
Yade Documentation

Václav Šmilauer, Emanuele Catalano, Bruno Chareyre, Sergei
Dorofeenko, Jerome Duriez, Anton Gladky, Janek Kozicki, Chiara
Modenese, Luc Scholtès, Luc Sibille, Jan Stránský, Klaus Thoeni

Release 1.07.0, January 20, 2014

Authors
Václav Šmilauer
University of Innsbruck
Emanuele Catalano
Grenoble INP, UJF, CNRS, lab. 3SR
Bruno Chareyre
Grenoble INP, UJF, CNRS, lab. 3SR
Sergei Dorofeenko
IPCP RAS, Chernogolovka
Jerome Duriez
Grenoble INP, UJF, CNRS, lab. 3SR
Anton Gladky
TU Bergakademie Freiberg
Janek Kozicki
Gdansk University of Technology - lab. 3SR Grenoble University
Chiara Modenese
University of Oxford
Luc Scholtès
Grenoble INP, UJF, CNRS, lab. 3SR
Luc Sibille
University of Nantes, lab. GeM
Jan Stránský
CVUT Prague
Klaus Thoeni The University of Newcastle (Australia)

Citing this document
In order to let users cite Yade consistently in publications, we provide a list of bibliographic references
for the different parts of the documentation. This way of acknowledging Yade is also a way to make
developments and documentation of Yade more attractive for researchers, who are evaluated on the basis
of citations of their work by others. We therefore kindly ask users to cite Yade as accurately as possible
in their papers, as explained in http://yade-dem/doc/citing.html.

ii

Contents

1 Introduction 3
1.1 Getting started . 3
1.2 Architecture overview . 7

2 Tutorial 15
2.1 Introduction . 15
2.2 Hands-on . 15
2.3 Data mining . 24
2.4 Towards geomechanics . 28
2.5 Advanced & more . 30
2.6 Examples . 30

3 User’s manual 41
3.1 Scene construction . 41
3.2 Controlling simulation . 59
3.3 Postprocessing . 71
3.4 Python specialties and tricks . 79
3.5 Extending Yade . 79
3.6 Troubleshooting . 79

4 Programmer’s manual 83
4.1 Build system . 83
4.2 Development tools . 84
4.3 Conventions . 85
4.4 Support framework . 89
4.5 Simulation framework . 109
4.6 Runtime structure . 114
4.7 Python framework . 116
4.8 Maintaining compatibility . 118
4.9 Debian packaging instructions . 118

5 Installation 121
5.1 Packages . 121
5.2 Source code . 122

6 DEM Background 125
6.1 Collision detection . 125
6.2 Creating interaction between particles . 129
6.3 Strain evaluation . 130
6.4 Stress evaluation (example) . 134
6.5 Motion integration . 134
6.6 Periodic boundary conditions . 142
6.7 Computational aspects . 146

7 Class reference (yade.wrapper module) 149
7.1 Bodies . 149
7.2 Interactions . 177

iii

7.3 Global engines . 208
7.4 Partial engines . 280
7.5 Bounding volume creation . 307
7.6 Interaction Geometry creation . 312
7.7 Interaction Physics creation . 327
7.8 Constitutive laws . 336
7.9 Callbacks . 351
7.10 Preprocessors . 352
7.11 Rendering . 362
7.12 Simulation data . 373
7.13 Other classes . 382

8 Yade modules 393
8.1 yade.bodiesHandling module . 393
8.2 yade.export module . 394
8.3 yade.geom module . 396
8.4 yade.linterpolation module . 399
8.5 yade.pack module . 400
8.6 yade.plot module . 410
8.7 yade.polyhedra_utils module . 413
8.8 yade.post2d module . 415
8.9 yade.qt module . 417
8.10 yade.timing module . 417
8.11 yade.utils module . 418
8.12 yade.ymport module . 431

9 Acknowledging Yade 435
9.1 Citing the Yade Project as a whole (the lazy citation method) 435
9.2 Citing chapters of Yade Documentation . 435

10 Publications on Yade 437
10.1 Citing Yade . 437
10.2 Journal articles . 437
10.3 Conference materials . 437
10.4 Master and PhD theses . 437

11 References 439

12 Indices and tables 441

Bibliography 443

Python Module Index 455

iv

Yade Documentation, Release 1.07.0

Note: Please consult changes to Yade documention with documentation manager (whoever that is),
even if you have commit permissions.

See older tentative contents

Contents 1

http://bazaar.launchpad.net/~eudoxos/%2Bjunk/ydoc/annotate/head%3A/toc

Yade Documentation, Release 1.07.0

2 Contents

Chapter 1

Introduction

1.1 Getting started

Before you start moving around in Yade, you should have some prior knowledge.
• Basics of command line in your Linux system are necessary for running yade. Look on the web for

tutorials.
• Python language; we recommend the official Python tutorial. Reading further documents on the

topis, such as Dive into Python will certainly not hurt either.
You are advised to try all commands described yourself. Don’t be afraid to experiment.

1.1.1 Starting yade

Yade is being run primarily from terminal; the name of command is yade. 1 (In case you did not install
from package, you might need to give specific path to the command 2):

$ yade
Welcome to Yade
TCP python prompt on localhost:9001, auth cookie `sdksuy'
TCP info provider on localhost:21000
[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8 plot.]]
Yade [1]:

These initial lines give you some information about
• some information for Remote control, which you are unlikely to need now;
• basic help for the command-line that just appeared (Yade [1]:).

Type quit(), exit() or simply press ^D to quit Yade.
1 The executable name can carry a suffix, such as version number (yade-0.20), depending on compilation options.

Packaged versions on Debian systems always provide the plain yade alias, by default pointing to latest stable version (or
latest snapshot, if no stable version is installed). You can use update-alternatives to change this.

2 In general, Unix shell (command line) has environment variable PATH defined, which determines directories searched
for executable files if you give name of the file without path. Typically, $PATH contains /usr/bin/, /usr/local/bin, /bin
and others; you can inspect your PATH by typing echo $PATH in the shell (directories are separated by :).

If Yade executable is not in directory contained in PATH, you have to specify it by hand, i.e. by typing the path in front
of the filename, such as in /home/user/bin/yade and similar. You can also navigate to the directory itself (cd ~/bin/yade,
where ~ is replaced by your home directory automatically) and type ./yade then (the . is the current directory, so ./
specifies that the file is to be found in the current directory).

To save typing, you can add the directory where Yade is installed to your PATH, typically by editing ~/.profile (in
normal cases automatically executed when shell starts up) file adding line like export PATH=/home/user/bin:$PATH. You
can also define an alias by saying alias yade="/home/users/bin/yade" in that file.

Details depend on what shell you use (bash, zsh, tcsh, …) and you will find more information in introductory material
on Linux/Unix.

3

http://docs.python.org/tutorial
http://www.diveintopython.net/

Yade Documentation, Release 1.07.0

The command-line is ipython, python shell with enhanced interactive capabilities; it features persistent
history (remembers commands from your last sessions), searching and so on. See ipython’s documentation
for more details.
Typically, you will not type Yade commands by hand, but use scripts, python programs describing and
running your simulations. Let us take the most simple script that will just print “Hello world!”:

print "Hello world!"

Saving such script as hello.py, it can be given as argument to yade:

$ yade hello.py
Welcome to Yade
TCP python prompt on localhost:9001, auth cookie `askcsu'
TCP info provider on localhost:21000
Running script hello.py ## the script is being run
Hello world! ## output from the script
[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8 plot.]]
Yade [1]:

Yade will run the script and then drop to the command-line again. 3 If you want Yade to quit immediately
after running the script, use the -x switch:

$ yade -x script.py

There is more command-line options than just -x, run yade -h to see all of them.
Options:

--version show program’s version number and exit
-h, --help show this help message and exit
-j THREADS, --threads=THREADS Number of OpenMP threads

to run; defaults to 1. Equivalent to setting OMP_-
NUM_THREADS environment variable.

--cores=CORES Set number of OpenMP threads (as –threads) and in
addition set affinity of threads to the cores given.

--update Update deprecated class names in given script(s) using
text search & replace. Changed files will be backed up
with ~ suffix. Exit when done without running any
simulation.

--nice=NICE Increase nice level (i.e. decrease priority) by given
number.

-x Exit when the script finishes
-n Run without graphical interface (equivalent to unset-

ting the DISPLAY environment variable)
--test Run regression test suite and exit; the exists status is 0

if all tests pass, 1 if a test fails and 2 for an unspecified
exception.

--check Run a series of user-defined check tests
as described in /build/buildd/yade- daily-
1+3021+27~lucid1/scripts/test/checks/README

--performance Starts a test to measure the productivity
--no-gdb Do not show backtrace when yade crashes (only effec-

tive with –debug).
3 Plain Python interpreter exits once it finishes running the script. The reason why Yade does the contrary is that most

of the time script only sets up simulation and lets it run; since computation typically runs in background thread, the script
is technically finished, but the computation is running.

4 Chapter 1. Introduction

http://ipython.scipy.org

Yade Documentation, Release 1.07.0

1.1.2 Creating simulation

To create simulation, one can either use a specialized class of type FileGenerator to create full scene,
possibly receiving some parameters. Generators are written in c++ and their role is limited to well-
defined scenarios. For instance, to create triaxial test scene:

Yade [1]: TriaxialTest(numberOfGrains=200).load()

Yade [2]: len(O.bodies)
Out[2]: 206

Generators are regular yade objects that support attribute access.
It is also possible to construct the scene by a python script; this gives much more flexibility and speed of
development and is the recommended way to create simulation. Yade provides modules for streamlined
body construction, import of geometries from files and reuse of common code. Since this topic is more
involved, it is explained in the User’s manual.

1.1.3 Running simulation

As explained above, the loop consists in running defined sequence of engines. Step number can be queried
by O.iter and advancing by one step is done by O.step(). Every step advances virtual time by current
timestep, O.dt:

Yade [1]: O.iter
Out[1]: 0

Yade [2]: O.time
Out[2]: 0.0

Yade [3]: O.dt=1e-4

Yade [4]: O.step()

Yade [5]: O.iter
Out[5]: 1

Yade [6]: O.time
Out[6]: 0.0001

Normal simulations, however, are run continuously. Starting/stopping the loop is done by O.run() and
O.pause(); note that O.run() returns control to Python and the simulation runs in background; if
you want to wait for it finish, use O.wait(). Fixed number of steps can be run with O.run(1000),
O.run(1000,True) will run and wait. To stop at absolute step number, O.stopAtIter can be set and
O.run() called normally.

Yade [1]: O.run()

Yade [2]: O.pause()

Yade [3]: O.iter
Out[3]: 1130

Yade [4]: O.run(100000,True)

Yade [5]: O.iter
Out[5]: 101130

Yade [6]: O.stopAtIter=500000

Yade [7]: O.wait()

1.1. Getting started 5

Yade Documentation, Release 1.07.0

Yade [8]: O.iter
Out[8]: 101130

1.1.4 Saving and loading

Simulation can be saved at any point to (optionally compressed) XML file. With some limitations, it is
generally possible to load the XML later and resume the simulation as if it were not interrupted. Note
that since XML is merely readable dump of Yade’s internal objects, it might not (probably will not)
open with different Yade version.

Yade [1]: O.save('/tmp/a.xml.bz2')

Yade [2]: O.reload()

Yade [4]: O.load('/tmp/another.xml.bz2')

The principal use of saving the simulation to XML is to use it as temporary in-memory storage for
checkpoints in simulation, e.g. for reloading the initial state and running again with different param-
eters (think tension/compression test, where each begins from the same virgin state). The functions
O.saveTmp() and O.loadTmp() can be optionally given a slot name, under which they will be found in
memory:

Yade [1]: O.saveTmp()

Yade [2]: O.loadTmp()

Yade [3]: O.saveTmp('init') ## named memory slot

Yade [4]: O.loadTmp('init')

Simulation can be reset to empty state by O.reset().
It can be sometimes useful to run different simulation, while the original one is temporarily suspended,
e.g. when dynamically creating packing. O.switchWorld() toggles between the primary and secondary
simulation.

1.1.5 Graphical interface

Yade can be optionally compiled with qt4-based graphical interface. It can be started by pressing F12
in the command-line, and also is started automatically when running a script.

6 Chapter 1. Introduction

Yade Documentation, Release 1.07.0

The windows with buttons is called Controller (can be invoked by yade.qt.Controller() from
python):

1. The Simulation tab is mostly self-explanatory, and permits basic simulation control.
2. The Display tab has various rendering-related options, which apply to all opened views (they can

be zero or more, new one is opened by the New 3D button).
3. The Python tab has only a simple text entry area; it can be useful to enter python commands while

the command-line is blocked by running script, for instance.
3d views can be controlled using mouse and keyboard shortcuts; help is displayed if you press the h key
while in the 3d view. Note that having the 3d view open can slow down running simulation significantly,
it is meant only for quickly checking whether the simulation runs smoothly. Advanced post-processing
is described in dedicated section.

