%! TEX program = pdflatex \documentclass[oneside,solution]{seu-ml-assign} \title{Assignment} \author{Teddy van Jerry} \studentID{61520522} \instructor{TeX - LaTeX Stack Exchange} \date{\today} \duedate{20:00 March 21, 2022} \assignno{1} \semester{SEU --- 2022 Spring} \mainproblem{Linear Algreba} \begin{document} \maketitle % \startsolution[print] \problem{Basic Vector Operations} \subproblem{} $\|\mathbf{a}\|_2=\sqrt{1^2+2^2+3^2}=\sqrt{14},\quad \|\mathbf{b}\|_2=\sqrt{(-8)^2+1^2+2^2}=\sqrt{69}$. \subproblem{} $\|\mathbf{a}-\mathbf{b}\|_2=\sqrt{9^2+1^2+1^2}=\sqrt{83}$. \subproblem{} $\mathbf{a}$ and $\mathbf{b}$ are orthogonal. \begin{proof} The inner product of vectors $\mathbf{a}$ and $\mathbf{b}$ is \begin{equation} \langle\mathbf{a},\mathbf{b}\rangle=\mathbf{a}^T\mathbf{b}=1\times(-8)+2\times 1+3\times 2=0, \end{equation} therefore $\mathbf{a}$ and $\mathbf{b}$ are orthogonal. \end{proof} \problem{Basic Matrix Operations} According to the consensus, the matrix notation should be the bold upper-case letter like $\mathbf{A}$ or $\bm{A}$, not $A$. \subproblem{} \begin{equation} \begin{aligned} [\mathbf{A}, \mathbf{I}_3]&= \begin{bNiceArray}{rrr:rrr} 1&-3&3&1&0&0\\3&-5&3&0&1&0\\6&-6&4&0&0&1 \end{bNiceArray}\sim \begin{bNiceArray}{rrr:rrr} 1&-3&3&1&0&0\\0&4&-6&-3&1&0\\0&12&-14&-6&0&1 \end{bNiceArray}\sim \begin{bNiceArray}{rrr:rrr} 1&-3&3&1&0&0\\0&4&-6&-3&1&0\\0&0&4&3&-3&1 \end{bNiceArray}\\ &\sim \begin{bNiceArray}{rrr:rrr} 1&-3&0&-\frac{5}{4}&\frac{9}{4}&\frac{3}{4}\\[0.3em]0&4&0&\frac{3}{2}&-\frac{7}{2}&-\frac{3}{2}\\[0.3em]0&0&1&\frac{3}{4}&-\frac{3}{4}&\frac{1}{4} \end{bNiceArray}\sim \begin{bNiceArray}{rrr:rrr} 1&0&0&-\frac{1}{8}&-\frac{3}{8}&\frac{3}{8}\\[0.3em]0&1&0&\frac{3}{8}&-\frac{7}{8}&\frac{3}{8}\\[0.3em]0&0&1&\frac{3}{4}&-\frac{3}{4}&\frac{1}{4} \end{bNiceArray}, \end{aligned} \end{equation} where $\mathbf{I}_3$ is the $3\times 3$ identity matrix. Therefore we have \begin{equation}\label{eq:2-1-inv} \mathbf{A}^{-1}= \begin{bNiceArray}{rrr} -\frac{1}{8}&-\frac{3}{8}&\frac{3}{8}\\[0.3em]\frac{3}{8}&-\frac{7}{8}&\frac{3}{8}\\[0.3em]\frac{3}{4}&-\frac{3}{4}&\frac{1}{4} \end{bNiceArray}. \end{equation} The determinant of matrix $\mathbf{A}$ can be calculated as \begin{equation}\label{eq:2-1-det} \mathrm{det}(\mathbf{A})=1\times\begin{vNiceArray}{rr} -5&3\\-6&4 \end{vNiceArray}-(-3)\times\begin{vNiceArray}{rr} 3&3\\6&4 \end{vNiceArray}+3\times\begin{vNiceArray}{rr} 3&-5\\6&-6 \end{vNiceArray}=1\times(-2)+3\times(-6)+3\times 12=16, \end{equation} where $|\cdot|$ denotes the determinant. \subproblem{} The rank of matrix $\mathbf{A}$ is $3$ because as is shown in Eq.