
The returntogrid package, v0.2

Ulrike Fischer*

2018/08/21

1 Introduction

This package offers a few commands to get something like an simple, semi-automatic
grid typesetting. It does more or less what the existing gridset package does. The
main differences to gridset are that returntogrid works also with lualatex, that it
has also a command to do some horizontal movements, that it uses internally expl3
and that it does much less “security” checks: It actually started only as internal code,
where I had good control about the use of the commands. Then I thought it would be
useful to externalize it in case I needed it for more projects and added a thin wrapper
of user commands.

It probably also has more bugs – report these at the issue tracker at github
https://github.com/u-fischer/returntogrid.

2 Vertical grid moves

2.1 Restrictions / Deficiencies: Grid typesetting is not easy

The problem is at first that there are so many things that can destroy the grid:

• different font sizes with their different leading,
• all the various skips around and in lists, around math, around floats,
• pictures and tabulars (e.g. because of lines) often don’t fit the grid,

*fischer@troubleshooting-tex.de

1

• the way TEX handles large boxes: People e. g. quite often believe that a tabular
with three rows of normal height shouldn’t disturb the grid but it does:

some text
tabular row 1
tabular row 2
tabular row 3

some text not on the grid

• and more

Getting back to the grid isn’t trivial either. In many cases it can be done by inserting a
suitable vertical space. But due to the way TEX builds the page the needed amount can
normally only be calculated in a second compilation. As the inserted space changes
the following text probably new compilations are needed. So it can take a long time
until everything is stable – if a stable solution actually exists: stretchable space, floats
that move around and problems at page breaks can actually prevent a stable state.

So you want to use this package be aware of the following restrictions:

1. It will only work with documents/pages which uses \raggedbottom.

2. Many \returntogrid commands means many compilations. So use the com-
mand only when really needed. Setup as many spaces of lists and sectioning
commands so that returntogrid is not needed to keep the grid.

3. Objects at/after page breaks needs special care, see section 2.3.

4. Top floats could be a real problem.

5. The code uses for comparision the y-coordinate of a point in the text upper
corner of the first page. (Such coordinates are measured from the bottom
of the page.) You will get nonsensical results if you change the geometry in
the middle of your document unless you setup a new reference point and tell
\returntogrid to use it.

6. The skips to return to the grid should normally be inserted only on the main ver-
tical list, not in boxes. But the code doesn’t check for inner mode as there could
be special cases where it works (e.g. in a tcolorbox). If you use \returntogrid
in such a place think carefully if this can lead to a stable state.

2

2.2 The main command

The main command is called \returntogrid and it takes one optional argument:

\returntogrid[〈key-val-list〉]

The command is used for both type of “moves”: vertical and horizontal. In this section
I’m describing the vertical movements, for horizontal movements see section 3.

Without the optional argument the command should normally be used only at the be-
gin of paragraphs. It will force a new paragraph by issuing a \par, start the paragraph
with a \leavevmode, then store the current position of the baseline and at the next
compilation insert after the \par a hopefully suitable vskip to move this position to
the grid.

It will always insert a positive vskip, even if the previous grid position is much nearer –
I thought about small negative spaces but I’m not sure that this leads to a stable state.

In the optional argument the following keys can be used:

save Value is a label name. With this option \returntogrid only issues a \leavevmode
and stores the position but doesn’t insert any space and doesn’t force a new
paragraph. With this option a use inside boxes makes sense (see below).

use Value is a label name. With this option \returntogrid only inserts the vskip
needed to move the position stored with the save option to the grid.

This can be e.g. used to move a section title or a line of a tabular to the grid

\returntogrid[use=mysec]
\section[xxxabc]{\returntogrid[save=mysec,strut=1]xxxabc}

\returntogrid[use=mytab]
\begin{tabular}[t]{l}
\hline
\returntogrid[save=mytab]xxxabc
\end{tabular}

3

label Value is a label name. By default \returntogrid generates numbered label
names. This means that if you insert a new \returntogrid command at the
begin of the document all following label names have to be renumbered and all
skip calculated anew. As this can need lots of compilations you can avoid this by
giving the label a unique name manually. Internally a package specific prefix is
always added to the label.

strut Value is an integer. This will insert a strut of height n × \baselineskip+
\topskip. See section 2.3 why this could be needed.

debug-vgrid This adds the command \showdebugpagegrid to the background of
the current page.

You should ensure that \returntogrid isn’t use in arguments that wander to the toc
or the header as this would give multiply defined labels or insert the vskip in places
where you don’t want it.

Also it is up to you to use the save-use system in a sensible way – if the vskip doesn’t
move the position or if you use the vskip twice you probably will never get a stable
position.

2.3 The page break problem

The space inserted to force an object onto the grid can push the object to a new page.

This is a problem if the object doesn’t fall naturally on the grid there. In this case one
would need a second (non-discardable) space that moves the object further down.

Currently the code doesn’t do this. Instead it expects you to set the height of such
problematic objects so that they keep the grid naturally.

2.4 Top floats

Floats at the top of the page can disturb the grid too. There is normally no sensible
place to insert a vskip in the text running below such a float to return to the grid. This
means that you should either avoid top floats, or give them a height that pushes the
text below onto the grid without manual adjustments.

4

2.5 Debugging: Showing the grid

\showdebugpagegrid

This command requires that you load the package tikz. You can then use it e.g. like
this to see the vertical grid lines:

\AddToShipoutPictureBG {\AtTextUpperLeft{\showdebugpagegrid}}

3 Horizontal grid: going to the next tab position

The \returntogridsetup command described in the following section has a key to
define lists of “tab positions”. It takes two argument: an (unique) name for the tab list
and a list of dimension expressions1.

settabpositions={〈name〉} {〈dim expression〉,〈dim expression〉,...}

The tab positions are set from the position you are issuing the command, and the
dimensions describe the distance between two tabs. The command doesn’t insert
spaces but it uses a zero-width box, so use it at a places where a such a box doesn’t
affect your layout. The tabs must be set before the first use.

