% !TEX program = pdflatex % !TEX ext = --interaction=nonstopmode --enable-etex --enable-write18 % !BIB program = none %%%============================================================================== %% Copyright 2024-present by Alceu Frigeri %% %% This work may be distributed and/or modified under the conditions of %% %% * The [LaTeX Project Public License](http://www.latex-project.org/lppl.txt), %% version 1.3c (or later), and/or %% * The [GNU Affero General Public License](https://www.gnu.org/licenses/agpl-3.0.html), %% version 3 (or later) %% %% This work has the LPPL maintenance status *maintained*. %% %% The Current Maintainer of this work is Alceu Frigeri %% %% This is version {1.1} {2024/10/17} %% %% The list of files that compose this work can be found in the README.md file at %% https://ctan.org/pkg/tikzdotncross %% %%%============================================================================== \documentclass[10pt]{article} \RequirePackage[verbose,a4paper,marginparwidth=27.5mm,top=2.5cm,bottom=1.5cm,hmargin={40mm,20mm},marginparsep=2.5mm,columnsep=10mm,asymmetric]{geometry} \usepackage{codedescribe} \RequirePackage[inline]{enumitem} \SetEnumitemKey{miditemsep}{parsep=0ex,itemsep=0.4ex} \usepackage[american,siunitx,cuteinductors,smartlabels,arrowmos,EFvoltages,betterproportions]{circuitikz} \usetikzlibrary{math} \usepackage{tikzdotncross} \usepackage{tikzquads} \RequirePackage{amsmath} \RequirePackage{amsthm, amssymb, amsfonts} %\RequirePackage{mathrsfs} %\RequirePackage{mathtools} %\RequirePackage{empheq} %\RequirePackage{cases} %\RequirePackage{extarrows} %\RequirePackage{mathfixs} \RequirePackage[hidelinks,hypertexnames=false]{hyperref} \NewDocumentCommand{\pinanchors}{mm}{ \path \foreach \n/\a/\d in {#2} { (#1.\n) \pincoord(\n,blue,\a,\d)}; } \NewDocumentCommand{\pingeoanchors}{m}{ \pinanchors{#1}{% north/90/4, north east/55/4, east/0/4,% south east/-55/4,% south/-90/4, south west/-100/4, west/180/4, north west/100/4,% center/-165/17} } \NewDocumentCommand{\pinquadanchors}{m}{% \pinanchors{#1}{% 1+/135/4, 1-/225/4, 2+/45/4, 2-/-45/4, inner 1+/-45/2, inner 1-/45/2, inner 2+/225/2, inner 2-/135/2 } } \NewDocumentCommand{\pinblackboxanchors}{m}{% \pinanchors{#1}{% 1+/135/4, 1-/225/4, inner 1+/-45/2, inner 1-/45/2 } } \NewDocumentCommand{\pinquadtextanchors}{m}{% \pinanchors{#1}{% bottom left/225/4, bottom center/-90/4, bottom right/-45/4, inner bottom left/225/4, inner bottom center/90/2, inner bottom right/-45/4, top left/135/4, top center/90/4, top right/45/4, inner top left/135/4, inner top center/-90/2, inner top right/45/4 } } \begin{document} \tstitle{ author={Alceu Frigeri\footnote{\tsverb{https://github.com/alceu-frigeri/tikzquads}}}, date={\tsdate}, title={The tikzquads Package\break An Extension to CircuiTi\emph{k}Z\break Version \PkgInfo{tikzquads}{version}} } \begin{typesetabstract} This package defines a few extra shapes (single / dual port boxes) designed to be used together with the \tsobj[pkg]{CircuiTikZ} package. \end{typesetabstract} \tableofcontents \section{Introduction} In standard text books, Circuits Theory and Electronics alike, quite frequently, in the process of modelling sub-circuits, one ends representing them either: \begin{itemize} \item as a single port \emph{black box}, or \item as a dual port \emph{black box} \end{itemize} This package defines a few, parameterized shapes for each case: \begin{itemize} \item for single port \emph{black boxes}: \begin{itemize} \item Black Box \item Thevenin \item Norton \end{itemize} \item for dual port \emph{black boxes}: \begin{itemize} \item Quad \item Quad Z \item Quad Y \item Quad G \item Quad H \end{itemize} Lastly, this package also defines a \emph{Pseudo-Graph load line} shape, for those moments where a true graph, like the ones \tsobj[pkg]{pgfplots} enables, isn't needed. \end{itemize} \subsection{CircuiTi\emph{k}Z} Unfortunately, some implementation details of these shapes don't follow the code structure adopted by \tsobj[pkg]{CircuiTikZ}, and some significant part of this package's code would have to be re-written if it were to be integrated directly in \tsobj[pkg]{CircuiTikZ}, and that's the main reason this is, for the time being, a separate package. After all, even though this doesn't follows \tsobj[pkg]{CircuiTikZ} code scheme, it does work nicely with it, as is. \section{Auxiliary Shapes and Basic Keys} Those shapes are not intended for end users. \subsection{Auxiliary shapes}\label{auxiliarynodes} A set of auxiliary shapes are defined, but not meant to be used otherwise, though their anchors might be relevant: \begin{center} \resizebox{0.8\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) node[QuadKeys,generic,H Res shape](N){}; \pingeoanchors{N} \draw (4,0) node[QuadKeys,H Res shape](N){}; \pingeoanchors{N} \draw (8,0) node[QuadKeys,generic,V Res shape](N){}; \pingeoanchors{N} \draw (12,0) node[QuadKeys,V Res shape](N){}; \pingeoanchors{N} \draw (0,-2) node[QuadKeys,round sources,IsourceDOWN shape](N){}; \pingeoanchors{N} \draw (4,-2) node[QuadKeys,IsourceDOWN shape](N){}; \pingeoanchors{N} \draw (8,-2) node[QuadKeys,round sources,IsourceUP shape](N){}; \pingeoanchors{N} \draw (12,-2) node[QuadKeys,IsourceUP shape](N){}; \pingeoanchors{N} \draw (0,-4) node[QuadKeys,round sources,Vsource shape](N){}; \pingeoanchors{N} \draw (4,-4) node[QuadKeys,Vsource shape](N){}; \pingeoanchors{N} \end{tikzpicture}} \end{center} \begin{tsremark} The point being that, regardless of the sub-shape orientation, the intuitive geographical coordinates applies. \end{tsremark} \subsection{General