1.2 Architecture overview

In the following, a high-level overview of Yade architecture will be given. As many of the features are
directly represented in simulation scripts, which are written in Python, being familiar with this language
will help you follow the examples. For the rest, this knowledge is not strictly necessary and you can
ignore code examples.

1.2.1 Data and functions

To assure flexibility of software design, yade makes clear distinction of 2 families of classes: data com-
ponents and functional components. The former only store data without providing functionality, while
the latter define functions operating on the data. In programming, this is known as visitor pattern (as
functional components “visit” the data, without being bound to them explicitly).

1.2. Architecture overview 7

Yade Documentation, Release 1.07.0

Entire simulation, i.e. both data and functions, are stored in a single Scene object. It is accessible
through the Omega class in python (a singleton), which is by default stored in the O global variable:

Yade [1]: O.bodies # some data components
Out[1]: <yade.wrapper.BodyContainer at 0x521b320>

Yade [2]: len(O.bodies) # there are no bodies as of yet
Out[2]: 0

Yade [3]: O.engines # functional components, empty at the moment
Out[3]: []

Data components

Bodies

Yade simulation (class Scene, but hidden inside Omega in Python) is represented by Bodies, their
Interactions and resultant generalized forces (all stored internally in special containers).
Each Body comprises the following:
Shape represents particle’s geometry (neutral with regards to its spatial orientation), such as Sphere,

Facet or inifinite Wall; it usually does not change during simulation.
Material stores characteristics pertaining to mechanical behavior, such as Young’s modulus or density,

which are independent on particle’s shape and dimensions; usually constant, might be shared
amongst multiple bodies.

State contains state variable variables, in particular spatial position and orientation, linear and angular
velocity, linear and angular accelerator; it is updated by the integrator at every step.
Derived classes can hold additional data, e.g. averaged damage.

Bound is used for approximate (“pass 1”) contact detection; updated as necessary following body’s
motion. Currently, Aabb is used most often as Bound. Some bodies may have no Bound, in which
case they are exempt from contact detection.

(In addition to these 4 components, bodies have several more minor data associated, such as Body::id
or Body::mask.)
All these four properties can be of different types, derived from their respective base types. Yade
frequently makes decisions about computation based on those types: Sphere + Sphere collision has to be
treated differently than Facet + Sphere collision. Objects making those decisions are called Dispatcher‘s
and are essential to understand Yade’s functioning; they are discussed below.
Explicitly assigning all 4 properties to each particle by hand would be not practical; there are utility
functions defined to create them with all necessary ingredients. For example, we can create sphere
particle using utils.sphere:

Yade [1]: s=utils.sphere(center=[0,0,0],radius=1)

Yade [2]: s.shape, s.state, s.mat, s.bound
Out[2]:

(<Sphere instance at 0xd2abd60>,
<State instance at 0x154d9c40>,
<FrictMat instance at 0xcce68d0>,
None)

Yade [3]: s.state.pos
Out[3]: Vector3(0,0,0)

Yade [4]: s.shape.radius
Out[4]: 1.0

8 Chapter 1. Introduction

Yade Documentation, Release 1.07.0

We see that a sphere with material of type FrictMat (default, unless you provide another Material) and
bounding volume of type Aabb (axis-aligned bounding box) was created. Its position is at origin and its
radius is 1.0. Finally, this object can be inserted into the simulation; and we can insert yet one sphere
as well.

Yade [1]: O.bodies.append(s)
Out[1]: 0

Yade [2]: O.bodies.append(utils.sphere([0,0,2],.5))
Out[2]: 1

In each case, return value is Body.id of the body inserted.
Since till now the simulation was empty, its id is 0 for the first sphere and 1 for the second one. Saving the
id value is not necessary, unless you want access this particular body later; it is remembered internally
in Body itself. You can address bodies by their id:

Yade [3]: O.bodies[1].state.pos
Out[3]: Vector3(0,0,2)

Yade [4]: O.bodies[100]

IndexError Traceback (most recent call last)
/tmp/buildd/yade-1.07.0/debian/tmp/usr/lib/x86_64-linux-gnu/yade/py/yade/__init__.py in <module>()
----> 1 O.bodies[100]

IndexError: Body id out of range.

Adding the same body twice is, for reasons of the id uniqueness, not allowed:

Yade [5]: O.bodies.append(s)

IndexError Traceback (most recent call last)
/tmp/buildd/yade-1.07.0/debian/tmp/usr/lib/x86_64-linux-gnu/yade/py/yade/__init__.py in <module>()
----> 1 O.bodies.append(s)

IndexError: Body already has id 0 set; appending such body (for the second time) is not allowed.

Bodies can be iterated over using standard python iteration syntax:

Yade [6]: for b in O.bodies:
...: print b.id,b.shape.radius
...:

0 1.0
1 0.5

Interactions

Interactions are always between pair of bodies; usually, they are created by the collider based on spatial
proximity; they can, however, be created explicitly and exist independently of distance. Each interaction
has 2 components:
IGeom holding geometrical configuration of the two particles in collision; it is updated automatically

as the particles in question move and can be queried for various geometrical characteristics, such
as penetration distance or shear strain.
Based on combination of types of Shapes of the particles, there might be different storage require-
ments; for that reason, a number of derived classes exists, e.g. for representing geometry of contact
between Sphere+Sphere, Cylinder+Sphere etc. Note, however, that it is possible to represent
many type of contacts with the basic sphere-sphere geometry (for instance in Ig2_Wall_Sphere_-
ScGeom).

1.2. Architecture overview 9

Yade Documentation, Release 1.07.0

IPhys representing non-geometrical features of the interaction; some are computed from Materials of
the particles in contact using some averaging algorithm (such as contact stiffness from Young’s
moduli of particles), others might be internal variables like damage.

Suppose now interactions have been already created. We can access them by the id pair:

Yade [9]: O.interactions[0,1]
Out[9]: <Interaction instance at 0x524b650>

Yade [10]: O.interactions[1,0] # order of ids is not important
Out[10]: <Interaction instance at 0x524b650>

Yade [11]: i=O.interactions[0,1]

Yade [12]: i.id1,i.id2
Out[12]: (0, 1)

Yade [13]: i.geom
Out[13]: <ScGeom instance at 0xaf1f830>

Yade [14]: i.phys
Out[14]: <FrictPhys instance at 0xcb241c0>

Yade [15]: O.interactions[100,10111]

IndexError Traceback (most recent call last)
/tmp/buildd/yade-1.07.0/debian/tmp/usr/lib/x86_64-linux-gnu/yade/py/yade/__init__.py in <module>()
----> 1 O.interactions[100,10111]

IndexError: No such interaction

Generalized forces

Generalized forces include force, torque and forced displacement and rotation; they are stored only tem-
porarliy, during one computation step, and reset to zero afterwards. For reasons of parallel computation,
they work as accumulators, i.e. only can be added to, read and reset.

Yade [16]: O.forces.f(0)
Out[16]: Vector3(0,0,0)

Yade [17]: O.forces.addF(0,Vector3(1,2,3))

Yade [18]: O.forces.f(0)
Out[18]: Vector3(1,2,3)

You will only rarely modify forces from Python; it is usually done in c++ code and relevant documen-
tation can be found in the Programmer’s manual.

Function components

In a typical DEM simulation, the following sequence is run repeatedly:
• reset forces on bodies from previous step
• approximate collision detection (pass 1)
• detect exact collisions of bodies, update interactions as necessary
• solve interactions, applying forces on bodies
• apply other external conditions (gravity, for instance).
• change position of bodies based on forces, by integrating motion equations.

10 Chapter 1. Introduction

Yade Documentation, Release 1.07.0

bodies
Shape
Material
State
Bound

interactions

geometry
 collision detection pass 2
 strain evaluation

physics
 properties of new interactions

constitutive law
 compute forces from strainsforces

(generalized)

update
bounds

collision
detection
pass 1

other forces
(gravity, BC, ...)

miscillaneous engines
(recorders, ...)

reset forces

forces → acceleration

velocity update

position update

simulation
loop

increment
time by Δt

Figure 1.1: Typical simulation loop; each step begins at body-centered bit at 11 o’clock, continues with
interaction bit, force application bit, miscillanea and ends with time update.

Each of these actions is represented by an Engine, functional element of simulation. The sequence of
engines is called simulation loop.

Engines

Simulation loop, shown at img. img-yade-iter-loop, can be described as follows in Python (details will
be explained later); each of the O.engine items is instance of a type deriving from Engine:

O.engines=[
reset forces
ForceResetter(),
approximate collision detection, create interactions
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()]),
handle interactions
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom(),Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],

),
apply other conditions
GravityEngine(gravity=(0,0,-9.81)),
update positions using Newton's equations
NewtonIntegrator()

]

There are 3 fundamental types of Engines:
GlobalEngines operating on the whole simulation (e.g. GravityEngine looping over all bodies and

applying force based on their mass)
PartialEngine operating only on some pre-selected bodies (e.g. ForceEngine applying constant force

to some bodies)
Dispatchers do not perform any computation themselves; they merely call other functions, represented

by function objects, Functors. Each functor is specialized, able to handle certain object types, and
will be dispatched if such obejct is treated by the dispatcher.

1.2. Architecture overview 11

Yade Documentation, Release 1.07.0

Dispatchers and functors

For approximate collision detection (pass 1), we want to compute bounds for all bodies in the simula-
tion; suppose we want bound of type axis-aligned bounding box. Since the exact algorithm is different
depending on particular shape, we need to provide functors for handling all specific cases. The line:

InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()])

creates InsertionSortCollider (it internally uses BoundDispatcher, but that is a detail). It traverses all
bodies and will, based on shape type of each body, dispatch one of the functors to create/update bound
for that particular body. In the case shown, it has 2 functors, one handling spheres, another facets.
The name is composed from several parts: Bo (functor creating Bound), which accepts 1 type Sphere
and creates an Aabb (axis-aligned bounding box; it is derived from Bound). The Aabb objects are used
by InsertionSortCollider itself. All Bo1 functors derive from BoundFunctor.
The next part, reading

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],

),

hides 3 internal dispatchers within the InteractionLoop engine; they all operate on interactions and are,
for performance reasons, put together:
IGeomDispatcher uses the first set of functors (Ig2), which are dispatched based on combination

of 2 Shapes objects. Dispatched functor resolves exact collision configuration and creates IGeom
(whence Ig in the name) associated with the interaction, if there is collision. The functor might as
well fail on approximate interactions, indicating there is no real contact between the bodies, even
if they did overlap in the approximate collision detection.
1. The first functor, Ig2_Sphere_Sphere_ScGeom, is called on interaction of 2 Spheres and

creates ScGeom instance, if appropriate.
2. The second functor, Ig2_Facet_Sphere_ScGeom, is called for interaction of Facet with Sphere

and might create (again) a ScGeom instance.
All Ig2 functors derive from IGeomFunctor (they are documented at the same place).

IPhysDispatcher dispatches to the second set of functors based on combination of 2 Materials; these
functors return return IPhys instance (the Ip prefix). In our case, there is only 1 functor used,
Ip2_FrictMat_FrictMat_FrictPhys, which create FrictPhys from 2 FrictMat’s.
Ip2 functors are derived from IPhysFunctor.

LawDispatcher dispatches to the third set of functors, based on combinations of IGeom and IPhys
(wherefore 2 in their name again) of each particular interaction, created by preceding functors.
The Law2 functors represent “constitutive law”; they resolve the interaction by computing forces
on the interacting bodies (repulsion, attraction, shear forces, …) or otherwise update interaction
state variables.
Law2 functors all inherit from LawFunctor.

There is chain of types produced by earlier functors and accepted by later ones; the user is responsible
to satisfy type requirement (see img. img-dispatch-loop). An exception (with explanation) is raised in
the contrary case.

Note: When Yade starts, O.engines is filled with a reasonable default list, so that it is not strictly
necessary to redefine it when trying simple things. The default scene will handle spheres, boxes, and
facets with frictional properties correctly, and adjusts the timestep dynamically. You can find an example
in simple-scene-default-engines.py.