~\eqref{eq:2-1-inv} the matrix $\mathbf{A}$ is invertible. \subproblem{} The trace of matrix $\mathbf{A}$ is \begin{equation} \mathrm{tr}(\mathbf{A})=\sum_{i=1}^{3}a_{ii}=1+(-5)+4=0. \end{equation} \begin{equation} \mathbf{A}+\mathbf{A}^{T}=\begin{bNiceArray}{rrr} 1&-3&3\\3&-5&3\\6&-6&4 \end{bNiceArray}+ \begin{bNiceArray}{rrr} 1&3&6\\-3&-5&-6\\3&3&4 \end{bNiceArray}= \begin{bNiceArray}{rrr} 2&0&9\\0&-10&-3\\9&-3&8 \end{bNiceArray}. \end{equation} \subproblem{} \begin{equation} \mathbf{A}+\mathbf{A}^{T}=\begin{bNiceArray}{rrr} 1&-3&3\\3&-5&3\\6&-6&4 \end{bNiceArray}+ \begin{bNiceArray}{rrr} 1&3&6\\-3&-5&-6\\3&3&4 \end{bNiceArray}= \begin{bNiceArray}{rrr} 2&0&9\\0&-10&-3\\9&-3&8 \end{bNiceArray}. \end{equation} \subproblem{} $\mathbf{A}$ is not an orthogonal matrix. \begin{proof} Assume $\mathbf{A}$ is an orthogonal matrix, therefore \begin{equation} \mathbf{AA}^{T}=\mathbf{I}_3, \end{equation} Take the determinant at both side, it can be derived that \begin{equation} |\mathrm{det}(\mathbf{A})|=\sqrt{|\mathbf{A}||\mathbf{A}^T|}=|\mathrm{det}(\mathbf{I}_3)|=1, \end{equation} which contradicts with Eq.~\eqref{eq:2-1-det}. Therefore, the assumption is false. \end{proof} \subproblem{} Let $f(\lambda)$ be the characteristic function of matrix $\mathbf{A}$ and \begin{equation}\label{eq:2-6-f} f(\lambda)=\begin{vNiceArray}{ccc} \lambda-1&3&-3\\-3&\lambda+5&-3\\-6&6&\lambda-4 \end{vNiceArray}=(\lambda-4)(\lambda+2)^2, \end{equation} therefore the eigenvalues are $\lambda_1=4, \lambda_2=\lambda_3=-2$. Let the corresponding eigenvectors be $\bm{\alpha}_i$, $i=1,2,3$. \begin{equation} (\mathbf{A}-\lambda_i\mathbf{I}_3)\bm{\alpha}_i=\mathbf{0},\quad i=1,2,3, \end{equation} and the corresponding eigenvectors are \begin{equation} \bm{\alpha}_1=\begin{bNiceArray}{ccc}1&1&2\end{bNiceArray}^T,\quad \bm{\alpha}_{2,3}=\begin{bNiceArray}{ccc}1&1+c_{2,3}&c_{2,3}\end{bNiceArray}^T, \end{equation} where $c_{2,3}\in\mathbb{R}$. Without loss of generality, we take $c_2=0$ and $c_3=-1$, and we have $\bm{\alpha}_2=\begin{bNiceArray}{ccc}1&1&0\end{bNiceArray}^T$ and $\bm{\alpha}_2=\begin{bNiceArray}{ccc}1&0&-1\end{bNiceArray}^T$. \subproblem{} Use the result from Eq.~\eqref{eq:2-6-f}, the matrix $\mathbf{A}$ can be diagonalized as \begin{equation} \bm{\Lambda}=\begin{bNiceArray}{rrr} 4&0&0\\0&-2&0\\0&0&-2 \end{bNiceArray}. \end{equation} \subproblem{} The $\ell_{2,1}$ norm of $\mathbf{A}$ is \begin{equation} \|\mathbf{A}\|_{2,1}=\sum_{i=1}^3\sqrt{\sum_{j=1}^3a_{ij}^2}=\sqrt{46}+\sqrt{70}+\sqrt{34}\approx 20.98, \end{equation} and the Frobenius norm of $\mathbf{A}$ is \begin{equation} \|\mathbf{A}\|_F=\sqrt{\sum_{i,j=1,\mathrlap{2,3}}a_{ij}^2}=\sqrt{150}=5\sqrt{6}\approx 12.247. \end{equation} \subproblem{} The nuclear norm of $\mathbf{A}$ is \begin{equation} \|\mathbf{A}\|_*=\mathrm{tr}(\sqrt{\mathbf{A}\mathbf{A^*}})=\sum_{i=1}^3\sigma_i(\mathbf{A})\approx 14.728, \end{equation} and the spectral norm of $\mathbf{A}$ is \begin{equation} \|\mathbf{A}\|_2=\max\sigma_i(\mathbf{A})\approx 