So

abc%
\returntogridsetup
{
settabpositions={demo}{1cm,2\fboxsep +1cm, 2cm}

}%
text

sets the following tab positions for the list “demo”:

abctext

1This means that e. g. sums of length are allowed.

5

3.1 Moving to the next tab position

You can move to the next tab position by using the tab key in the optional argument
of \returntogrid:

\returntogrid[tab=〈name〉]
The name refers to the name of the tab list from which you want to use tab positions.
If you don’t give a name, whatever is the currently active tab list name will be used e.g.
the one set with the tab-list option described in section 4. If no list with the name
exists an error will be raised.

The code is very simple: It issues a \leavevmode, stores the current position in a label
and at the next compilation calculates the distance to the next tab position and inserts
a suitable \hspace*. If there is no next tab position it inserts a \hfill unless the key
hfill has been set to false. It doesn’t try to avoid line breaks or overfull lines.

The current position is stored with a automatically generated numbered label. Like in
the case of the vertical movements you can avoid that this names changes all the time
you add a command by setting a manual name with the key label.

As with vertical movements \returntogrid has a number of restrictions:

• Pay attention to stretchable space! If you move something to the end of the line,
if you have a positive \parfillskip value, if the movement gives an overfull
hbox, LATEX will perhaps change the word spaces and then no stable hspace value
can be found. Use \raggedright or end the lines with \\.

I advise against setting an explizit tab position at the right margin, it is often un-
stable (and as the code inserts an \hfill after the last tab not needed anyway).

• Don’t misuse the command! It is not a replacement for a real tabular or a
tabbing as many \returntogrid in one line or one paragraph can mean many
compilations. But it is useful if you want to move e.g. graphics in a three column
layout.

3.2 The twoside problem

Like with vertical grid movements changes of the page geometry can lead to nonsensi-
cal results: The tab positions are stored in coordinates which are measured from the
left side of the page.

6

Unlike as the situation with vertical grids geometry changes are actual common: a
twoside document has different margins on the odd and even page. Normally you
want the tab position to be relative to the text margins, so an offset is needed.

It returntogrid detects the twoside mode, or you use the twoside key in the setup
command, returntogrid will add the difference between oddsidemargin and even-
sidemargin as an offset when needed. The code assumes that the page geometry of
odd and even pages don’t change in the middle of the document!

4 Setup and configuration

\returntogridsetup{〈key-val-list〉}

With this command you can change some defaults of the package.

active Boolean, default is true. It deactivates following \returntogrid commands.

step Value is a length, the default is \baselineskip. It sets the distance of the
vertical grid.

reference The name of the point used as reference for the vertical grid. The default
is a point at the text upper corner stored like this:

\AddToShipoutPictureBG*{%
\AtTextUpperLeft{%
\zsaveposy{ufgrid@vpointtextupperleft}}}

offset Value is a length, the default is \topskip. The reference point doesn’t need
to be on the grid, this key sets the offset.

settabpositions This stores tab positions that can be use with the \nextgridtab
command See section 3.

tab-list Value a name. This sets the name of tab-list that will be used if you don’t
give a name explictely until the enclosing group end.

hfill Boolean. Default is true. When set to false no \ is inserted after the last tab
position.

twoside Boolean. This activates/deactivates the offset described in 3.2 in case the
automatic detection doesn’t do what you want.

7

debug-tab This helps to see horizontal tabs when defining them. It should be used
before using settabpositions. It needs the package tikz.

8

5 Examples

In the following text all parts with XXX are forced by the package to return to the grid.

First some horizontal movements:

abc X

abc X

more text more text more text X

more text more text more text more text more text X

more text more text more text more text more text more text more text X

The code

\noindent
\returntogridsetup{
debug-tab,
settabpositions={main}{0.3\textwidth,0.3\textwidth+0.05\textwidth

},
tab-list={main}
}

\noindent abc\returntogrid[tab]X

\noindent abc\returntogrid[tab,label=mine]X

\noindent more text more text more text \returntogrid[tab]X

\noindent more text more text more text more text more text\
returntogrid[tab]X

\noindent more text more text more text more text more text more
text more text\returntogrid[tab]X

9

moving something to the next page

10

6 XXX

The code

\vspace*{29,1\baselineskip}
\returntogrid[use=mysec1]
\section[]{\returntogrid[save=mysec1,strut=1]XXX}
\rule{0.4pt}{3cm}

11

• abc

• abc

• abc

The code

\begin{itemize}[itemsep=3pt]
\item abc

\item \returntogrid abc

\item \returntogrid abc
\end{itemize}

12

a

xxxa

xxxabc

xxxsome text
some text
some text
some text
some text
some text
some text
some text
some text

7 xxxabc

abc
abc

13

The code

a

\vspace{3pt}

\returntogrid
xxxa

\returntogrid
\LARGE xxxabc
\normalsize

\returntogrid[use=mytab]
\begin{tabular}[t]{l}
\returntogrid[save=mytab]xxxsome text\\
some text\\
some text\\
some text\\
some text\\
some text\\
some text \\some text\\some text
\end{tabular}

\returntogrid[use=mysec2]
\section[]{\returntogrid[save=mysec2,strut=1]xxxabc}

abc \\abc

14

	Introduction
	Vertical grid moves
	Restrictions / Deficiencies: Grid typesetting is not easy
	The main command
	The page break problem
	Top floats
	Debugging: Showing the grid

	Horizontal grid: going to the next tab position
	Moving to the next tab position
	The twoside problem

	Setup and configuration
	Examples