12 Chapter 1. Introduction

Yade Documentation, Release 1.07.0

Sphere+Sphere
Facet+Sphere Dem3DofGeom

FrictMat+FrictMat
FrictPhys

S
h
a
p
e

M
a
te
ri
a
l

Ig2_Sphere_Sphere_Dem3DofGeom

Ig2_Facet
Sphere

Dem3DofGeom

Ip2_FrictM
at_FrictMa

t_FrictPhys

Body
Interaction

In
te
ra
ct
io
n

G
e
o
m
e
tr
y

In
te
ra
ct
io
n

P
h
y
si
cs

Law2_Dem3DofGeom_FrictPhys_Basic

Figure 1.2: Chain of functors producing and accepting certain types. In the case shown, the Ig2 functors
produce ScfGeom instances from all handled Shape combinations; the Ig2 functor produces FrictMat.
The constitutive law functor Law2 accepts the combination of types produced. Note that the types are
stated in the functor’s class names.

1.2. Architecture overview 13

Yade Documentation, Release 1.07.0

14 Chapter 1. Introduction

Chapter 2

Tutorial

This tutorial originated as handout for a course held at Technische Universität Dresden / Fakultät
Bauingenieurwesen / Institut für Geotechnik in Jaunary 2011. The focus was to give quick and rather
practical introduction to people without prior modeling experience, but with knowledge of mechanics.
Some computer literacy was assumed, though basics are reviewed in the Hands-on section.
The course did not in reality follow this document, but was based on interactive writing and commenting
simple Examples, which were mostly suggested by participants; many thanks to them for their ideas and
suggestions.
A few minor bugs were discovered during the course. They were all fixed in rev. 2640 of Yade which is
therefore the minimum recommended version to run the examples (notably, 0.60 will not work).

2.1 Introduction

Slides Yade: past, present and future (updated version)

2.2 Hands-on

2.2.1 Shell basics

Directory tree

Directory tree is hierarchical way to organize files in operating systems. A typical (reduced) tree looks
like this:

/ Root
�--boot System startup
�--bin Low-level programs
�--lib Low-level libraries
�--dev Hardware access
�--sbin Administration programs
�--proc System information
�--var Files modified by system services
�--root Root (administrator) home directory
�--etc Configuration files
�--media External drives
�--tmp Temporary files
�--usr Everything for normal operation (usr = UNIX system resources)
| �--bin User programs
| �--sbin Administration programs
| �--include Header files for c/c++

15

http://www.tu-dresden.de/
http://www.tu-dresden.de/biw/
http://www.tu-dresden.de/biw/
http://www.tu-dresden.de/biw/geotechnik/
http://beta.arcig.cz/~eudoxos/dresden2011/pres-3s.pdf

Yade Documentation, Release 1.07.0

| �--lib Libraries
| �--local Locally installed software
| �--doc Documentation
�--home Contains the user's home directories

�--user Home directory for user
�--user1 Home directory for user1

Note that there is a single root /; all other disks (such as USB sticks) attach to some point in the tree
(e.g. in /media).

Shell navigation

Shell is the UNIX command-line, interface for conversation with the machine. Don’t be afraid.

Moving around

The shell is always operated by some user, at some concrete machine; these two are constant. We can
move in the directory structure, and the current place where we are is current directory. By default, it
is the home directory which contains all files belonging to the respective user:

user@machine:~$ # user operating at machine, in the directory ~ (= user's home directory)
user@machine:~$ ls . # list contents of the current directory
user@machine:~$ ls foo # list contents of directory foo, relative to the dcurrent directory ~ (= ls ~/foo = ls /home/user/foo)
user@machine:~$ ls /tmp # list contents of /tmp
user@machine:~$ cd foo # change directory to foo
user@machine:~/foo$ ls ~ # list home directory (= ls /home/user)
user@machine:~/foo$ cd bar # change to bar (= cd ~/foo/bar)
user@machine:~/foo/bar$ cd ../../foo2 # go to the parent directory twice, then to foo2 (cd ~/foo/bar/../../foo2 = cd ~/foo2 = cd /home/user/foo2)
user@machine:~/foo2$ cd # go to the home directory (= ls ~ = ls /home/user)
user@machine:~$

Users typically have only permissions to write (i.e. modify files) only in their home directory (abbreviated
~, usually is /home/user) and /tmp, and permissions to read files in most other parts of the system:

user@machine:~$ ls /root # see what files the administrator has
ls: cannot open directory /root: Permission denied

Keys

Useful keys on the command-line are:
<tab> show possible completions of what is being typed (use abundantly!)
^C (=Ctrl+C) delete current line
^D exit the shell
↑↓ move up and down in the command history
^C interrupt currently running program
^\ kill currently running program
Shift-PgUp scroll the screen up (show part output)
Shift-PgDown scroll the screen down (show future output; works only on quantum computers)

Running programs

When a program is being run (without giving its full path), several directories are searched for program
of that name; those directories are given by $PATH:

user@machine:~$ echo $PATH # show the value of $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
user@machine:~$ which ls # say what is the real path of ls

16 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

The first part of the command-line is the program to be run (which), the remaining parts are arguments
(ls in this case). It is upt to the program which arguments it understands. Many programs can take
special arguments called options starting with - (followed by a single letter) or -- (followed by words);
one of the common options is -h or --help, which displays how to use the program (try ls --help).
Full documentation for each program usually exists as manual page (or man page), which can be shown
using e.g. man ls (q to exit)

Starting yade

If yade is installed on the machine, it can be (roughly speaking) run as any other program; without any
arguments, it runs in the “dialog mode”, where a command-line is presented:

user@machine:~$ yade
Welcome to Yade bzr2616
TCP python prompt on localhost:9002, auth cookie `adcusk'
XMLRPC info provider on http://localhost:21002
[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8 plot.]]
Yade [1]: #### hit ^D to exit
Do you really want to exit ([y]/n)?
Yade: normal exit.

The command-line is in fact python, enriched with some yade-specific features. (Pure python interpreter
can be run with python or ipython commands).
Instead of typing commands on-by-one on the command line, they can be be written in a file (with the
.py extension) and given as argument to Yade:

user@machine:~$ yade simulation.py

For a complete help, see man yade

Exercises

1. Open the terminal, navigate to your home directory
2. Create a new empty file and save it in ~/first.py

3. Change directory to /tmp; delete the file ~/first.py
4. Run program xeyes

5. Look at the help of Yade.
6. Look at the manual page of Yade
7. Run Yade, exit and run it again.

2.2.2 Python basics

We assume the reader is familar with Python tutorial and only briefly review some of the basic capabili-
ties. The following will run in pure-python interpreter (python or ipython), but also inside Yade, which
is a super-set of Python.
Numerical operations and modules:

Yade [1]: (1+3*4)**2 # usual rules for operator precedence, ** is exponentiation
Out[1]: 169

Yade [2]: import math # gain access to "module" of functions

Yade [3]: math.sqrt(2) # use a function from that module
Out[3]: 1.4142135623730951

2.2. Hands-on 17

http://docs.python.org/tutorial/index.html

Yade Documentation, Release 1.07.0

Yade [4]: import math as m # use the module under a different name

Yade [5]: m.cos(m.pi)
Out[5]: -1.0

Yade [6]: from math import * # import everything so that it can be used without module name

Yade [7]: cos(pi)
Out[7]: -1.0

Variables:

Yade [1]: a=1; b,c=2,3 # multiple commands separated with ;, multiple assignment

Yade [2]: a+b+c
Out[2]: 6

Sequences

Lists

Lists are variable-length sequences, which can be modified; they are written with braces [...], and their
elements are accessed with numerical indices:

Yade [3]: a=[1,2,3] # list of numbers

Yade [4]: a[0] # first element has index 0
Out[4]: 1

Yade [5]: a[-1] # negative counts from the end
Out[5]: 3

Yade [6]: a[3] # error

IndexError Traceback (most recent call last)
/tmp/buildd/yade-1.07.0/debian/tmp/usr/lib/x86_64-linux-gnu/yade/py/yade/__init__.py in <module>()
----> 1 a[3] # error

IndexError: list index out of range

Yade [7]: len(a) # number of elements
Out[7]: 3

Yade [8]: a[1:] # from second element to the end
Out[8]: [2, 3]

Yade [9]: a+=[4,5] # extend the list

Yade [10]: a+=[6]; a.append(7) # extend with single value, both have the same effect

Yade [11]: 9 in a # test presence of an element
Out[11]: False

Lists can be created in various ways:

Yade [12]: range(10)
Out[12]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Yade [13]: range(10)[-1]
Out[13]: 9

List of squares of even number smaller than 20, i.e.
{
a2 ∀a ∈ {0, · · · , 19}

∣∣ 2∥a} (note the similarity):

18 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

Yade [14]: [a**2 for a in range(20) if a%2==0]
Out[14]: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Tuples

Tuples are constant sequences:

Yade [15]: b=(1,2,3)

Yade [16]: b[0]
Out[16]: 1

Yade [17]: b[0]=4 # error

TypeError Traceback (most recent call last)
/tmp/buildd/yade-1.07.0/debian/tmp/usr/lib/x86_64-linux-gnu/yade/py/yade/__init__.py in <module>()
----> 1 b[0]=4 # error

TypeError: 'tuple' object does not support item assignment

Dictionaries

Mapping from keys to values:

Yade [18]: czde={'jedna':'ein','dva':'zwei','tri':'drei'}

Yade [19]: de={1:'ein',2:'zwei',3:'drei'}; cz={1:'jedna',2:'dva',3:'tri'}

Yade [20]: czde['jedna'] ## access values
Out[20]: 'ein'

Yade [21]: de[1], cz[2]
Out[21]: ('ein', 'dva')

Functions, conditionals

Yade [22]: 4==5
Out[22]: False

Yade [23]: a=3.1

Yade [24]: if a<pi: b=0 # conditional statement
....: else: b=1
....:

File "<ipython-input-25-bebe87cdf86d>", line 1
else: b=1

^
SyntaxError: invalid syntax

Yade [26]: c=0 if a<1 else 1 # conditional expression

Yade [27]: def square(x): return x**2 # define a new function
....:

Yade [28]: square(2) # and call that function
Out[28]: 4

2.2. Hands-on 19

Yade Documentation, Release 1.07.0

Exercises

1. Read the following code and say what wil be the values of a and b:

a=range(5)
b=[(aa**2 if aa%2==0 else -aa**2) for aa in a]

2.2.3 Yade basics

Yade objects are constructed in the following manner (this process is also called “instantiation”, since we
create concrete instances of abstract classes: one individual sphere is an instance of the abstract Sphere,
like Socrates is an instance of “man”):

Yade [30]: Sphere # try also Sphere?
Out[30]: yade.wrapper.Sphere

Yade [31]: s=Sphere() # create a Sphere, without specifying any attributes

Yade [32]: s.radius # 'nan' is a special value meaning "not a number" (i.e. not defined)
Out[32]: nan

Yade [33]: s.radius=2 # set radius of an existing object

Yade [34]: s.radius
Out[34]: 2.0

Yade [35]: ss=Sphere(radius=3) # create Sphere, giving radius directly

Yade [36]: s.radius, ss.radius # also try typing s.<tab> to see defined attributes
Out[36]: (2.0, 3.0)

Particles

Particles are the “data” component of simulation; they are the objects that will undergo some processes,
though do not define those processes yet.

Singles

There is a number of pre-defined functions to create particles of certain type; in order to create a sphere,
one has to (see the source of utils.sphere for instance):

1. Create Body
2. Set Body.shape to be an instance of Sphere with some given radius
3. Set Body.material (last-defined material is used, otherwise a default material is created)
4. Set position and orientation in Body.state, compute mass and moment of inertia based on Material

and Shape
In order to avoid such tasks, shorthand functions are defined in the utils module; to mention a few of
them, they are utils.sphere, utils.facet, utils.wall.