Keys}\label{generalkeys} General keys to fine tuning a shape: \begin{describelist*}[30mm]{keys} \describe {outer sep} {Text outer separation, initial value: 1.5pt} \describe {inner sep} {Text inner separation, initial value: 1pt} \describe {thickness} {Components thickness (relative to the drawing thickness), initial value: 2} \describe {tip len} {tip len (current source). initial value: 4pt} \describe {tip type} {possible values: \tsobj[keys]{triangle,bezier}. initial value: \tsobj[keys]{triangle}} \describe {minussign len} {Minus sign len (voltage source). initial value: \tsobj{\pgf@circ@Rlen/14}} \describe {plussign len} {Plus sign len (voltage source). initial value: \tsobj{1.1\pgf@circ@Rlen/14}} \describe {source radius} {The base radius. initial value: \tsobj{0.3\pgf@circ@Rlen}} \describe {round sources} {Sources will be round ones} \describe {control sources} {Sources will be control/diamond ones} \describe {generic, european} {Impedances will be generic rectangles} \describe {zigzag, american} {Impedances will be draw as zigzags} \end{describelist*} % \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \section{Z, Y, G, H Quadripoles}\label{quadanchors} A set of configurable Quadripoles is defined, whereas quadripoles parameters (for instance $Z_{11}$, $Z_{12}$, $Z_{21}$ and $Z_{22}$) are \tsobj[marg]{key-value} parameters. \subsection{The Base Quadripole Shape} The base shape just draws a base box and sets some connection anchors: $1+$, $1-$, $inner\ 1+$, $inner\ 1-$, $2+$, $2-$, $inner\ 2+$ and $inner\ 2-$, besides the geographic ones: %,label bottom left={T1},label bottom center={T2},label bottom right={T3} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad](Qa){text}; \pingeoanchors{Qa} \draw (Qa.2+) ++(2,0) node[Quad,anchor=1+](Qb){text}; \pinquadanchors{Qb} \end{tikzpicture} } \end{center} And also a set of (meant for) \emph{text} anchors: \begin{center} \resizebox{0.4\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) node[Quad](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} \subsubsection{Base Keys}\label{quadkeys} These applies to all Quad shapes: \begin{describelist*}[30mm]{keys} \describe {base width} {The 'box' width} \describe {half base width} {Ditto, half width. Initial value:\tsobj{2\pgf@circ@Rlen}.} \describe {base height} {The distance between \tsobj[keys]{1+,1-}. The 'box' full height is equal to 2*(\tsobj[keys]{half base height} + \tsobj[keys]{height ext} + \tsobj[keys]{height ext+}).} \describe {half base height} {Ditto, half height. Initial value:\tsobj{\pgf@circ@Rlen/7} } \describe {height ext}{Initial value:\tsobj{2\pgf@circ@Rlen/7}} \describe {height ext+}{Initial value:0} \describe {inner ext} {distance between the 'box' and \tsobj{inner 1+/1-/2+/2-}. initial value: \tsobj{\pgf@circ@Rlen/7}} \describe {outer ext} {distance between the 'box' and \tsobj{1+/1-/2+/2-}. initial value: \tsobj{5\pgf@circ@Rlen/14}} \describe {inner marks} {If set, the inner anchors will be marked.} \describe {outer marks} {If set, the outer anchors will be marked.} \describe {invert} {The shape will be inverted, more or less like 'x scale=-1'.} \describe {alt, opt} {Case a Voltage source is zero, a series impedance will be draw vertically.} \describe {outer x fit to} {For any Quad, this is the same as \tsobj[key]{outer x fit to*}.} \describe {outer x fit to*} {\tsobj[keys]{outer x fit*=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that \tsobj[meta]{1+,2+} (or \tsobj[meta]{1-,2-}, depending on the used anchor) \textbf{will fit} \tsobj[meta]{CoordA,CoordB}. This might result in a shape rotation.} \describe {outer x fit to!} {\tsobj[keys]{outer x fit!=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that the distance between \tsobj[meta]{1+,2+} (or \tsobj[meta]{1-,2-}, depending on the used anchor) will be the same as \tsobj[meta]{CoordA,CoordB}. This will never result in a shape rotation.} \describe {inner x fit to} {For any Quad, this is the same as \tsobj[key]{inner x fit to*}.} \describe {inner x fit to*} {\tsobj[keys]{inner x fit*=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that \tsobj[meta]{inner 1+,inner 2+} (or \tsobj[meta]{inner 1-,inner 2-}, depending on the used anchor) \textbf{will fit} \tsobj[meta]{CoordA,CoordB}. This might result in a shape rotation.} \describe {inner x fit to!} {\tsobj[keys]{inner x fit!=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that the distance between \tsobj[meta]{inner 1+,inner 2+} (or \tsobj[meta]{inner 1-,inner 2-}, depending on the used anchor) will be the same as \tsobj[meta]{CoordA,CoordB}. This will never result in a shape rotation.} \describe {y fit to} {For any Quad, this is the same as \tsobj[key]{y fit to!}.} \describe {y fit to*} {\tsobj[keys]{y fit*=}\tsargs[marg]{CoordA,CoordB}. The height will be set so that \tsobj[keys]{1+,1-} \textbf{will fit} \tsobj[keys]{CoordA,CoordB}. This might result in a shape rotation} \describe {y fit to!} {\tsobj[keys]{y fit!=}\tsargs[marg]{CoordA,CoordB}. The height will be set so that the distance between \tsobj[meta]{1+,1-} will be equal to the distance between \tsobj[marg]{CoordA,CoordB}. This will never result in a shape rotation.} % % \describe {outer x fit to} {\tsobj[keys]{outer x fit=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that \tsobj[meta]{1+,2+} (or \tsobj[meta]{1-,2-}, depending on the used anchor) will fit \tsobj[meta]{CoordA,CoordB}} % \describe {outer x fit to*} {Same as \tsobj[key]{outer x fit to}, might result in a rotation.} % \describe {outer x fit to!} {Same as \tsobj[key]{outer x fit to}, but will never result in a rotation.