12.065. \end{equation} \vspace{2mm} \begin{lstlisting}[language=Matlab, title={MATLAB Code for Check}] A = [1, -3, 3; 3, -5, 3; 6, -6, 4]; % define the matrix A inv(A) % calculate and print the inverse of A det(A) % the determinant of A rank(A) % the rank of A trace(A) % the trace of A A + A.' % the sum of A and the transpose of A sum(sum(A * A.' ~= eye(3))) % check if A is orthogonal [X, D] = eig(A) % the eigenvectors and the corresponding eigenvalues of A sum(sqrt(sum(A .^ 2))) % l-2,1 norm of A norm(A, 'fro') % Frobenius norm of A sum(svd(A)) % nuclear norm of A max(svd(A)) % spectral norm of A \end{lstlisting} \problem{Linear Equations} \subproblem{} It is evident to solve the linear equation \begin{equation}\label{eq:3-1} \left\{ \begin{aligned} x_1&=-1, \\ x_2&=0, \\ x_3&=1. \end{aligned} \right. \end{equation} \subproblem{} Let \begin{equation} \mathbf{A}=\begin{bNiceArray}{rrr} 2&2&3\\1&-1&0\\-1&2&1 \end{bNiceArray},\quad \mathbf{b}= \begin{bNiceArray}{r} 1\\-1\\2 \end{bNiceArray}, \end{equation} and we have $\mathbf{Ax}=\mathbf{b}$ as \begin{equation} \begin{bNiceArray}{rrr} 2&2&3\\1&-1&0\\-1&2&1 \end{bNiceArray} \begin{bNiceArray}{r} x_1\\x_2\\x_3 \end{bNiceArray}= \begin{bNiceArray}{r} 1\\-1\\2 \end{bNiceArray}. \end{equation} \subproblem{} Since there is a unique solution shown in Eq.~\eqref{eq:3-1}, we know \begin{equation}\label{eq:3-3} \mathrm{rank}(\mathbf{A})=3. \end{equation} \subproblem{} \begin{equation} \begin{aligned} [\mathbf{A}, \mathbf{I}_3]&= \begin{bNiceArray}{rrr:rrr} 2&2&3&1&0&0\\1&-1&0&0&1&0\\-1&2&1&0&0&1 \end{bNiceArray}\sim \begin{bNiceArray}{rrr:rrr} 2&2&3&1&0&0\\1&-1&0&0&1&0\\0&1&1&0&1&1 \end{bNiceArray}\sim \begin{bNiceArray}{rrr:rrr} 1&1&\frac{3}{2}&\frac{1}{2}&0&0\\1&-1&0&0&1&0\\0&1&1&0&1&1 \end{bNiceArray}\\ &\sim \begin{bNiceArray}{rrr:rrr} 1&1&\frac{3}{2}&\frac{1}{2}&0&0\\[0.3em]0&-2&-\frac{3}{2}&-\frac{1}{2}&1&0\\[0.3em]0&1&1&0&1&1 \end{bNiceArray}\sim \begin{bNiceArray}{rrr:rrr} 1&1&\frac{3}{2}&\frac{1}{2}&0&0\\[0.3em]0&-1&-\frac{3}{4}&-\frac{1}{4}&\frac{1}{2}&0\\[0.3em]0&0&\frac{1}{4}&-\frac{1}{4}&\frac{3}{2}&1 \end{bNiceArray}\sim \begin{bNiceArray}{rrr:rrr} 1&1&0&2&-9&-6\\[0.3em]0&-1&0&-1&5&3\\[0.3em]0&0&1&-1&6&4 \end{bNiceArray}\\ &\sim \begin{bNiceArray}{rrr:rrr} 1&0&0&1&-4&-3\\0&1&0&1&-5&-3\\0&0&1&-1&6&4 \end{bNiceArray}, \end{aligned} \end{equation} therefore the inverse of $\mathbf{A}$ is \begin{equation}\label{eq:3-4-inv} \mathbf{A}^{-1}=\begin{bNiceArray}{rrr} 1&-4&-3\\1&-5&-3\\-1&6&4 \end{bNiceArray}. \end{equation} The determinant of $\mathbf{A}$ can be calculated as \begin{equation} \mathrm{det}(\mathbf{A})=2\times\begin{vNiceArray}{rr} -1&0\\2&1 \end{vNiceArray}-2\times\begin{vNiceArray}{rr} 1&0\\-1&1 \end{vNiceArray}+3\times\begin{vNiceArray}{rr} 1&-1\\-1&2 \end{vNiceArray}=2\times(-1)-2\times 1+3\times 1=-1. \end{equation} \subproblem{} As is shown in Eq.