Yade [38]: s=utils.sphere((0,0,0),radius=1) # create sphere particle centered at (0,0,0) with radius=1

Yade [39]: s.shape # s.shape describes the geometry of the particle
Out[39]: <Sphere instance at 0xfe66660>

Yade [40]: s.shape.radius # we already know the Sphere class
Out[40]: 1.0

20 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

Yade [41]: s.state.mass, s.state.inertia # inertia is computed from density and geometry
Out[41]:
(4188.790204786391,
Vector3(1675.5160819145563,1675.5160819145563,1675.5160819145563))

Yade [42]: s.state.pos # position is the one we prescribed
Out[42]: Vector3(0,0,0)

Yade [43]: s2=utils.sphere((-2,0,0),radius=1,fixed=True) # explanation below

In the last example, the particle was fixed in space by the fixed=True parameter to utils.sphere; such a
particle will not move, creating a primitive boundary condition.
A particle object is not yet part of the simulation; in order to do so, a special function is called:

Yade [44]: O.bodies.append(s) # adds particle s to the simulation; returns id of the particle(s) added
Out[44]: 12

Packs

There are functions to generate a specific arrangement of particles in the pack module; for instance,
cloud (random loose packing) of spheres can be generated with the pack.SpherePack class:

Yade [45]: from yade import pack

Yade [46]: sp=pack.SpherePack() # create an empty cloud; SpherePack contains only geometrical information

Yade [47]: sp.makeCloud((1,1,1),(2,2,2),rMean=.2) # put spheres with defined radius inside box given by corners (1,1,1) and (2,2,2)
Out[47]: 7

Yade [48]: for c,r in sp: print c,r # print center and radius of all particles (SpherePack is a sequence which can be iterated over)
....:

Vector3(1.7905533517622885,1.2008431294940813,1.698717276564536) 0.2
Vector3(1.2771969957996132,1.5761959945561328,1.5568582496204024) 0.2
Vector3(1.7395265631745818,1.6867323594975587,1.4577278525174855) 0.2
Vector3(1.5622438551506437,1.273137320739345,1.211621251433735) 0.2
Vector3(1.5295518452576844,1.7971285128007908,1.7904414715156345) 0.2
Vector3(1.3894667064672959,1.7473971107484745,1.205934121744646) 0.2
Vector3(1.3530865845764861,1.2425341369980334,1.7653395627302486) 0.2

Yade [49]: sp.toSimulation() # create particles and add them to the simulation
Out[49]: [13, 14, 15, 16, 17, 18, 19]

Boundaries

utils.facet (triangle Facet) and utils.wall (infinite axes-aligned plane Wall) geometries are typically used
to define boundaries. For instance, a “floor” for the simulation can be created like this:

Yade [50]: O.bodies.append(utils.wall(-1,axis=2))
Out[50]: 20

There are other conveinence functions (like utils.facetBox for creating closed or open rectangular box, or
family of ymport functions)

Look inside

The simulation can be inspected in several ways. All data can be accessed from python directly:

2.2. Hands-on 21

Yade Documentation, Release 1.07.0

Yade [51]: len(O.bodies)
Out[51]: 21

Yade [52]: O.bodies[1].shape.radius # radius of body #1 (will give error if not sphere, since only spheres have radius defined)

AttributeError Traceback (most recent call last)
/tmp/buildd/yade-1.07.0/debian/tmp/usr/lib/x86_64-linux-gnu/yade/py/yade/__init__.py in <module>()
----> 1 O.bodies[1].shape.radius # radius of body #1 (will give error if not sphere, since only spheres have radius defined)

AttributeError: 'NoneType' object has no attribute 'radius'

Yade [53]: O.bodies[2].state.pos # position of body #2
Out[53]: Vector3(0,0,0)

Besides that, Yade says this at startup (the line preceding the command-line):

[[^L clears screen, ^U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8 plot.]]

Controller Pressing F12 brings up a window for controlling the simulation. Although typically no
human intervention is done in large simulations (which run “headless”, without any graphical
interaction), it can be handy in small examples. There are basic information on the simulation
(will be used later).

3d view The 3d view can be opened with F11 (or by clicking on button in the Controller – see below).
There is a number of keyboard shortcuts to manipulate it (press h to get basic help), and it can
be moved, rotated and zoomed using mouse. Display-related settings can be set in the “Display”
tab of the controller (such as whether particles are drawn).

Inspector Inspector is opened by clicking on the appropriate button in the Controller. It shows (and
updated) internal data of the current simulation. In particular, one can have a look at engines,
particles (Bodies) and interactions (Interactions). Clicking at each of the attribute names links to
the appropriate section in the documentation.

Exercises

1. What is this code going to do?

Yade [54]: O.bodies.append([utils.sphere((2*i,0,0),1) for i in range(1,20)])
Out[54]: [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]

2. Create a simple simulation with cloud of spheres enclosed in the box (0,0,0) and (1,1,1) with
mean radius .1. (hint: pack.SpherePack.makeCloud)

3. Enclose the cloud created above in box with corners (0,0,0) and (1,1,1); keep the top of the
box open. (hint: utils.facetBox; type utils.facetBox? or utils.facetBox?? to get help on the
command line)

4. Open the 3D view, try zooming in/out; position axes so that z is upwards, y goes to the right and
x towards you.

Engines

Engines define processes undertaken by particles. As we know from the theoretical introduction, the
sequence of engines is called simulation loop. Let us define a simple interaction loop:

Yade [56]: O.engines=[# newlines and indentations are not important until the brace is closed
....: ForceResetter(),
....: InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Wall_Aabb()]),
....: InteractionLoop(# dtto for the parenthesis here
....: [Ig2_Sphere_Sphere_L3Geom(),Ig2_Wall_Sphere_L3Geom()],
....: [Ip2_FrictMat_FrictMat_FrictPhys()],
....: [Law2_L3Geom_FrictPhys_ElPerfPl()]

22 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

....:),

....: NewtonIntegrator(damping=.2,label='newton') # define a name under which we can access this engine easily

....:]

....:

Yade [57]: O.engines
Out[57]:
[<ForceResetter instance at 0xb717ce0>,
<InsertionSortCollider instance at 0xc60eeb0>,
<InteractionLoop instance at 0x5d7c5f0>,
<NewtonIntegrator instance at 0x528a6d0>]

Yade [58]: O.engines[-1]==newton # is it the same object?
Out[58]: True

Yade [59]: newton.damping
Out[59]: 0.2

Instead of typing everything into the command-line, one can describe simulation in a file (script) and
then run yade with that file as an argument. We will therefore no longer show the command-line unless
necessary; instead, only the script part will be shown. Like this:

O.engines=[# newlines and indentations are not important until the brace is closed
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Wall_Aabb()]),
InteractionLoop(# dtto for the parenthesis here

[Ig2_Sphere_Sphere_L3Geom_Inc(),Ig2_Wall_Sphere_L3Geom_Inc()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_ElPerfPl()]

),
GravityEngine(gravity=(0,0,-9.81)), # 9.81 is the gravity acceleration, and we say that
NewtonIntegrator(damping=.2,label='newton') # define a name under which we can access this engine easily

]

Besides engines being run, it is likewise important to define how often they will run. Some engines can
run only sometimes (we will see this later), while most of them will run always; the time between two
successive runs of engines is timestep (∆t). There is a mathematical limit on the timestep value, called
critical timestep, which is computed from properties of particles. Since there is a function for that, we
can just set timestep using utils.PWaveTimeStep:

O.dt=utils.PWaveTimeStep()

Each time when the simulation loop finishes, time O.time is advanced by the timestep O.dt:

Yade [60]: O.dt=0.01

Yade [61]: O.time
Out[61]: 0.0

Yade [62]: O.step()

Yade [63]: O.time
Out[63]: 0.01

For experimenting with a single simulations, it is handy to save it to memory; this can be achieved, once
everything is defined, with:

2.2. Hands-on 23

Yade Documentation, Release 1.07.0

O.saveTmp()

Exercises

1. Define engines as in the above example, run the Inspector and click through the engines to see
their sequence.

2. Write a simple script which will
(a) define particles as in the previous exercise (cloud of spheres inside a box open from the top)
(b) define a simple simulation loop, as the one given above
(c) set ∆t equal to the critical P-Wave ∆t

(d) save the initial simulation state to memory
3. Run the previously-defined simulation multiple times, while changing the value of timestep (use

the � button to reload the initial configuration).
(a) See what happens as you increase ∆t above the P-Wave value.
(b) Try changing the gravity parameter, before running the simulation.
(c) Try changing damping

4. Reload the simulation, open the 3d view, open the Inspector, select a particle in the 3d view (shift-
click). Then run the simulation and watch how forces on that particle change; pause the simulation
somewhere in the middle, look at interactions of this particle.

5. At which point can we say that the deposition is done, so that the simulation can be stopped?
See also:
The Bouncing sphere example shows a basic simulation.

2.3 Data mining

2.3.1 Read

Local data

All data of the simulation are accessible from python; when you open the Inspector, blue labels of various
data can be clicked – left button for getting to the documentation, middle click to copy the name of the
object (use Ctrl-V or middle-click to paste elsewhere). The interesting objects are among others (see
Omega for a full list):

1. O.engines
Engines are accessed by their index (position) in the simulation loop:

O.engines[0] # first engine
O.engines[-1] # last engine

Note: The index can change if O.engines is modified. Labeling introduced below is a better
solution for reliable access to a particular engine.

2. O.bodies
Bodies are identified by their id, which is guaranteed to not change during the whole simulation:

O.bodies[0] # first body
[b.shape.radius in O.bodies if isinstance(b.shape,Sphere)] # list of radii of all spherical bodies
sum([b.state.mass for b in O.bodies]) # sum of masses of all bodies

24 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

Note: Uniqueness of Body.id is not guaranteed, since newly created bodies might recycle ids of
deleted ones.

3. O.force
Generalized forces (forces, torques) acting on each particle. They are (usually) reset at the begin-
ning of each step with ForceResetter, subsequently forces from individual interactions are accumu-
lated in InteractionLoop. To access the data, use:

O.forces.f(0) # force on #0
O.forces.t(1) # torque on #1

4. O.interactions
Interactions are identified by ids of the respective interacting particles (they are created and deleted
automatically during the simulation):

O.interactions[0,1] # interactions of #0 with #1
O.interactions[1,0] # the same object
O.bodies[0].intrs # all interactions of body #0

Labels

Engines and functors can be labeled, which means that python variable of that name is automatically
created.

Yade [2]: O.engines=[
...: NewtonIntegrator(damping=.2,label='newton')
...:]
...:

Yade [3]: newton.damping=.4

Yade [4]: O.engines[0].damping # O.engines[0] and newton are the same objects
Out[4]: 0.4

Exercises

1. Find meaning of this expression:

max([b.state.vel.norm() for b in O.bodies])

2. Run the gravity deposition script, pause after a few seconds of simulation. Write expressions that
compute
(a) kinetic energy

∑
1
2
mi|vi|

2

(b) average mass (hint: use numpy.average)
(c) maximum z-coordinate of all particles
(d) number of interactions of body #1

Global data

Useful measures of what happens in the simulation globally:
unbalanced force ratio of maximum contact force and maximum per-body force; measure of staticity,

computed with utils.unbalancedForce.
porosity ratio of void volume and total volume; computed with utils.porosity.
coordination number average number of interactions per particle, utils.avgNumInteractions

2.3. Data mining 25

http://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html

Yade Documentation, Release 1.07.0

stress tensor (periodic boundary conditions) averaged force in interactions, computed with
utils.normalShearStressTensor and utils.stressTensorOfPeriodicCell

fabric tensor distribution of contacts in space (not yet implemented); can be visualized with
utils.plotDirections

Energies

Evaluating energy data for all components in the simulation (such as gravity work, kinetic energy, plastic
dissipation, damping dissipation) can be enabled with

O.trackEnergy=True

Subsequently, energy values are accessible in the O.energy; it is a dictionary where its entries can be
retrived with keys() and their values with O.energy[key].

2.3.2 Save

PyRunner

To save data that we just learned to access, we need to call Python from within the simulation loop.
PyRunner is created just for that; it inherits periodicy control from PeriodicEngine and takes the code
to run as text (must be quoted, i.e. inside '...') attributed called command. For instance, adding this
to O.engines will print the current step number every second:

O.engines=O.engines+[PyRunner(command='print O.iter',realPeriod=1)]

Writing complicated code inside command is awkward; in such case, we define a function that will be
called:

def myFunction():
'''Print step number, and pause the simulation is unbalanced force is smaller than 0.05.'''
print O.iter
if utils.unbalancedForce()<0.05:

print 'Unbalanced force is smaller than 0.05, pausing.'
O.pause()

O.engines=[
...
PyRunner(command='myFunction()',iterPeriod=100) # call myFunction every 100 steps

]

Exercises

1. Run the gravity deposition simulation, but change it such that:
(a) utils.unbalancedForce is printed every 2 seconds.
(b) check every 1000 steps the value of unbalanced force

• if smaller than 0.2, set damping to 0.8 (hint: use labels)
• if smaller than 0.1, pause the simulation

Keeping history

Yade provides the plot module used for storing and plotting variables (plotting itself will be discussed
later). Periodic storing of data is done with PyRunner and the plot.addData function, for instance:

26 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

from yade import plot
O.engines=[# ...,

PyRunner(command='addPlotData()',realPeriod=2) # call the addPlotData function every 2 seconds of human time
]
def addPlotData():

this function adds current values to the history of data, under the names specified
plot.addData(i=O.iter,t=O.time,Ek=utils.kineticEnergy(),coordNum=utils.avgNumInteractions(),unForce=utils.unbalancedForce())

History is stored in plot.data, and can be accessed using the variable name, e.g. plot.data['Ek'], and
saved to text file (for post-processing outside yade) with plot.saveTxt.