} % \describe {inner x fit to} {\tsobj[keys]{inner x fit=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that \tsobj[meta]{inner 1+,inner 2+} (or \tsobj[meta]{inner 1-,inner 2-}, depending on the used anchor) will fit \tsobj[meta]{CoordA,CoordB}} % \describe {inner x fit to*} {Same as \tsobj[key]{inner x fit to}, might result in a rotation.} % \describe {inner x fit to!} {Same as \tsobj[key]{inner x fit to}, but will never result in a rotation.} % \describe {y fit to} {\tsobj[keys]{y fit=}\tsargs[marg]{CoordA,CoordB}. The distance between, lets say \tsobj[keys]{1+,1-} will be made equal to the distance between \tsobj[keys]{CoordA,CoordB}.} % \describe {y fit to*} {Same as \tsobj[key]{y fit to}, might result in a rotation.} % \describe {y fit to!} {Same as \tsobj[key]{y fit to}, but will never result in a rotation.} \describe{label top left}{It will place a label at the top left anchor} \describe{label top center}{It will place a label at the top center anchor} \describe{label top right}{It will place a label at the top right anchor} \describe{label inner top left}{It will place a label at the inner top left anchor} \describe{label inner top center}{It will place a label at the inner top center anchor} \describe{label inner top right}{It will place a label at the inner top right anchor} \describe{label bottom left}{It will place a label at the bottom left anchor} \describe{label bottom center}{It will place a label at the bottom center anchor} \describe{label bottom right}{It will place a label at the bottom right anchor} \describe{label inner bottom left}{It will place a label at the inner bottom left anchor} \describe{label inner bottom center}{It will place a label at the inner bottom center anchor} \describe{label inner bottom right}{It will place a label at the inner bottom right anchor} \end{describelist*} %\begin{tsremark} %For Quadripoles, \tsobj[keys]{outer x fit, inner x fit} might result in a shape rotation. \tsobj[keys]{y fit} never will result in a rotation. %\end{tsremark} %\begin{tsremark} %Those keys can be used with all the following components: \tsobj[meta]{Quad,Quad Z,Quad Y,Quad G,Quad H,ToQuad,ToQuad Z,ToQuad Y,ToQuad G,ToQuad H,Black Box,Thevenin,Norton,ToBlack Box,ToThevenin,ToNorton}. %\end{tsremark} A small example of the \emph{fit to} keys: \begin{codestore}[QuadKeysA] \begin{tikzpicture} \draw (0,0) \pincoord(A,blue,225) ++(4,0) \pincoord(B,blue,-45) ++(2,2) \pincoord(C) ; \draw (A) node[Quad,anchor=1+,outer x fit to={A}{B}](Qa){\footnotesize$Qa$}; \draw (B) node[Quad,anchor=1+,outer x fit to={B}{C},I1=$I_a$,V2=$V_b$](Qb){\footnotesize$Qb$}; \draw (Qb.2-) -- ++(2,0) \pincoord(D) ++(1,-2) \pincoord(E); \draw (D) node[Black Box,anchor=1+,y fit to={D}{E}](Ba){\footnotesize$Ba$}; \draw (Qa.1-) ++(0,-1); \end{tikzpicture} \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node},basicstyle={\scriptsize\ttfamily},numbers=left]{QuadKeysA} % show anchors of a node component: % optional: options of the circuitikz environment % mandatory node spec, node text % optional between (): anchor specification list \NewDocumentCommand{\showsubanchors}{O{} m m m d()} { \begin{circuitikz}[#1] \draw (0,0) node[#2](N){#3}; \IfValueT{#5}{% \foreach \sn in {#4} {% \foreach \n/\a/\d in {#5} {% \path (N-\sn.\n) \showcoord(\n)<\a:\d>; } } } ;\par \end{circuitikz}% } \subsection{Quad} \begin{codestore}[QuadDef] % Node use node[Quad]{} % To path use (A) to[ToQuad] (B) \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{QuadDef} This is just the base shape, to be used in cases whereas one just want to emphasises part of a circuit (using, for instance, the \tsobj[key]{inner x fit to} key, or just mark a two port black box. \begin{tsremark} There is also a \tsobj[key]{ToQuad} to be used in a \tsobj[key]{to[ ]} path, in which case the key \tsobj[key]{outer x fit to} style will be triggered with the starting and ending points of the \tsobj[key]{to[ ]} path. \end{tsremark} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad](Qa){text}; \pingeoanchors{Qa} \draw (Qa.2+) ++(2,0) node[Quad,anchor=1+](Qb){text}; \pinquadanchors{Qb} \draw (Qa.2-) ++(1,-1.5) node[Quad,anchor=north](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} \subsubsection{Quad Keys} \begin{describelist*}{keys} \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \describe{I1}{Initial value:\tsverb{$I_1$}} \describe{I2}{Initial value:\tsverb{$I_2$}} \describe{V1}{Initial value:\tsverb{$V_1$}} \describe{V2}{Initial value:\tsverb{$V_2$}} \end{describelist*} \subsubsection{Examples of \emph{fit to} use} Squeezing a Quadripole between two parts of a circuit (nodes C and D): \begin{codestore}[QuadfitA] \begin{center} \resizebox{0.5\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \pincoord(ref) to[R=R1] ++(0,2) \pincoord(A) to[R=R2] ++(0,2) \pincoord(B) -- ++(2,0) \pincoord(C,red,225) (C |- ref) \pincoord(C1,blue,135) -- (ref); \draw (C) ++(7,0) \pincoord(D,red) -- ++(0.5,0) to[R=R3] ++(0,-3) -- ++(2,0) to[R=R4] ++(0,3) -- ++(0.5,0) \pincoord(E); \draw (C) node[Quad,anchor=1+,y fit to={C}{C1},outer x fit to={C}{D}]{}; \end{tikzpicture} } \end{center} \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{QuadfitA} ~ Fitting some circuit inside the Quadripole (nodes C and E): \begin{codestore}[QuadfitB] \resizebox{0.4\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \pincoord(ref) to[R=R1] ++(0,2) \pincoord(A) to[R=R2] ++(0,2) \pincoord(B) -- ++(2,0) \pincoord(C,red) (C |- ref) \pincoord(C1) -- (ref); \draw (C) ++(7,0) \pincoord(D) -- ++(0.5,0) to[R=R3] ++(0,-3) -- ++(2,0) to[R=R4] ++(0,3) -- ++(0.5,0) \pincoord(E,red); \draw (C) node[Quad,anchor=inner 1+,y fit to={C}{C1},inner x fit to={C}{E}]{}; \end{tikzpicture}} \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{QuadfitB} \subsection{Quad Z} \begin{codestore}[QuadZDef] % Node use node[Quad Z]{} % To path use (A) to[ToQuad Z] (B) \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{QuadZDef} Besides the base anchors (see \ref{quadanchors}) it has 4 internal nodes: \tsobj[key]{-Z11,-Z12,-Z21,-Z22} and each of those sub-nodes has geographic anchors as defined at \ref{auxiliarynodes}. \begin{tsremark} There is also a \tsobj[key]{ToQuad Z} to be used in a \tsobj[key]{to[ ]} path, in which case the key \tsobj[key]{outer x fit to} style will be triggered with the starting and ending points of the \tsobj[key]{to[ ]} path. \end{tsremark} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad Z](Qa){text}; \pingeoanchors{Qa} \draw (Qa.2+) ++(2,0) node[Quad Z,anchor=1+](Qb){text}; \pinquadanchors{Qb} \end{tikzpicture} } \end{center} \begin{center}% \resizebox{0.4\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad Z,anchor=north](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} \subsubsection{Quad Z keys} \begin{describelist*}[30mm]{keys} \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \describe{I1}{Initial value:\tsverb{$I_1$}} \describe{I2}{Initial value:\tsverb{$I_2$}} \describe{V1}{Initial value:\tsverb{$V_1$}} \describe{V2}{Initial value:\tsverb{$V_2$}} \describe {raw sources} {This will suppress the control variables (I1, I2) in the sources' labels} \describe{Z11}{Initial value:\tsverb{$Z_{11}$}} \describe{Z12}{Initial value:\tsverb{$Z_{12}$}} \describe{Z21}{Initial value:\tsverb{$Z_{21}$}} \describe{Z22}{Initial value:\tsverb{$Z_{22}$}} \describe{Z11 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south west}{top left}}} \describe{Z12 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south east}{top left}}} \describe{Z21 label pos}{changes the label position. Defaults to: \tsobj[verb]{{north west}{bottom right}}} \describe{Z22 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south east}{top right}}} \end{describelist*} \begin{tsremark} The label pos keys expects two anchor names (... label pos=\tsargs[marg]{anchor A,anchor B}). The first anchors refers the sub-shape node and the second anchor is the text one. \end{tsremark} \subsection{Quad Y} \begin{codestore}[QuadYDef] % Node use node[Quad Y]{} % To path use (A) to[ToQuad Y] (B) \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{QuadYDef} Besides the base anchors (see \ref{quadanchors}) it has 4 internal nodes: \tsobj[key]{-Y11,-Y12,-Y21,-Y22} and each of those sub-nodes has geographic anchors as defined at \ref{auxiliarynodes}. \begin{tsremark} There is also a \tsobj[key]{ToQuad Y} to be used in a \tsobj[key]{to[ ]} path, in which case the key \tsobj[key]{outer x fit to} style will be triggered with the starting and ending points of the \tsobj[key]{to[ ]} path. \end{tsremark} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad Y](Qa){text}; \pingeoanchors{Qa} \draw (Qa.2+) ++(2,0) node[Quad Y,anchor=1+](Qb){text}; \pinquadanchors{Qb} \end{tikzpicture} } \end{center} \begin{center}% \resizebox{0.4\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad Y,anchor=north](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} \subsubsection{Quad Y keys} \begin{describelist*}[30mm]{keys} \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \describe{I1}{Initial value:\tsverb{$I_1$}} \describe{I2}{Initial value:\tsverb{$I_2$}} \describe{V1}{Initial value:\tsverb{$V_1$}} \describe{V2}{Initial value:\tsverb{$V_2$}} \describe {raw sources} {This will suppress the control variables (V1, V2) in the sources' labels} \describe{Y11}{Initial value:\tsverb{$Y_{11}$}} \describe{Y12}{Initial value:\tsverb{$Y_{12}$}} \describe{Y21}{Initial value:\tsverb{$Y_{21}$}} \describe{Y22}{Initial value:\tsverb{$Y_{22}$}} \describe{Y11 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south west}{top left}}} \describe{Y12 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south east}{top left}}} \describe{Y21 label pos}{changes the label position. Defaults to: \tsobj[verb]{{north west}{bottom right}}} \describe{Y22 label pos}{changes the label position. Defaults to: \tsobj[verb]{{north west}{bottom right}}} \end{describelist*} \begin{tsremark} The label pos keys expects two anchor names (... label pos=\tsargs[marg]{anchor A,anchor B}). The first anchors refers the sub-shape node and the second anchor is the text one. \end{tsremark} \subsection{Quad G} \begin{codestore}[QuadGDef] % Node use node[Quad G]{} % To path use (A) to[ToQuad G] (B) \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{QuadGDef} Besides the base anchors (see \ref{quadanchors}) it has 4 internal nodes: \tsobj[key]{-G11,-G12,-G21,-G22} and each of those sub-nodes has geographic anchors as defined at \ref{auxiliarynodes}. \begin{tsremark} There is also a \tsobj[key]{ToQuad G} to be used in a \tsobj[key]{to[ ]} path, in which case the key \tsobj[key]{outer x fit to} style will be triggered with the starting and ending points of the \tsobj[key]{to[ ]} path. \end{tsremark} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad G](Qa){text}; \pingeoanchors{Qa} \draw (Qa.2+) ++(2,0) node[Quad G,anchor=1+](Qb){text}; \pinquadanchors{Qb} \end{tikzpicture} } \end{center} \begin{center}% \resizebox{0.4\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad G,anchor=north](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} \subsubsection{Quad G keys} \begin{describelist*}[30mm]{keys} \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \describe{I1}{Initial