd, through/.code args = {center #1 angle #2 point #3} { \def\tkz@center{#1}% \def\tkz@angle{#2}% \def\tkz@through{#3}% \def\tkz@numptcirc{0}}, R/.code args = {center #1 angle #2 radius #3} { \def\tkz@center{#1}% \def\tkz@angle{#2}% \def\tkz@radius{#3}% \def\tkz@numptcirc{1}}, through in rad/.code args = {center #1 angle #2 point #3} { \def\tkz@center{#1}% \def\tkz@angle{#2}% \def\tkz@through{#3}% \def\tkz@numptcirc{2}}, R in rad/.code args = {center #1 angle #2 radius #3} { \def\tkz@center{#1}% \def\tkz@angle{#2}% \def\tkz@radius{#3}% \def\tkz@numptcirc{3}} } \def\tkzDefPointOnCircle{\pgfutil@ifnextchar[{\tkz@DefPointOnCircle}{% \tkz@DefPointOnCircle[]}} \def\tkz@DefPointOnCircle[#1]{% \begingroup \pgfqkeys{/tkzptcircle}{#1} \ifcase\tkz@numptcirc% \tkz@@CalcLengthcm(\tkz@center,\tkz@through){tkz@radius} \or% 1 \relax% \or% 2 \pgfmathparse{\tkz@angle\space r} \let\tkz@angle\pgfmathresult \tkz@@CalcLengthcm(\tkz@center,\tkz@through){tkz@radius} \or% 3 \pgfmathparse{\tkz@angle\space r} \let\tkz@angle\pgfmathresult \fi \path (\tkz@center) --++(\tkz@angle:\tkz@radius) coordinate(tkzPointResult); \endgroup } %<--------------------------------------------------------------------------–> % Point on line %<--------------------------------------------------------------------------–> \def\tkzDefPointOnLine{\pgfutil@ifnextchar[{\tkz@DefPointOnLine}{\tkz@DefPointOnLine[]}} \def\tkz@DefPointOnLine[#1](#2,#3){% \begingroup \path (#2) to [#1] coordinate (tkzPointResult) (#3); \endgroup } \makeatother \endinput