2.3.3 Plot

plot provides facilities for plotting history saved with plot.addData as 2d plots. Data to be plotted are
specified using dictionary plot.plots

plot.plots={'t':('coordNum','unForce',None,'Ek')}

History of all values is given as the name used for plot.addData; keys of the dictionary are x-axis values,
and values are sequence of data on the y axis; the None separates data on the left and right axes (they
are scaled independently). The plot itself is created with

plot.plot() # on the command line, F8 can be used as shorthand

While the plot is open, it will be updated periodically, so that simulation evolution can be seen in
real-time.

Energy plots

Plotting all energy contributions would be difficult, since names of all energies might not be known in
advance. Fortunately, there is a way to handle that in Yade. It consists in two parts:

1. plot.addData is given all the energies that are currently defined:

plot.addData(i=O.iter,total=O.energy.total(),**O.energy)

The O.energy.total functions, which sums all energies together. The **O.energy is special python
syntax for converting dictionary (remember that O.energy is a dictionary) to named functions
arguments, so that the following two commands are identical:

function(a=3,b=34) # give arguments as arguments
function(**{'a':3,'b':34}) # create arguments from dictionary

2. Data to plot are specified using a function that gives names of data to plot, rather than providing
the data names directly:

plot.plots={'i':['total',O.energy.keys()]}

where total is the name we gave to O.energy.total() above, while O.energy.keys() will always
return list of currently defined energies.

Exercises

1. Run the gravity deposition script, plotting unbalanced force and kinetic energy.
2. While the script is running, try changing the NewtonIntegrator.damping parameter (do it from

both Inspector and from the command-line). What influence does it have on the evolution of
unbalanced force and kinetic energy?

3. Think about and write down all energy sources (input); write down also all energy sinks (dissipa-
tion).

2.3. Data mining 27

Yade Documentation, Release 1.07.0

4. Simulate gravity deposition and plot all energies as they evolve during the simulation.
See also:
Most Examples use plotting facilities of Yade, some of them also track energy of the simulation.

2.4 Towards geomechanics

See also:
Examples Gravity deposition, Oedometric test, Periodic simple shear, Periodic triaxial test deal with
topics discussed here.

2.4.1 Parametric studies

Input parameters of the simulation (such as size distribution, damping, various contact parameters, …)
influence the results, but frequently an analytical relationship is not known. To study such influence,
similar simulations differing only in a few parameters can be run and results compared. Yade can be run
in batch mode, where one simulation script is used in conjunction with parameter table, which specifies
parameter values for each run of the script. Batch simulation are run non-interactively, i.e. without user
intervention; the user must therefore start and stop the simulation explicitly.
Suppose we want to study the influence of damping on the evolution of kinetic energy. The script has
to be adapted at several places:

1. We have to make sure the script reads relevant parameters from the parameter table. This is done
using utils.readParamsFromTable; the parameters which are read are created as variables in the
yade.params.table module:

utils.readParamsFromTable(damping=.2) # yade.params.table.damping variable will be created
from yade.params import table # typing table.damping is easier than yade.params.table.damping

Note that utils.readParamsFromTable takes default values of its parameters, which are used if the
script is not run in non-batch mode.

2. Parameters from the table are used at appropriate places:

NewtonIntegrator(damping=table.damping),

3. The simulation is run non-interactively; we must therefore specify at which point it should stop:

O.engines+=[PyRunner(iterPeriod=1000,command='checkUnbalancedForce()')] # call our function defined below periodically

def checkUnbalancedForce():
if utils.unbalancedForce<0.05: # exit Yade if unbalanced force drops below 0.05

utils.saveDataTxt(O.tags['d.id']+'.data.bz2') # save all data into a unique file before exiting
import sys
sys.exit(0) # exit the program

4. Finally, we must start the simulation at the very end of the script:

O.run() # run forever, until stopped by checkUnbalancedForce()
utils.waitIfBatch() # do not finish the script until the simulation ends; does nothing in non-batch mode

The parameter table is a simple text-file, where each line specifies a simulation to run:

comments start with # as in python
damping # first non-comment line is variable name
.2
.4
.6

Finally, the simulation is run using the special batch command:

28 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

user@machine:~$ yade-batch parameters.table simulation.py

Exercises

1. Run the gravity deposition script in batch mode, varying damping to take values of .2, .4, .6. See
the http://localhost:9080 overview page while the batch is running.

2.4.2 Boundary

Particles moving in infinite space usually need some constraints to make the simulation meaningful.

Supports

So far, supports (unmovable particles) were providing necessary boundary: in the gravity deposition
script, utils.facetBox is by internally composed of facets (triangulation elements), which is fixed in
space; facets are also used for arbitrary triangulated surfaces (see relevant sections of the User’s manual).
Another frequently used boundary is utils.wall (infinite axis-aligned plane).

Periodic

Periodic boundary is a “boundary” created by using periodic (rather than infinite) space. Such boundary
is activated by O.periodic=True , and the space configuration is decribed by O.cell . It is well suited for
studying bulk material behavior, as boundary effects are avoided, leading to smaller number of particles.
On the other hand, it might not be suitable for studying localization, as any cell-level effects (such as
shear bands) have to satisfy periodicity as well.
The periodic cell is described by its reference size of box aligned with global axes, and current transfor-
mation, which can capture stretch, shear and rotation. Deformation is prescribed via velocity gradient,
which updates the transformation before the next step. Homothetic deformation can smear velocity
gradient accross the cell, making the boundary dissolve in the whole cell.
Stress and strains can be controlled with PeriTriaxController; it is possible to prescribe mixed
strain/stress goal state using PeriTriaxController.stressMask.
The following creates periodic cloud of spheres and compresses to achieve σx=-10 kPa, σy=-10kPa and
εz=-0.1. Since stress is specified for y and z, stressMask is 0b011 (x→1, y→2, z→4, in decimal 1+2=3).

Yade [2]: sp=pack.SpherePack()

Yade [3]: sp.makeCloud((1,1,1),(2,2,2),rMean=.2,periodic=True)
Out[3]: 9

Yade [4]: sp.toSimulation() # implicitly sets O.periodic=True, and O.cell.refSize to the packing period size
Out[4]: [3, 4, 5, 6, 7, 8, 9, 10, 11]

Yade [5]: O.engines+=[PeriTriaxController(goal=(-1e4,-1e4,-.1),stressMask=0b011,maxUnbalanced=.2,doneHook='functionToRunWhenFinished()')]

When the simulation runs, PeriTriaxController takes over the control and calls doneHook when goal is
reached. A full simulation with PeriTriaxController might look like the following:

from yade import pack,plot
sp=pack.SpherePack()
rMean=.05
sp.makeCloud((0,0,0),(1,1,1),rMean=rMean,periodic=True)
sp.toSimulation()
O.engines=[

ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()],verletDist=.05*rMean),
InteractionLoop([Ig2_Sphere_Sphere_L3Geom()],[Ip2_FrictMat_FrictMat_FrictPhys()],[Law2_L3Geom_FrictPhys_ElPerfPl()]),

2.4. Towards geomechanics 29

http://localhost:9080

Yade Documentation, Release 1.07.0

NewtonIntegrator(damping=.6),
PeriTriaxController(goal=(-1e6,-1e6,-.1),stressMask=0b011,maxUnbalanced=.2,doneHook='goalReached()',label='triax',maxStrainRate=(.1,.1,.1),dynCell=True),
PyRunner(iterPeriod=100,command='addPlotData()')

]
O.dt=.5*utils.PWaveTimeStep()
O.trackEnergy=True
def goalReached():

print 'Goal reached, strain',triax.strain,' stress',triax.stress
O.pause()

def addPlotData():
plot.addData(sx=triax.stress[0],sy=triax.stress[1],sz=triax.stress[2],ex=triax.strain[0],ey=triax.strain[1],ez=triax.strain[2],

i=O.iter,unbalanced=utils.unbalancedForce(),
totalEnergy=O.energy.total(),**O.energy # plot all energies

)
plot.plots={'i':(('unbalanced','go'),None,'kinetic'),' i':('ex','ey','ez',None,'sx','sy','sz'),'i ':(O.energy.keys,None,('totalEnergy','bo'))}
plot.plot()
O.saveTmp()
O.run()

2.5 Advanced & more

2.5.1 Particle size distribution

See Periodic triaxial test

2.5.2 Clumps

Clump; see Periodic triaxial test

2.5.3 Testing laws

LawTester, scripts/test/law-test.py

2.5.4 New law

2.5.5 Visualization

See the example 3d postprocessing
• VTKRecorder & Paraview
• qt.SnapshotEngine

2.6 Examples

2.6.1 Bouncing sphere

basic simulation showing sphere falling ball gravity,
bouncing against another sphere representing the support

DATA COMPONENTS

add 2 particles to the simulation
they the default material (utils.defaultMat)
O.bodies.append([

30 Chapter 2. Tutorial

https://github.com/yade/trunk/blob/master/scripts/test/law-test.py
http://www.paraview.org

Yade Documentation, Release 1.07.0

fixed: particle's position in space will not change (support)
utils.sphere(center=(0,0,0),radius=.5,fixed=True),
this particles is free, subject to dynamics
utils.sphere((0,0,2),.5)

])

FUNCTIONAL COMPONENTS

simulation loop -- see presentation for the explanation
O.engines=[

ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_L3Geom()], # collision geometry
[Ip2_FrictMat_FrictMat_FrictPhys()], # collision "physics"
[Law2_L3Geom_FrictPhys_ElPerfPl()] # contact law -- apply forces

),
apply gravity force to particles
GravityEngine(gravity=(0,0,-9.81)),
damping: numerical dissipation of energy
NewtonIntegrator(damping=0.1)

]

set timestep to a fraction of the critical timestep
the fraction is very small, so that the simulation is not too fast
and the motion can be observed
O.dt=.5e-4*utils.PWaveTimeStep()

save the simulation, so that it can be reloaded later, for experimentation
O.saveTmp()

2.6.2 Gravity deposition

gravity deposition in box, showing how to plot and save history of data,
and how to control the simulation while it is running by calling
python functions from within the simulation loop

import yade modules that we will use below
from yade import pack, plot

create rectangular box from facets
O.bodies.append(utils.geom.facetBox((.5,.5,.5),(.5,.5,.5),wallMask=31))

create empty sphere packing
sphere packing is not equivalent to particles in simulation, it contains only the pure geometry
sp=pack.SpherePack()
generate randomly spheres with uniform radius distribution
sp.makeCloud((0,0,0),(1,1,1),rMean=.05,rRelFuzz=.5)
add the sphere pack to the simulation
sp.toSimulation()

O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()]),
InteractionLoop(

handle sphere+sphere and facet+sphere collisions
[Ig2_Sphere_Sphere_L3Geom(),Ig2_Facet_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_ElPerfPl()]

),
GravityEngine(gravity=(0,0,-9.81)),

2.6. Examples 31

Yade Documentation, Release 1.07.0

NewtonIntegrator(damping=0.4),
call the checkUnbalanced function (defined below) every 2 seconds
PyRunner(command='checkUnbalanced()',realPeriod=2),
call the addPlotData function every 200 steps
PyRunner(command='addPlotData()',iterPeriod=100)

]
O.dt=.5*utils.PWaveTimeStep()

enable energy tracking; any simulation parts supporting it
can create and update arbitrary energy types, which can be
accessed as O.energy['energyName'] subsequently
O.trackEnergy=True

if the unbalanced forces goes below .05, the packing
is considered stabilized, therefore we stop collected
data history and stop
def checkUnbalanced():

if utils.unbalancedForce()<.05:
O.pause()
plot.saveDataTxt('bbb.txt.bz2')
plot.saveGnuplot('bbb') is also possible

collect history of data which will be plotted
def addPlotData():

each item is given a names, by which it can be the unsed in plot.plots
the **O.energy converts dictionary-like O.energy to plot.addData arguments
plot.addData(i=O.iter,unbalanced=utils.unbalancedForce(),**O.energy)

define how to plot data: 'i' (step number) on the x-axis, unbalanced force
on the left y-axis, all energies on the right y-axis
(O.energy.keys is function which will be called to get all defined energies)
None separates left and right y-axis
plot.plots={'i':('unbalanced',None,O.energy.keys)}

show the plot on the screen, and update while the simulation runs
plot.plot()

O.saveTmp()

2.6.3 Oedometric test

gravity deposition, continuing with oedometric test after stabilization
shows also how to run parametric studies with yade-batch