value:\tsverb{$I_1$}} \describe{I2}{Initial value:\tsverb{$I_2$}} \describe{V1}{Initial value:\tsverb{$V_1$}} \describe{V2}{Initial value:\tsverb{$V_2$}} \describe {raw sources} {This will suppress the control variables (V1, I2) in the sources' labels} \describe{G11}{Initial value:\tsverb{$G_{11}$}} \describe{G12}{Initial value:\tsverb{$G_{12}$}} \describe{G21}{Initial value:\tsverb{$G_{21}$}} \describe{G22}{Initial value:\tsverb{$G_{22}$}} \describe{G11 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south west}{top left}}} \describe{G12 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south east}{top left}}} \describe{G21 label pos}{changes the label position. Defaults to: \tsobj[verb]{{north west}{bottom right}}} \describe{G22 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south east}{top right}}} \end{describelist*} \begin{tsremark} The label pos keys expects two anchor names (... label pos=\tsargs[marg]{anchor A,anchor B}). The first anchors refers the sub-shape node and the second anchor is the text one. \end{tsremark} \subsection{Quad H} \begin{codestore}[QuadHDef] % Node use node[Quad H]{} % To path use (A) to[ToQuad H] (B) \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{QuadHDef} Besides the base anchors (see \ref{quadanchors}) it has 4 internal nodes: \tsobj[key]{-H11,-H12,-H21,-H22} and each of those sub-nodes has geographic anchors as defined at \ref{auxiliarynodes}. \begin{tsremark} There is also a \tsobj[key]{ToQuad H} to be used in a \tsobj[key]{to[ ]} path, in which case the key \tsobj[key]{outer x fit to} style will be triggered with the starting and ending points of the \tsobj[key]{to[ ]} path. \end{tsremark} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad H](Qa){text}; \pingeoanchors{Qa} \draw (Qa.2+) ++(2,0) node[Quad H,anchor=1+](Qb){text}; \pinquadanchors{Qb} \end{tikzpicture} } \end{center} \begin{center}% \resizebox{0.4\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Quad H,anchor=north](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} \subsubsection{Quad H keys} \begin{describelist*}[30mm]{keys} \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \describe{I1}{Initial value:\tsverb{$I_1$}} \describe{I2}{Initial value:\tsverb{$I_2$}} \describe{V1}{Initial value:\tsverb{$V_1$}} \describe{V2}{Initial value:\tsverb{$V_2$}} \describe {raw sources} {This will suppress the control variables (I1, V2) in the sources' labels} \describe{H11}{Initial value:\tsverb{$H_{11}$}} \describe{H12}{Initial value:\tsverb{$H_{12}$}} \describe{H21}{Initial value:\tsverb{$H_{21}$}} \describe{H22}{Initial value:\tsverb{$H_{22}$}} \describe{H11 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south west}{top left}}} \describe{H12 label pos}{changes the label position. Defaults to: \tsobj[verb]{{south east}{top left}}} \describe{H21 label pos}{changes the label position. Defaults to: \tsobj[verb]{{north west}{bottom right}}} \describe{H22 label pos}{changes the label position. Defaults to: \tsobj[verb]{{north west}{bottom right}}} \end{describelist*} \begin{tsremark} The label pos keys expects two anchor names (... label pos=\tsargs[marg]{anchor A,anchor B}). The first anchors refers the sub-shape node and the second anchor is the text one. \end{tsremark} ~ \section{Thevenin, Norton single port boxes} \subsection{The Base Black Box Shape}\label{BBanchors} The base shape just draws a base box and sets some connection anchors: $1+$, $1-$, $inner\ 1+$, $inner\ 1-$, besides the geographic and text ones: \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Black Box](Qa){text}; \pingeoanchors{Qa} \draw (Qa.east) ++(2,0) node[Black Box,anchor=west](Qb){text}; \pinblackboxanchors{Qb} \draw (Qb.east) ++(2,0) node[Black Box,anchor=west](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} ~ \subsubsection{Base Keys}\label{BBkeys} These applies to all \emph{Black Box} shapes: \begin{describelist*}[30mm]{keys} \describe {base width} {The 'box' width} \describe {half base width} {Ditto, half width. Initial value:\tsobj{2\pgf@circ@Rlen}.} \describe {base height} {The distance between \tsobj[keys]{1+,1-}. The 'box' full height is equal to 2*(\tsobj[keys]{half base height} + \tsobj[keys]{height ext} + \tsobj[keys]{height ext+}).} \describe {half base height} {Ditto, half height. Initial value:\tsobj{\pgf@circ@Rlen/7} } \describe {height ext}{Initial value:\tsobj{2\pgf@circ@Rlen/7}} \describe {height ext+}{Initial value:0} \describe {inner ext} {distance between the 'box' and \tsobj{inner 1+/1-/2+/2-}. initial value: \tsobj{\pgf@circ@Rlen/7}} \describe {outer ext} {distance between the 'box' and \tsobj{1+/1-/2+/2-}. initial value: \tsobj{5\pgf@circ@Rlen/14}} \describe {inner marks} {If set, the inner anchors will be marked.} \describe {outer marks} {If set, the outer anchors will be marked.} \describe {invert} {The shape will be inverted, more or less like 'x scale=-1'.} \describe {alt, opt} {Case a Voltage source is zero, a series impedance will be draw vertically.} \describe {outer x fit to} {For any Black Box, this is the same as \tsobj[key]{outer x fit to!}.} \describe {outer x fit to*} {\tsobj[keys]{outer x fit*=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that \tsobj[meta]{1+,2+} (or \tsobj[meta]{1-,2-}, depending on the used anchor) \textbf{will fit} \tsobj[meta]{CoordA,CoordB}. This might result in a shape rotation.} \describe {outer x fit to!} {\tsobj[keys]{outer x fit!