~\eqref{eq:3-3}, $\mathbf{A}$ is invertible and with the result in Eq.~\eqref{eq:3-4-inv} \begin{equation} \mathbf{x}=\mathbf{A}^{-1}\mathbf{b}= \begin{bNiceArray}{rrr} 1&-4&-3\\1&-5&-3\\-1&6&4 \end{bNiceArray} \begin{bNiceArray}{r} 1\\-1\\2 \end{bNiceArray}= \begin{bNiceArray}{r} -1\\0\\1 \end{bNiceArray}, \end{equation} and it is exactly the same result with Eq.~\eqref{eq:3-1}. \subproblem{} The inner product \begin{equation} \langle\mathbf{x},\mathbf{b}\rangle=\mathbf{x}^T\mathbf{b}=1\times 1+0\times(-1)+1\times 2=1, \end{equation} and the outer product is \begin{equation} \mathbf{x}\otimes\mathbf{b}=\mathbf{x}\mathbf{b}^T= \begin{bNiceArray}{r} -1\\0\\1 \end{bNiceArray} \begin{bNiceArray}{rrr} 1&-1&2 \end{bNiceArray}= \begin{bNiceArray}{rrr} -1&1&-2\\0&0&0\\1&-1&2 \end{bNiceArray}. \end{equation} \subproblem{} $\|\mathbf{b}\|_1=|1|+|-1|+|2|=4,\quad\|\mathbf{b}\|_2=\sqrt{1^2+(-1)^2+2^2}=\sqrt{6},\quad\|\mathbf{b}\|_{\infty}=\max\{|1|,|-1|,|2|\}=2.$ \subproblem{} Let $\mathbf{y}=\begin{bNiceArray}{rrr} y_1&y_2&y_3 \end{bNiceArray}^T$, we have \begin{equation} \mathbf{y}^T\mathbf{Ay}= \begin{bNiceArray}{rrr} y_1&y_2&y_3 \end{bNiceArray} \begin{bNiceArray}{rrr} 2&2&3\\1&-1&0\\-1&2&1 \end{bNiceArray} \begin{bNiceArray}{r} y_1\\y_2\\y_3 \end{bNiceArray}=2y_1^2-y_2^2+y_3^2+3y_1y_2+2y_2y_3+2y_1y_3, \end{equation} and \begin{equation} \bigtriangledown_{\mathbf{y}}\mathbf{y}^T\mathbf{Ay}= \begin{bNiceArray}{r} \frac{\partial}{\partial y_1}\mathbf{y}^T\mathbf{Ay} \\[.3em] \frac{\partial}{\partial y_2}\mathbf{y}^T\mathbf{Ay} \\[.3em] \frac{\partial}{\partial y_3}\mathbf{y}^T\mathbf{Ay} \end{bNiceArray}= \begin{bNiceArray}{r} 4y_1+3y_2+2y_3 \\ 3y_1-2y_2+2y_3 \\ 2y_1+2y_2+2y_3 \end{bNiceArray}. \end{equation} \subproblem{} The equation $\mathbf{A}_1\mathbf{x}=\mathbf{b}_1$ can be represented as \begin{equation} \begin{bNiceArray}{rrr} 2&2&3\\1&-1&0\\-1&2&1\\-1&2&1 \end{bNiceArray} \begin{bNiceArray}{r} x_1\\x_2\\x_3 \end{bNiceArray}= \begin{bNiceArray}{r} 1\\-1\\2\\2 \end{bNiceArray}. \end{equation} \subproblem{} $\mathrm{rank}(\mathbf{A}_1)=3$. \begin{proof} On one hand, $\mathrm{rank}(\mathbf{A}_1)\geq\mathrm{rank}(\mathbf{A})=3$ which is shown in Eq.~\eqref{eq:3-3}. On the other hand, $\mathrm{rank}(\mathbf{A}_1)\leq\min\{3,4\}=3$. Therefore, $\mathrm{rank}(\mathbf{A}_1)=3$. We can also find the first three equations are linearly independent while the last equation is actually the same with the third equation which makes it meaningless. \end{proof} \subproblem{} Yes. \begin{proof} Since $\mathrm{rank}(\mathbf{A}_1)=\|\mathbf{x}\|_0$, i.e. rank of $\mathbf{A}_1$ is equal to the dimension of $\mathbf{x}$, the formula can be solved with a unique solution the same as Eq.~\eqref{eq:3-1}. \end{proof} \end{document}