The components of the batch are:
1. table with parameters, one set of parameters per line (ccc.table)
2. utils.readParamsFromTable which reads respective line from the parameter file
3. the simulation muse be run using yade-batch, not yade
#
$ yade-batch --job-threads=1 03-oedometric-test.table 03-oedometric-test.py
#

load parameters from file if run in batch
default values are used if not run from batch
utils.readParamsFromTable(rMean=.05,rRelFuzz=.3,maxLoad=1e6,minLoad=1e4)
make rMean, rRelFuzz, maxLoad accessible directly as variables later
from yade.params.table import *

create box with free top, and ceate loose packing inside the box
from yade import pack, plot
O.bodies.append(utils.geom.facetBox((.5,.5,.5),(.5,.5,.5),wallMask=31))

32 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

sp=pack.SpherePack()
sp.makeCloud((0,0,0),(1,1,1),rMean=rMean,rRelFuzz=rRelFuzz)
sp.toSimulation()

O.engines=[
ForceResetter(),
sphere, facet, wall
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb(),Bo1_Wall_Aabb()]),
InteractionLoop(

the loading plate is a wall, we need to handle sphere+sphere, sphere+facet, sphere+wall
[Ig2_Sphere_Sphere_L3Geom(),Ig2_Facet_Sphere_L3Geom(),Ig2_Wall_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_ElPerfPl()]

),
GravityEngine(gravity=(0,0,-9.81)),
NewtonIntegrator(damping=0.5),
the label creates an automatic variable referring to this engine
we use it below to change its attributes from the functions called
PyRunner(command='checkUnbalanced()',realPeriod=2,label='checker'),

]
O.dt=.5*utils.PWaveTimeStep()

the following checkUnbalanced, unloadPlate and stopUnloading functions are all called by the 'checker'
(the last engine) one after another; this sequence defines progression of different stages of the
simulation, as each of the functions, when the condition is satisfied, updates 'checker' to call
the next function when it is run from within the simulation next time

check whether the gravity deposition has already finished
if so, add wall on the top of the packing and start the oedometric test
def checkUnbalanced():

at the very start, unbalanced force can be low as there is only few contacts, but it does not mean the packing is stable
if O.iter<5000: return
the rest will be run only if unbalanced is < .1 (stabilized packing)
if utils.unbalancedForce()>.1: return
add plate at the position on the top of the packing
the maximum finds the z-coordinate of the top of the topmost particle
O.bodies.append(utils.wall(max([b.state.pos[2]+b.shape.radius for b in O.bodies if isinstance(b.shape,Sphere)]),axis=2,sense=-1))
global plate # without this line, the plate variable would only exist inside this function
plate=O.bodies[-1] # the last particles is the plate
Wall objects are "fixed" by default, i.e. not subject to forces
prescribing a velocity will therefore make it move at constant velocity (downwards)
plate.state.vel=(0,0,-.1)
start plotting the data now, it was not interesting before
O.engines=O.engines+[PyRunner(command='addPlotData()',iterPeriod=200)]
next time, do not call this function anymore, but the next one (unloadPlate) instead
checker.command='unloadPlate()'

def unloadPlate():
if the force on plate exceeds maximum load, start unloading
if abs(O.forces.f(plate.id)[2])>maxLoad:

plate.state.vel*=-1
next time, do not call this function anymore, but the next one (stopUnloading) instead
checker.command='stopUnloading()'

def stopUnloading():
if abs(O.forces.f(plate.id)[2])<minLoad:

O.tags can be used to retrieve unique identifiers of the simulation
if running in batch, subsequent simulation would overwrite each other's output files otherwise
d (or description) is simulation description (composed of parameter values)
while the id is composed of time and process number
plot.saveDataTxt(O.tags['d.id']+'.txt')
O.pause()

2.6. Examples 33

Yade Documentation, Release 1.07.0

def addPlotData():
if not isinstance(O.bodies[-1].shape,Wall):

plot.addData(); return
Fz=O.forces.f(plate.id)[2]
plot.addData(Fz=Fz,w=plate.state.pos[2]-plate.state.refPos[2],unbalanced=utils.unbalancedForce(),i=O.iter)

besides unbalanced force evolution, also plot the displacement-force diagram
plot.plots={'i':('unbalanced',),'w':('Fz',)}
plot.plot()

O.run()
when running with yade-batch, the script must not finish until the simulation is done fully
this command will wait for that (has no influence in the non-batch mode)
utils.waitIfBatch()

Batch table

rMean rRelFuzz maxLoad
.05 .1 1e6
.05 .2 1e6
.05 .3 1e6

2.6.4 Periodic simple shear

encoding: utf-8

script for periodic simple shear test, with periodic boundary
first compresses to attain some isotropic stress (checkStress),
then loads in shear (checkDistorsion)
#
the initial packing is either regular (hexagonal), with empty bands along the boundary,
or periodic random cloud of spheres
#
material friction angle is initially set to zero, so that the resulting packing is dense
(sphere rearrangement is easier if there is no friction)
#

setup the periodic boundary
O.periodic=True
O.cell.refSize=(2,2,2)

from yade import pack,plot

the "if 0:" block will be never executed, therefore the "else:" block will be
to use cloud instead of regular packing, change to "if 1:" or something similar
if 0:

create cloud of spheres and insert them into the simulation
we give corners, mean radius, radius variation
sp=pack.SpherePack()
sp.makeCloud((0,0,0),(2,2,2),rMean=.1,rRelFuzz=.6,periodic=True)
insert the packing into the simulation
sp.toSimulation(color=(0,0,1)) # pure blue

else:
in this case, add dense packing
O.bodies.append(

pack.regularHexa(pack.inAlignedBox((0,0,0),(2,2,2)),radius=.1,gap=0,color=(0,0,1))
)

create "dense" packing by setting friction to zero initially

34 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

O.materials[0].frictionAngle=0

simulation loop (will be run at every step)
O.engines=[

ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_ElPerfPl()]

),
NewtonIntegrator(damping=.4),
run checkStress function (defined below) every second
the label is arbitrary, and is used later to refer to this engine
PyRunner(command='checkStress()',realPeriod=1,label='checker'),
record data for plotting every 100 steps; addData function is defined below
PyRunner(command='addData()',iterPeriod=100)

]

set the integration timestep to be 1/2 of the "critical" timestep
O.dt=.5*utils.PWaveTimeStep()

prescribe isotropic normal deformation (constant strain rate)
of the periodic cell
O.cell.velGrad=Matrix3(-.1,0,0, 0,-.1,0, 0,0,-.1)

when to stop the isotropic compression (used inside checkStress)
limitMeanStress=-5e5

called every second by the PyRunner engine
def checkStress():

stress tensor as the sum of normal and shear contributions
Matrix3.Zero is the intial value for sum(...)
stress=sum(utils.normalShearStressTensors(),Matrix3.Zero)
print 'mean stress',stress.trace()/3.
if mean stress is below (bigger in absolute value) limitMeanStress, start shearing
if stress.trace()/3.<limitMeanStress:

apply constant-rate distorsion on the periodic cell
O.cell.velGrad=Matrix3(0,0,.1, 0,0,0, 0,0,0)
change the function called by the checker engine
(checkStress will not be called anymore)
checker.command='checkDistorsion()'
block rotations of particles to increase tanPhi, if desired
disabled by default
if 0:

for b in O.bodies:
block X,Y,Z rotations, translations are free
b.state.blockedDOFs='XYZ'
stop rotations if any, as blockedDOFs block accelerations really
b.state.angVel=(0,0,0)

set friction angle back to non-zero value
tangensOfFrictionAngle is computed by the Ip2_* functor from material
for future contacts change material (there is only one material for all particles)
O.materials[0].frictionAngle=.5 # radians
for existing contacts, set contact friction directly
for i in O.interactions: i.phys.tangensOfFrictionAngle=tan(.5)

called from the 'checker' engine periodically, during the shear phase
def checkDistorsion():

if the distorsion value is >.3, exit; otherwise do nothing
if abs(O.cell.trsf[0,2])>.5:

save data from addData(...) before exiting into file
use O.tags['id'] to distinguish individual runs of the same simulation

2.6. Examples 35

Yade Documentation, Release 1.07.0

plot.saveDataTxt(O.tags['id']+'.txt')
exit the program
#import sys
#sys.exit(0) # no error (0)
O.pause()

called periodically to store data history
def addData():

get the stress tensor (as 3x3 matrix)
stress=sum(utils.normalShearStressTensors(),Matrix3.Zero)
give names to values we are interested in and save them
plot.addData(exz=O.cell.trsf[0,2],szz=stress[2,2],sxz=stress[0,2],tanPhi=stress[0,2]/stress[2,2],i=O.iter)
color particles based on rotation amount
for b in O.bodies:

rot() gives rotation vector between reference and current position
b.shape.color=utils.scalarOnColorScale(b.state.rot().norm(),0,pi/2.)

define what to plot (3 plots in total)
exz(i), [left y axis, separate by None:] szz(i), sxz(i)
szz(exz), sxz(exz)
tanPhi(i)
note the space in 'i ' so that it does not overwrite the 'i' entry
plot.plots={'i':('exz',None,'szz','sxz'),'exz':('szz','sxz'),'i ':('tanPhi',)}

better show rotation of particles
Gl1_Sphere.stripes=True

open the plot on the screen
plot.plot()

O.saveTmp()

2.6.5 3d postprocessing

demonstrate 3d postprocessing with yade
#
1. qt.SnapshotEngine saves images of the 3d view as it appears on the screen periodically
utils.makeVideo is then used to make real movie from those images
2. VTKRecorder saves data in files which can be opened with Paraview
see the User's manual for an intro to Paraview

generate loose packing
from yade import pack, qt
sp=pack.SpherePack()
sp.makeCloud((0,0,0),(2,2,2),rMean=.1,rRelFuzz=.6,periodic=True)
add to scene, make it periodic
sp.toSimulation()

O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_ElPerfPl()]

),
NewtonIntegrator(damping=.4),
save data for Paraview
VTKRecorder(fileName='3d-vtk-',recorders=['all'],iterPeriod=1000),
save data from Yade's own 3d view
qt.SnapshotEngine(fileBase='3d-',iterPeriod=200,label='snapshot'),

36 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

this engine will be called after 20000 steps, only once
PyRunner(command='finish()',iterPeriod=20000)

]
O.dt=.5*utils.PWaveTimeStep()

prescribe constant-strain deformation of the cell
O.cell.velGrad=Matrix3(-.1,0,0, 0,-.1,0, 0,0,-.1)

we must open the view explicitly (limitation of the qt.SnapshotEngine)
qt.View()

this function is called when the simulation is finished
def finish():

snapshot is label of qt.SnapshotEngine
the 'snapshots' attribute contains list of all saved files
utils.makeVideo(snapshot.snapshots,'3d.mpeg',fps=10,bps=10000)
O.pause()

set parameters of the renderer, to show network chains rather than particles
these settings are accessible from the Controller window, on the second tab ("Display") as well
rr=yade.qt.Renderer()
rr.shape=False
rr.intrPhys=True

2.6.6 Periodic triaxial test

encoding: utf-8

periodic triaxial test simulation
#
The initial packing is either
#
1. random cloud with uniform distribution, or
2. cloud with specified granulometry (radii and percentages), or
3. cloud of clumps, i.e. rigid aggregates of several particles
#
The triaxial consists of 2 stages:
#
1. isotropic compaction, until sigmaIso is reached in all directions;
this stage is ended by calling compactionFinished()
2. constant-strain deformation along the z-axis, while maintaining
constant stress (sigmaIso) laterally; this stage is ended by calling
triaxFinished()
#
Controlling of strain and stresses is performed via PeriTriaxController,
of which parameters determine type of control and also stability
condition (maxUnbalanced) so that the packing is considered stabilized
and the stage is done.
#

sigmaIso=-1e5

#import matplotlib
#matplotlib.use('Agg')

generate loose packing
from yade import pack, qt, plot

O.periodic=True
sp=pack.SpherePack()
if 0:

2.6. Examples 37

Yade Documentation, Release 1.07.0

uniform distribution
sp.makeCloud((0,0,0),(2,2,2),rMean=.1,rRelFuzz=.3,periodic=True)

elif 0:
per-fraction distribution
passing: cummulative percentage
sp.particleSD2(radii=[.09,.1,.2],passing=[40,80,100],periodic=True,numSph=1000)

else:
create packing from clumps
configuration of one clump
c1=pack.SpherePack([((0,0,0),.03333),((.03,0,0),.017),((0,.03,0),.017)])
make cloud using the configuration c1 (there could c2, c3, ...; selection between them would be random)
sp.makeClumpCloud((0,0,0),(2,2,2),[c1],periodic=True,num=500)

setup periodic boundary, insert the packing
sp.toSimulation()

O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb()]),
InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

),
PeriTriaxController(label='triax',

specify target values and whether they are strains or stresses
goal=(sigmaIso,sigmaIso,sigmaIso),stressMask=7,
type of servo-control
dynCell=True,maxStrainRate=(10,10,10),
wait until the unbalanced force goes below this value
maxUnbalanced=.1,relStressTol=1e-3,
call this function when goal is reached and the packing is stable
doneHook='compactionFinished()'

),
NewtonIntegrator(damping=.2),
PyRunner(command='addPlotData()',iterPeriod=100),

]
O.dt=.5*utils.PWaveTimeStep()

def addPlotData():
plot.addData(unbalanced=utils.unbalancedForce(),i=O.iter,

sxx=triax.stress[0],syy=triax.stress[1],szz=triax.stress[2],
exx=triax.strain[0],eyy=triax.strain[1],ezz=triax.strain[2],
save all available energy data
Etot=O.energy.total(),**O.energy

)

enable energy tracking in the code
O.trackEnergy=True

define what to plot
plot.plots={'i':('unbalanced',),'i ':('sxx','syy','szz'),' i':('exx','eyy','ezz'),

energy plot
' i ':(O.energy.keys,None,'Etot'),

}
show the plot
plot.plot()

def compactionFinished():
set the current cell configuration to be the reference one
O.cell.trsf=Matrix3.Identity
change control type: keep constant confinement in x,y, 20% compression in z
triax.goal=(sigmaIso,sigmaIso,-.3)

38 Chapter 2. Tutorial

Yade Documentation, Release 1.07.0

triax.stressMask=3
allow faster deformation along x,y to better maintain stresses
triax.maxStrainRate=(1.,1.,.1)
next time, call triaxFinished instead of compactionFinished
triax.doneHook='triaxFinished()'
do not wait for stabilization before calling triaxFinished
triax.maxUnbalanced=10

def triaxFinished():
print 'Finished'
O.pause()

2.6. Examples 39

Yade Documentation, Release 1.07.0

40 Chapter 2. Tutorial

Chapter 3

User’s manual

3.1 Scene construction

3.1.1 Adding particles

The BodyContainer holds Body objects in the simulation; it is accessible as O.bodies.