=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that the distance between \tsobj[meta]{1+,2+} (or \tsobj[meta]{1-,2-}, depending on the used anchor) will be the same as \tsobj[meta]{CoordA,CoordB}. This will never result in a shape rotation.} \describe {inner x fit to} {For any Black Box, this is the same as \tsobj[key]{inner x fit to!}.} \describe {inner x fit to*} {\tsobj[keys]{inner x fit*=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that \tsobj[meta]{inner 1+,inner 2+} (or \tsobj[meta]{inner 1-,inner 2-}, depending on the used anchor) \textbf{will fit} \tsobj[meta]{CoordA,CoordB}. This might result in a shape rotation.} \describe {inner x fit to!} {\tsobj[keys]{inner x fit!=}\tsargs[marg]{CoordA,CoordB}. The width will be set so that the distance between \tsobj[meta]{inner 1+,inner 2+} (or \tsobj[meta]{inner 1-,inner 2-}, depending on the used anchor) will be the same as \tsobj[meta]{CoordA,CoordB}. This will never result in a shape rotation.} \describe {y fit to} {For any Black Box, this is the same as \tsobj[key]{y fit to*}.} \describe {y fit to*} {\tsobj[keys]{y fit*=}\tsargs[marg]{CoordA,CoordB}. The height will be set so that \tsobj[keys]{1+,1-} \textbf{will fit} \tsobj[keys]{CoordA,CoordB}. This might result in a shape rotation} \describe {y fit to!} {\tsobj[keys]{y fit!=}\tsargs[marg]{CoordA,CoordB}. The height will be set so that the distance between \tsobj[meta]{1+,1-} will be equal to the distance between \tsobj[marg]{CoordA,CoordB}. This will never result in a shape rotation.} \describe{label top left}{It will place a label at the top left anchor} \describe{label top center}{It will place a label at the top center anchor} \describe{label top right}{It will place a label at the top right anchor} \describe{label inner top left}{It will place a label at the inner top left anchor} \describe{label inner top center}{It will place a label at the inner top center anchor} \describe{label inner top right}{It will place a label at the inner top right anchor} \describe{label bottom left}{It will place a label at the bottom left anchor} \describe{label bottom center}{It will place a label at the bottom center anchor} \describe{label bottom right}{It will place a label at the bottom right anchor} \describe{label inner bottom left}{It will place a label at the inner bottom left anchor} \describe{label inner bottom center}{It will place a label at the inner bottom center anchor} \describe{label inner bottom right}{It will place a label at the inner bottom right anchor} \end{describelist*} \subsection{Black Box} \begin{codestore}[BBDef] % Node use node[Black Box]{} % To path use (A) to[ToBlack Box] (B) \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{BBDef} This is just the base shape, to be used in cases whereas one just want to emphasises part of a circuit (using, for instance, the \tsobj[key]{inner x fit to} key, or just mark a single port black box. \begin{tsremark} There is also a \tsobj[key]{ToBlack Box} to be used in a \tsobj[key]{to[ ]} path, in which case the key \tsobj[key]{y fit to} style will be triggered with the starting and ending points of the \tsobj[key]{to[ ]} path. \end{tsremark} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Black Box](Qa){text}; \pingeoanchors{Qa} \draw (Qa.east) ++(2,0) node[Black Box,anchor=west](Qb){text}; \pinblackboxanchors{Qb} \draw (Qb.east) ++(2,0) node[Black Box,anchor=west](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} ~ \subsubsection{Black Box keys} \begin{describelist*}[30mm]{keys} \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \describe{I1}{Initial value:\tsverb{$I_1$}} \describe{V1}{Initial value:\tsverb{$V_1$}} \end{describelist*} \subsubsection{Examples of \emph{fit to} use} Squeezing a Black Box between two parts of a circuit (nodes C and D): \begin{codestore}[BBfitA] \resizebox{0.4\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \pincoord(ref) to[R=R1] ++(0,2) \pincoord(A) to[R=R2] ++(0,2) \pincoord(B) -- ++(2,0) \pincoord(C,red) (C |- ref) \pincoord(C1) -- (ref); \draw (C) ++(7,0) \pincoord(D,red) -- ++(0.5,0) to[R=R3] ++(0,-3) -- ++(2,0) to[R=R4] ++(0,3) -- ++(0.5,0) \pincoord(E); \draw (C) node[Black Box,anchor=1+,y fit to={C}{C1},outer x fit to={C}{D}]{}; \end{tikzpicture} } \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{BBfitA} ~ Fitting some circuit inside the Black Box (nodes C and E): \begin{codestore}[BBfitB] \resizebox{0.4\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \pincoord(ref) to[R=R1] ++(0,2) \pincoord(A) to[R=R2] ++(0,2) \pincoord(B) -- ++(2,0) \pincoord(C,red) (C |- ref) \pincoord(C1) -- (ref); \draw (C) ++(7,0) \pincoord(D,red) -- ++(0.5,0) to[R=R3] ++(0,-3) -- ++(2,0) to[R=R4] ++(0,3) -- ++(0.5,0) \pincoord(E); \draw (C) node[Black Box,anchor=inner 1+,y fit to={C}{C1},inner x fit to={C}{E}]{}; \end{tikzpicture} } \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{BBfitB} \subsection{Thevenin} \begin{codestore}[TheveninDef] % Node use node[Thevenin]{} % To path use (A) to[ToThevenin] (B) \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{TheveninDef} This is the classical Thevenin circuit. Besides the base anchors (see \ref{BBanchors}) it has 2 internal nodes: \tsobj[key]{-Zth,-Vth} and each of those sub-nodes has geographic anchors as defined at \ref{auxiliarynodes}. \begin{tsremark} There is also a \tsobj[key]{ToThevenin} to be used in a \tsobj[key]{to[ ]} path, in which case the key \tsobj[key]{y fit to} style will be triggered with the starting and ending points of the \tsobj[key]{to[ ]} path. \end{tsremark} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Thevenin](Qa){text}; \pingeoanchors{Qa} \draw (Qa.east) ++(2,0) node[Thevenin,anchor=west](Qb){text}; \pinblackboxanchors{Qb} \draw (Qb.east) ++(2,0) node[Thevenin,anchor=west](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} \subsubsection{Thevenin keys} \begin{describelist*}[30mm]{keys} \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \describe{I1}{Initial value:\tsverb{$I_1$}} \describe{V1}{Initial value:\tsverb{$V_1$}} \describe{Zth}{Initial value:\tsverb{$Z_{th}$}} \describe{Vth}{Initial value:\tsverb{$V_{th}$}} \describe{Zth label pos}{changes the label position. Defaults to: \tsobj[verb]{{south west}{top left}}} \describe{Vth label pos}{changes the label position. Defaults to: \tsobj[verb]{{south east}{top left}}} \end{describelist*} \begin{tsremark} The label pos keys expects two anchor names (... label pos=\tsargs[marg]{anchor A,anchor B}). The first anchors refers the sub-shape node and the second anchor is the text one. \end{tsremark} \subsection{Norton} \begin{codestore}[NortonDef] % Node use node[Norton]{} % To path use (A) to[ToNorton] (B) \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{NortonDef} This is the classical Norton circuit. Besides the base anchors (see \ref{BBanchors}) it has 2 internal nodes: \tsobj[key]{-Yn,-In} and each of those sub-nodes has geographic anchors as defined at \ref{auxiliarynodes}. \begin{tsremark} There is also a \tsobj[key]{ToNorton} to be used in a \tsobj[key]{to[ ]} path, in which case the key \tsobj[key]{y fit to} style will be triggered with the starting and ending points of the \tsobj[key]{to[ ]} path. \end{tsremark} \begin{center}% \resizebox{0.8\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[Norton](Qa){text}; \pingeoanchors{Qa} \draw (Qa.east) ++(2,0) node[Norton,anchor=west](Qb){text}; \pinblackboxanchors{Qb} \draw (Qb.east) ++(2,0) node[Norton,anchor=west](Qc){text}; \pinquadtextanchors{Qc} \end{tikzpicture} } \end{center} \subsubsection{Norton keys} \begin{describelist*}[30mm]{keys} \describe {name} {\tsmeta{node-name}, when using a to[\,] path.} \describe{I1}{Initial value:\tsverb{$I_1$}} \describe{V1}{Initial value:\tsverb{$V_1$}} \describe{Yn}{Initial value:\tsverb{$Y_{N}$}} \describe{In}{Initial value:\tsverb{$I_{N}$}} \describe{Yn label pos}{changes the label position. Defaults to: \tsobj[verb]{{south west}{top left}}} \describe{In label pos}{changes the label position. Defaults to: \tsobj[verb]{{south east}{top left}}} \end{describelist*} \begin{tsremark} The label pos keys expects two anchor names (... label pos=\tsargs[marg]{anchor A,anchor B}). The first anchors refers the sub-shape node and the second anchor is the text one. \end{tsremark} \section{Pseudo-Graph Shape} \begin{codestore}[PGDef] % Node use node[PG load line]{} node[PG linear load line] \end{codestore} \tscode*[emph={draw,node},emph2={x,y,fit,to,outer,inner,node},emph3={Quad,ToQuad,Black,ToBlack,Box,Thevenin,ToThevenin,Norton,ToNorton,PG,load,line,linear},basicstyle={\scriptsize\ttfamily},numbers=left,codeprefix={}]{PGDef} Sometimes when representing a single port sub-circuit, one might use a X-Y graph, for which \tsobj[pkg]{gnuplot,pgfplots} are excellent choices, but a bit overkill if all you want is a crude representation of a linear load line. This shape is just that, a X-Y graph mockup, that nicely fits inside a black box, and nothing else. \begin{center}% % \resizebox{0.2\textwidth}{!}{% \begin{tikzpicture} \draw (0,0) node[PG linear load line,first quadrant](PGa){}; \pingeoanchors{PGa} \draw (4,0) node[PG linear load line,second quadrant](PGa){}; \pingeoanchors{PGa} \draw (8,0) node[PG linear load line,third quadrant](PGa){}; \pingeoanchors{PGa} \draw (12,0) node[PG linear load line,fourth quadrant](PGa){}; \pingeoanchors{PGa} \end{tikzpicture} % } \end{center} \subsection{Pseudo-Graph Keys} These are the keys to fine tuning a shape: \begin{describelist*}[30mm]{keys} \describe {x axis} {X axis \emph{name}. Initial value: $V$} \describe {x val} {X axis \emph{val} at the crossing point. Initial value: $V_{th}$} \describe {y axis} {Y axis \emph{name}. Initial value: $I$} \describe {y val} {Y axis \emph{val} at the crossing point. Initial value: $I_{N}$} \describe {first quadrant} {First quadrant mock up. (which is also the default).} \describe {second quadrant} {Second quadrant mock up.} \describe {third quadrant} {Third quadrant mock up.} \describe {fourth quadrant} {Fourth quadrant mock up.} \describe {base width} {The \emph{graph} width} \describe {half base width} {Ditto, half width. Initial value:\tsobj{0.5\pgf@circ@Rlen}.} \describe {base height} {The \emph{graph} height} \describe {half base height} {Ditto, half height. Initial value:\tsobj{0.5\pgf@circ@Rlen}.} \end{describelist*} \begin{tsremark} Besides these, one can also use the keys presented at \ref{generalkeys}. \end{tsremark} \section{Examples of use} First of, a simple case of combining a generic Quad with equations and a generic Black Box with a Pseudo-Graph: \begin{codestore}[DemoX] \resizebox{\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \ncoord(ref) node[Quad,anchor=1+](Q1){} (Q1.2+) -- ++(1,0) \ncoord(X) -- ++(1,0) node[Black Box,anchor=1+,V1=$V_a$,I1=$I_a$](B1){} (Q1.2-) -- (B1.1-) (B1.center) node[PG linear load line,x axis=$V_a$,y axis=$I_a$]{} (Q1.center) node{$ \begin{matrix} V_1 &=& 5j*V_2 + 2*I_2 \\ I_1 &=& 3*V_2 + 2j*I_2 \end{matrix} $% } ; \end{tikzpicture} } \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node,coord},emph2={x,y,axis,fit,to,outer,inner,round,control,sources,european,alt},emph3={Quad,Black,Box,PG,linear,load,line},basicstyle={\scriptsize\ttfamily},numbers=left]{DemoX} ~ All default Quadripoles and