Creating Body objects

Body objects are only rarely constructed by hand by their components (Shape, Bound, State, Material);
instead, convenience functions sphere, facet and wall are used to create them. Using these functions also
ensures better future compatibility, if internals of Body change in some way. These functions receive
geometry of the particle and several other characteristics. See their documentation for details. If the
same Material is used for several (or many) bodies, it can be shared by adding it in O.materials, as
explained below.

Defining materials

The O.materials object (instance of Omega.materials) holds defined shared materials for bodies. It
only supports addition, and will typically hold only a few instance (though there is no limit).
label given to each material is optional, but can be passed to sphere and other functions for constructing
body. The value returned by O.materials.append is an id of the material, which can be also passed to
sphere – it is a little bit faster than using label, though not noticeable for small number of particles and
perhaps less convenient.
If no Material is specified when calling sphere, the last defined material is used; that is a convenient
default. If no material is defined yet (hence there is no last material), a default material will be created:
FrictMat(density=2e3,young=30e9,poisson=.3,frictionAngle=.5236). This should not happen for serious
simulations, but is handy in simple scripts, where exact material properties are more or less irrelevant.

Yade [2]: len(O.materials)
Out[2]: 0

Yade [3]: idConcrete=O.materials.append(FrictMat(young=30e9,poisson=.2,frictionAngle=.6,label="concrete"))

Yade [4]: O.materials[idConcrete]
Out[4]: <FrictMat instance at 0x16123660>

uses the last defined material
Yade [5]: O.bodies.append(sphere(center=(0,0,0),radius=1))
Out[5]: 0

41

Yade Documentation, Release 1.07.0

material given by id
Yade [6]: O.bodies.append(sphere((0,0,2),1,material=idConcrete))
Out[6]: 1

material given by label
Yade [7]: O.bodies.append(sphere((0,2,0),1,material="concrete"))
Out[7]: 2

Yade [8]: idSteel=O.materials.append(FrictMat(young=210e9,poisson=.25,frictionAngle=.8,label="steel"))

Yade [9]: len(O.materials)
Out[9]: 2

implicitly uses "steel" material, as it is the last one now
Yade [10]: O.bodies.append(facet([(1,0,0),(0,1,0),(-1,-1,0)]))
Out[10]: 3

Adding multiple particles

As shown above, bodies are added one by one or several at the same time using the append method:

Yade [2]: O.bodies.append(sphere((0,10,0),1))
Out[2]: 0

Yade [3]: O.bodies.append(sphere((0,0,2),1))
Out[3]: 1

this is the same, but in one function call
Yade [4]: O.bodies.append([

...: sphere((0,0,0),1),

...: sphere((0,0,2),1)

...:])

...:
Out[4]: [2, 3]

Many functions introduced in next sections return list of bodies which can be readily added to the
simulation, including

• packing generators, such as pack.randomDensePack, pack.regularHexa
• surface function pack.gtsSurface2Facets
• import functions ymport.gmsh, ymport.stl, …

As those functions use sphere and facet internally, they accept additional argument passed to those
function. In particular, material for each body is selected following the rules above (last one if not
specified, by label, by index, etc.).

Clumping particles together

In some cases, you might want to create rigid aggregate of individual particles (i.e. particles will retain
their mutual position during simulation). This we call a clump. A clump is internally represented by
a special body, referenced by clumpId of its members (see also isClump, isClumpMember and isStan-
dalone). Like every body a clump has a position, which is the (mass) balance point between all members.
A clump body itself has no interactions with other bodies. Interactions between clumps is represented
by interactions between clump members. There are no interactions between clump members of the same
clump.
YADE supports different ways of creating clumps:

• Create clumps and spheres (clump members) directly with one command:

42 Chapter 3. User’s manual

Yade Documentation, Release 1.07.0

The function appendClumped() is designed for this task. For instance, we might add 2 spheres tied
together:

Yade [2]: O.bodies.appendClumped([
...: sphere([0,0,0],1),
...: sphere([0,0,2],1)
...:])
...:

Out[2]: (2, [0, 1])

Yade [3]: len(O.bodies)
Out[3]: 3

Yade [4]: O.bodies[1].isClumpMember, O.bodies[2].clumpId
Out[4]: (True, 2)

Yade [5]: O.bodies[2].isClump, O.bodies[2].clumpId
Out[5]: (True, 2)

-> appendClumped() returns a tuple of ids (clumpId,[memberId1,memberId2,...])
• Use existing spheres and clump them together:

For this case the function clump() can be used. One way to do this is to create a list of bodies, that
should be clumped before using the clump() command:

Yade [2]: bodyList = []

Yade [3]: for ii in range(0,5):
...: bodyList.append(O.bodies.append(sphere([ii,0,1],.5)))#create a "chain" of 5 spheres
...:

Yade [4]: print bodyList
[0, 1, 2, 3, 4]

Yade [5]: idClump=O.bodies.clump(bodyList)

-> clump() returns clumpId
• Another option is to replace standalone spheres from a given packing (see SpherePack and make-

Cloud) by clumps using clump templates.
This is done by a function called replaceByClumps(). This function takes a list of clumpTemplates()
and a list of amounts and replaces spheres by clumps. The volume of a new clump will be the same
as the volume of the sphere, that was replaced (clump volume/mass/inertia is accounting for overlaps
assuming that there are only pair overlaps).
-> replaceByClumps() returns a list of tuples: [(clumpId1,[memberId1,memberId2,...]),(clumpId2,[memberId1,memberId2,...]),...]
It is also possible to add bodies to a clump and release bodies from a clump. Also you can erase the
clump (clump members will get standalone spheres).
Additionally YADE supports to achieve the roundness of a clump or roundness coefficient of a packing.
Parts of the packing can be excluded from roundness measurement via exclude list.

Yade [2]: bodyList = []

Yade [3]: for ii in range(1,5):
...: bodyList.append(O.bodies.append(sphere([ii,ii,ii],.5)))
...:

Yade [4]: O.bodies.clump(bodyList)
Out[4]: 4

Yade [5]: RC=O.bodies.getRoundness()

3.1. Scene construction 43

Yade Documentation, Release 1.07.0

Yade [6]: print RC
0.256191414232

-> getRoundness() returns roundness coefficient RC of a packing or a part of the packing

Note: Have a look at examples/clumps/ folder. There you will find some examples, that show usage
of different functions for clumps.

3.1.2 Sphere packings

Representing a solid of an arbitrary shape by arrangement of spheres presents the problem of sphere
packing, i.e. spatial arrangement of sphere such that given solid is approximately filled with them. For
the purposes of DEM simulation, there can be several requirements.

1. Distribution of spheres’ radii. Arbitrary volume can be filled completely with spheres provided
there are no restrictions on their radius; in such case, number of spheres can be infinite and their
radii approach zero. Since both number of particles and minimum sphere radius (via critical
timestep) determine computation cost, radius distribution has to be given mandatorily. The most
typical distribution is uniform: mean±dispersion; if dispersion is zero, all spheres will have the
same radius.

2. Smooth boundary. Some algorithms treat boundaries in such way that spheres are aligned on them,
making them smoother as surface.

3. Packing density, or the ratio of spheres volume and solid size. It is closely related to radius
distribution.

4. Coordination number, (average) number of contacts per sphere.
5. Isotropy (related to regularity/irregularity); packings with preferred directions are usually not

desirable, unless the modeled solid also has such preference.
6. Permissible Spheres’ overlap; some algorithms might create packing where spheres slightly overlap;

since overlap usually causes forces in DEM, overlap-free packings are sometimes called “stress-free�.

Volume representation

There are 2 methods for representing exact volume of the solid in question in Yade: boundary repre-
sentation and constructive solid geometry. Despite their fundamental differences, they are abstracted in
Yade in the Predicate class. Predicate provides the following functionality:

1. defines axis-aligned bounding box for the associated solid (optionally defines oriented bounding
box);

2. can decide whether given point is inside or outside the solid; most predicates can also (exactly or
approximately) tell whether the point is inside and satisfies some given padding distance from the
represented solid boundary (so that sphere of that volume doesn’t stick out of the solid).

Constructive Solid Geometry (CSG)

CSG approach describes volume by geometric primitives or primitive solids (sphere, cylinder, box, cone,
…) and boolean operations on them. Primitives defined in Yade include inCylinder, inSphere, inEllipsoid,
inHyperboloid, notInNotch.
For instance, hyperboloid (dogbone) specimen for tension-compression test can be constructed in this
way (shown at img. img-hyperboloid):

from yade import pack

construct the predicate first
pred=pack.inHyperboloid(centerBottom=(0,0,-.1),centerTop=(0,0,.1),radius=.05,skirt=.03)

44 Chapter 3. User’s manual

https://github.com/yade/trunk/blob/master/examples/clumps/

Yade Documentation, Release 1.07.0

alternatively: pack.inHyperboloid((0,0,-.1),(0,0,.1),.05,.03)

pack the predicate with spheres (will be explained later)
spheres=pack.randomDensePack(pred,spheresInCell=2000,radius=3.5e-3)

add spheres to simulation
O.bodies.append(spheres)

Figure 3.1: Specimen constructed with the pack.inHyperboloid predicate, packed with
pack.randomDensePack.

Boundary representation (BREP)

Representing a solid by its boundary is much more flexible than CSG volumes, but is mostly only ap-
proximate. Yade interfaces to GNU Triangulated Surface Library (GTS) to import surfaces readable by
GTS, but also to construct them explicitly from within simulation scripts. This makes possible para-
metric construction of rather complicated shapes; there are functions to create set of 3d polylines from
2d polyline (pack.revolutionSurfaceMeridians), to triangulate surface between such set of 3d polylines
(pack.sweptPolylines2gtsSurface).
For example, we can construct a simple funnel (examples/funnel.py, shown at img-funnel):

from numpy import linspace
from yade import pack

angles for points on circles
thetas=linspace(0,2*pi,num=16,endpoint=True)

creates list of polylines in 3d from list of 2d projections
turned from 0 to π

meridians=pack.revolutionSurfaceMeridians(
[[(3+rad*sin(th),10*rad+rad*cos(th)) for th in thetas] for rad in linspace(1,2,num=10)],
linspace(0,pi,num=10)

)

create surface
surf=pack.sweptPolylines2gtsSurface(

meridians+
+[[Vector3(5*sin(-th),-10+5*cos(-th),30) for th in thetas]] # add funnel top

)

add to simulation
O.bodies.append(pack.gtsSurface2Facets(surf))

3.1. Scene construction 45

http://gts.sourceforge.net
https://github.com/yade/trunk/blob/master/examples/funnel.py

Yade Documentation, Release 1.07.0

Figure 3.2: Triangulated funnel, constructed with the examples/funnel.py script.