Thevenin/Norton. \begin{codestore}[DemoA] \resizebox{\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \ncoord(ref) node[Quad Z,anchor=1+](Qz1){} (Qz1.2+) -- ++(1.5,0) \ncoord(X) -- ++(1.5,0) node[Quad Y,anchor=1+](Qy1){} (Qy1.2+) -- ++(1,0) node[Thevenin,anchor=1+](th1){} (Qz1.1-) -- ++(0,-1.5) node[Quad H,anchor=1+](Qh1){} (Qh1.2+) -- ++(1.5,0) \ncoord(Y) -- ++(1.5,0) node[Quad G,anchor=1+](Qg1){} (Qg1.2+) -- ++(1,0) node[Norton,anchor=1+](nr1){} (Qz1.2-) -- (Qy1.1-) (Qy1.2-) -- (th1.1-) (Qh1.2-) -- (Qg1.1-) (Qg1.2-) -- (nr1.1-) ; \draw (X) to[R=$Rx$] (X |- Qz1.2-) (Y) to[R=$Ry$] (Y |- Qh1.2-) ; \end{tikzpicture} } \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node,coord},emph2={x,y,fit,to,outer,inner,round,control,sources,european,alt},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{DemoA} ~ The same demo but with all parameter $11$ and $22$ zeroed, and changing the ``control sources'' \begin{codestore}[DemoB] \resizebox{\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \ncoord(ref) node[Quad Z,anchor=1+,Z11=0,Z22=0,I1=$I_a$,V1=$V_a$,I2=$I_b$,V2=$V_b$](Qz1){} (Qz1.2+) -- ++(1.5,0) \ncoord(X) -- ++(1.5,0) node[Quad Y,anchor=1+,Y11=0,Y22=0,I1=$I_d$,V1=$V_d$,I2=$I_c$,V2=$V_c$](Qy1){} (Qy1.2+) -- ++(1,0) node[Thevenin,anchor=1+,Zth=0,I1=$I_h$,V1=$V_h$](th1){} (Qz1.1-) -- ++(0,-1.5) node[Quad H,anchor=1+,H11=0,H22=0,I1=$I_e$,V1=$V_e$,I2=$I_e$,V2=$V_e$](Qh1){} (Qh1.2+) -- ++(1.5,0) \ncoord(Y) -- ++(1.5,0) node[Quad G,anchor=1+,G11=0,G22=0,I1=$I_g$,V1=$V_g$,I2=$I_f$,V2=$V_f$](Qg1){} (Qg1.2+) -- ++(1,0) node[Norton,anchor=1+,Yn=0,I1=$I_i$,V1=$V_i$](nr1){} (Qz1.2-) -- (Qy1.1-) (Qy1.2-) -- (th1.1-) (Qh1.2-) -- (Qg1.1-) (Qg1.2-) -- (nr1.1-) ; \draw (X) to[R=$Rx$] (X |- Qz1.2-) (Y) to[R=$Ry$] (Y |- Qh1.2-) ; \end{tikzpicture} } \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node,coord},emph2={x,y,fit,to,outer,inner,round,control,sources,european,alt},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{DemoB} ~ Now with the $12$ and $21$ parameters zeroed, normal form: \begin{codestore}[DemoC] \resizebox{\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \ncoord(ref) node[Quad Z,anchor=1+,Z12=0,Z21=0,I1=$I_a$,V1=$V_a$,I2=$I_b$,V2=$V_b$](Qz1){} (Qz1.2+) -- ++(1.5,0) \ncoord(X) -- ++(1.5,0) node[Quad Y,anchor=1+,Y12=0,Y21=0,I1=$I_d$,V1=$V_d$,I2=$I_c$,V2=$V_c$](Qy1){} (Qy1.2+) -- ++(1,0) node[Thevenin,anchor=1+,Vth=0,I1=$I_h$,V1=$V_h$](th1){} (Qz1.1-) -- ++(0,-1.5) node[Quad H,anchor=1+,H12=0,H21=0,I1=$I_e$,V1=$V_e$,I2=$I_e$,V2=$V_e$](Qh1){} (Qh1.2+) -- ++(1.5,0) \ncoord(Y) -- ++(1.5,0) node[Quad G,anchor=1+,G12=0,G21=0,I1=$I_g$,V1=$V_g$,I2=$I_f$,V2=$V_f$](Qg1){} (Qg1.2+) -- ++(1,0) node[Norton,anchor=1+,In=0,I1=$I_i$,V1=$V_i$](nr1){} (Qz1.2-) -- (Qy1.1-) (Qy1.2-) -- (th1.1-) (Qh1.2-) -- (Qg1.1-) (Qg1.2-) -- (nr1.1-) ; \draw (X) to[R=$Rx$] (X |- Qz1.2-) (Y) to[R=$Ry$] (Y |- Qh1.2-) ; \end{tikzpicture} } \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node,coord},emph2={x,y,fit,to,outer,inner,round,control,sources,european,alt},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{DemoC} ~ Same as last one, but with an alternate form: \begin{codestore}[DemoC] \resizebox{\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \ncoord(ref) node[Quad Z,alt,anchor=1+,Z12=0,Z21=0,I1=$I_a$,V1=$V_a$,I2=$I_b$,V2=$V_b$](Qz1){} (Qz1.2+) -- ++(1.5,0) \ncoord(X) -- ++(1.5,0) node[Quad Y,alt,anchor=1+,Y12=0,Y21=0,I1=$I_d$,V1=$V_d$,I2=$I_c$,V2=$V_c$](Qy1){} (Qy1.2+) -- ++(1,0) node[Thevenin,alt,anchor=1+,Vth=0,I1=$I_h$,V1=$V_h$](th1){} (Qz1.1-) -- ++(0,-1.5) node[Quad H,alt,anchor=1+,H12=0,H21=0,I1=$I_e$,V1=$V_e$,I2=$I_e$,V2=$V_e$](Qh1){} (Qh1.2+) -- ++(1.5,0) \ncoord(Y) -- ++(1.5,0) node[Quad G,alt,anchor=1+,G12=0,G21=0,I1=$I_g$,V1=$V_g$,I2=$I_f$,V2=$V_f$](Qg1){} (Qg1.2+) -- ++(1,0) node[Norton,alt,anchor=1+,In=0,I1=$I_i$,V1=$V_i$](nr1){} (Qz1.2-) -- (Qy1.1-) (Qy1.2-) -- (th1.1-) (Qh1.2-) -- (Qg1.1-) (Qg1.2-) -- (nr1.1-) ; \draw (X) to[R=$Rx$] (X |- Qz1.2-) (Y) to[R=$Ry$] (Y |- Qh1.2-) ; \end{tikzpicture} } \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node,coord},emph2={x,y,fit,to,outer,inner,round,control,sources,european,alt},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{DemoC} ~ Setting all parameters,some impedances as zig-zag, others as generic, per quadripole: \begin{codestore}[DemoD] \resizebox{\textwidth}{!}{ \begin{tikzpicture} \draw (0,0) \ncoord(ref) node[Quad Z,alt,round sources,european,anchor=1+,Z11=$Z_a$,Z22=$Z_b$,Z12=$Z_{re}$,Z21=$Z_{fe}$,I1=$I_a$,V1=$V_a$,I2=$I_b$,V2=$V_b$](Qz1){} (Qz1.2+) -- ++(1.5,0) \ncoord(X) -- ++(1.5,0) node[Quad Y,alt,anchor=1+,Y11=$Y_a$,Y22=$Y_b$,Y12=$Y_{re}$,Y21=$Y_{fe}$,I1=$I_d$,V1=$V_d$,I2=$I_c$,V2=$V_c$](Qy1){} (Qy1.2+) -- ++(1,0) node[Thevenin,alt,anchor=1+,Vth=$V_1$,Zth=$Z_a$,I1=$I_h$,V1=$V_h$](th1){} (Qz1.1-) -- ++(0,-1.5) node[Quad H,european,alt,anchor=1+,H11=$H_a$,H22=$H_b$,H12=$H_{re}$,H21=$H_{fe}$,I1=$I_e$,V1=$V_e$,I2=$I_e$,V2=$V_e$](Qh1){} (Qh1.2+) -- ++(1.5,0) \ncoord(Y) -- ++(1.5,0) node[Quad G,alt,anchor=1+,G11=$G_a$,G22=$G_b$,G12=$G_{re}$,G21=$G_{fe}$,I1=$I_g$,V1=$V_g$,I2=$I_f$,V2=$V_f$](Qg1){} (Qg1.2+) -- ++(1,0) node[Norton,alt,control sources,european,anchor=1+,In=$I_b$,Yn=$Y_b$,I1=$I_i$,V1=$V_i$](nr1){} (Qz1.2-) -- (Qy1.1-) (Qy1.2-) -- (th1.1-) (Qh1.2-) -- (Qg1.1-) (Qg1.2-) -- (nr1.1-) ; \draw (X) to[R=$Rx$] (X |- Qz1.2-) (Y) to[R=$Ry$] (Y |- Qh1.2-) ; \end{tikzpicture} } \end{codestore} \tsdemo*[codeprefix={},resultprefix={},emph={draw,node,coord},emph2={x,y,fit,to,outer,inner,round,control,sources,european,alt},emph3={Quad,Black,Box},basicstyle={\scriptsize\ttfamily},numbers=left]{DemoD} \end{document}