GTS surface objects can be used for 2 things:
1. pack.gtsSurface2Facets function can create the triangulated surface (from Facet particles) in the

simulation itself, as shown in the funnel example. (Triangulated surface can also be imported
directly from a STL file using ymport.stl.)

2. pack.inGtsSurface predicate can be created, using the surface as boundary representation of the
enclosed volume.

The examples/gts-horse/gts-horse.py (img. img-horse) shows both possibilities; first, a GTS surface is
imported:

import gts
surf=gts.read(open('horse.coarse.gts'))

That surface object is used as predicate for packing:

pred=pack.inGtsSurface(surf)
O.bodies.append(pack.regularHexa(pred,radius=radius,gap=radius/4.))

and then, after being translated, as base for triangulated surface in the simulation itself:

surf.translate(0,0,-(aabb[1][2]-aabb[0][2]))
O.bodies.append(pack.gtsSurface2Facets(surf,wire=True))

Boolean operations on predicates

Boolean operations on pair of predicates (noted A and B) are defined:
• intersection A & B (conjunction): point must be in both predicates involved.
• union A | B (disjunction): point must be in the first or in the second predicate.
• difference A - B (conjunction with second predicate negated): the point must be in the first

predicate and not in the second one.
• symmetric difference A ^ B (exclusive disjunction): point must be in exactly one of the two

predicates.
Composed predicates also properly define their bounding box. For example, we can take box and remove
cylinder from inside, using the A - B operation (img. img-predicate-difference):

pred=pack.inAlignedBox((-2,-2,-2),(2,2,2))-pack.inCylinder((0,-2,0),(0,2,0),1)
spheres=pack.randomDensePack(pred,spheresInCell=2000,radius=.1,rRelFuzz=.4)

46 Chapter 3. User’s manual

https://github.com/yade/trunk/blob/master/examples/funnel.py
https://github.com/yade/trunk/blob/master/examples/gts-horse/gts-horse.py

Yade Documentation, Release 1.07.0

Figure 3.3: Imported GTS surface (horse) used as packing predicate (top) and surface constructed from
facets (bottom). See http://www.youtube.com/watch?v=PZVruIlUX1A for movie of this simulation.

Figure 3.4: Box with cylinder removed from inside, using difference of these two predicates.

3.1. Scene construction 47

http://www.youtube.com/watch?v=PZVruIlUX1A

Yade Documentation, Release 1.07.0

Packing algorithms

Algorithms presented below operate on geometric spheres, defined by their center and radius. With a
few exception documented below, the procedure is as follows:

1. Sphere positions and radii are computed (some functions use volume predicate for this, some do
not)

2. sphere is called for each position and radius computed; it receives extra keyword arguments of the
packing function (i.e. arguments that the packing function doesn’t specify in its definition; they
are noted **kw). Each sphere call creates actual Body objects with Sphere shape. List of Body
objects is returned.

3. List returned from the packing function can be added to simulation using O.bodies.append.
Taking the example of pierced box:

pred=pack.inAlignedBox((-2,-2,-2),(2,2,2))-pack.inCylinder((0,-2,0),(0,2,0),1)
spheres=pack.randomDensePack(pred,spheresInCell=2000,radius=.1,rRelFuzz=.4,wire=True,color=(0,0,1),material=1)

Keyword arguments wire, color and material are not declared in pack.randomDensePack, therefore
will be passed to sphere, where they are also documented. spheres is now list of Body objects, which
we add to the simulation:

O.bodies.append(spheres)

Packing algorithms described below produce dense packings. If one needs loose packing, pack.SpherePack
class provides functions for generating loose packing, via its pack.SpherePack.makeCloud method. It is
used internally for generating initial configuration in dynamic algorithms. For instance:

from yade import pack
sp=pack.SpherePack()
sp.makeCloud(minCorner=(0,0,0),maxCorner=(3,3,3),rMean=.2,rRelFuzz=.5)

will fill given box with spheres, until no more spheres can be placed. The object can be used to add
spheres to simulation:

for c,r in sp: O.bodies.append(sphere(c,r))

or, in a more pythonic way, with one single O.bodies.append call:

O.bodies.append([sphere(c,r) for c,r in sp])

Geometric

Geometric algorithms compute packing without performing dynamic simulation; among their advantages
are

• speed;
• spheres touch exactly, there are no overlaps (what some people call “stress-free” packing);

their chief disadvantage is that radius distribution cannot be prescribed exactly, save in specific cases
(regular packings); sphere radii are given by the algorithm, which already makes the system determined.
If exact radius distribution is important for your problem, consider dynamic algorithms instead.

Regular Yade defines packing generators for spheres with constant radii, which can be used with
volume predicates as described above. They are dense orthogonal packing (pack.regularOrtho) and
dense hexagonal packing (pack.regularHexa). The latter creates so-called “hexagonal close packing”,
which achieves maximum density (http://en.wikipedia.org/wiki/Close-packing_of_spheres).
Clear disadvantage of regular packings is that they have very strong directional preferences, which might
not be an issue in some cases.

48 Chapter 3. User’s manual

http://docs.python.org/glossary.html#term-keyword-argument
http://en.wikipedia.org/wiki/Close-packing_of_spheres

Yade Documentation, Release 1.07.0

Irregular Random geometric algorithms do not integrate at all with volume predicates described
above; rather, they take their own boundary/volume definition, which is used during sphere positioning.
On the other hand, this makes it possible for them to respect boundary in the sense of making spheres
touch it at appropriate places, rather than leaving empty space in-between.
GenGeo is library (python module) for packing generation developed with ESyS-Particle. It creates

packing by random insertion of spheres with given radius range. Inserted spheres touch each other
exactly and, more importantly, they also touch the boundary, if in its neighbourhood. Boundary
is represented as special object of the GenGeo library (Sphere, cylinder, box, convex polyhedron,
…). Therefore, GenGeo cannot be used with volume represented by yade predicates as explained
above.
Packings generated by this module can be imported directly via ymport.gengeo, or from saved file
via ymport.gengeoFile. There is an example script examples/test/genCylLSM.py. Full documen-
tation for GenGeo can be found at ESyS documentation website.
To our knowledge, the GenGeo library is not currently packaged. It can be downloaded from
current subversion repository

svn checkout https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo

then following instruction in the INSTALL file.

Dynamic

The most versatile algorithm for random dense packing is provided by pack.randomDensePack. Initial
loose packing of non-overlapping spheres is generated by randomly placing them in cuboid volume,
with radii given by requested (currently only uniform) radius distribution. When no more spheres can
be inserted, the packing is compressed and then uncompressed (see py/pack/pack.py for exact values
of these “stresses”) by running a DEM simulation; Omega.switchScene is used to not affect existing
simulation). Finally, resulting packing is clipped using provided predicate, as explained above.
By its nature, this method might take relatively long; and there are 2 provisions to make the computation
time shorter:

• If number of spheres using the spheresInCell parameter is specified, only smaller specimen with
periodic boundary is created and then repeated as to fill the predicate. This can provide high-
quality packing with low regularity, depending on the spheresInCell parameter (value of several
thousands is recommended).

• Providing memoizeDb parameter will make pack.randomDensePack first look into provided file
(SQLite database) for packings with similar parameters. On success, the packing is simply read
from database and returned. If there is no similar pre-existent packing, normal procedure is run,
and the result is saved in the database before being returned, so that subsequent calls with same
parameters will return quickly.

If you need to obtain full periodic packing (rather than packing clipped by predicate), you can use
pack.randomPeriPack.
In case of specific needs, you can create packing yourself, “by hand”. For instance, packing boundary
can be constructed from facets, letting randomly positioned spheres in space fall down under gravity.

3.1.3 Triangulated surfaces

Yade integrates with the the GNU Triangulated Surface library, exposed in python via GTS module. GTS
provides variety of functions for surface manipulation (coarsening, tesselation, simplification, import),
to be found in its documentation.
GTS surfaces are geometrical objects, which can be inserted into simulation as set of particles whose
Body.shape is of type Facet – single triangulation elements. pack.gtsSurface2Facets can be used to convert
GTS surface triangulation into list of bodies ready to be inserted into simulation via O.bodies.append.

3.1. Scene construction 49

http://www.launchpad.net/esys-particle
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
http://esys.esscc.uq.edu.au/docs.html
https://github.com/yade/trunk/blob/master/py/pack/pack.py
http://gts.sourceforge.net

Yade Documentation, Release 1.07.0

Facet particles are created by default as non-Body.dynamic (they have zero inertial mass). That means
that they are fixed in space and will not move if subject to forces. You can however

• prescribe arbitrary movement to facets using a PartialEngine (such as TranslationEngine or Rota-
tionEngine);

• assign explicitly mass and inertia to that particle;
• make that particle part of a clump and assign mass and inertia of the clump itself (described

below).

Note: Facets can only (currently) interact with spheres, not with other facets, even if they are dynamic.
Collision of 2 facets will not create interaction, therefore no forces on facets.

Import

Yade currently offers 3 formats for importing triangulated surfaces from external files, in the ymport
module:
ymport.gts text file in native GTS format.
ymport.stl STereoLitography format, in either text or binary form; exported from Blender, but from

many CAD systems as well.
ymport.gmsh. text file in native format for GMSH, popular open-source meshing program.
If you need to manipulate surfaces before creating list of facets, you can study the py/ymport.py file
where the import functions are defined. They are rather simple in most cases.

Parametric construction

The GTS module provides convenient way of creating surface by vertices, edges and triangles.
Frequently, though, the surface can be conveniently described as surface between polylines in space. For
instance, cylinder is surface between two polygons (closed polylines). The pack.sweptPolylines2gtsSurface
offers the functionality of connecting several polylines with triangulation.

Note: The implementation of pack.sweptPolylines2gtsSurface is rather simplistic: all polylines must be
of the same length, and they are connected with triangles between points following their indices within
each polyline (not by distance). On the other hand, points can be co-incident, if the threshold parameter
is positive: degenerate triangles with vertices closer that threshold are automatically eliminated.

Manipulating lists efficiently (in terms of code length) requires being familiar with list comprehensions
in python.
Another examples can be found in examples/mill.py (fully parametrized) or examples/funnel.py (with
hardcoded numbers).

3.1.4 Creating interactions

In typical cases, interactions are created during simulations as particles collide. This is done by a Collider
detecting approximate contact between particles and then an IGeomFunctor detecting exact collision.
Some material models (such as the concrete model) rely on initial interaction network which is denser
than geometrical contact of spheres: sphere’s radii as “enlarged” by a dimensionless factor called inter-
action radius (or interaction ratio) to create this initial network. This is done typically in this way (see
examples/concrete/uniax.py for an example):

1. Approximate collision detection is adjusted so that approximate contacts are detected also be-
tween particles within the interaction radius. This consists in setting value of Bo1_Sphere_-
Aabb.aabbEnlargeFactor to the interaction radius value.

50 Chapter 3. User’s manual

http://www.blender.org
http://www.geuz.org/gmsh/
https://github.com/yade/trunk/blob/master/py/ymport.py
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
https://github.com/yade/trunk/blob/master/examples/mill.py
https://github.com/yade/trunk/blob/master/examples/funnel.py
https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 1.07.0

2. The geometry functor (Ig2) would normally say that “there is no contact” if given 2 spheres that
are not in contact. Therefore, the same value as for Bo1_Sphere_Aabb.aabbEnlargeFactor must
be given to it (Ig2_Sphere_Sphere_ScGeom.interactionDetectionFactor).
Note that only Sphere + Sphere interactions are supported; there is no parameter analogous
to distFactor in Ig2_Facet_Sphere_ScGeom. This is on purpose, since the interaction radius
is meaningful in bulk material represented by sphere packing, whereas facets usually represent
boundary conditions which should be exempt from this dense interaction network.

3. Run one single step of the simulation so that the initial network is created.
4. Reset interaction radius in both Bo1 and Ig2 functors to their default value again.
5. Continue the simulation; interactions that are already established will not be deleted (the Law2

functor in usepermitting).
In code, such scenario might look similar to this one (labeling is explained in Labeling things):

intRadius=1.5

O.engines=[
ForceResetter(),
InsertionSortCollider([

enlarge here
Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius,label='bo1s'),
Bo1_Facet_Aabb(),

]),
InteractionLoop(

[
enlarge here
Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius,label='ig2ss'),
Ig2_Facet_Sphere_ScGeom(),

],
[Ip2_CpmMat_CpmMat_CpmPhys()],
[Law2_ScGeom_CpmPhys_Cpm(epsSoft=0)], # deactivated

),
NewtonIntegrator(damping=damping,label='damper'),

]

run one single step
O.step()

reset interaction radius to the default value
bo1s.aabbEnlargeFactor=1.0
ig2ss.interactionDetectionFactor=1.0

now continue simulation
O.run()

Individual interactions on demand

It is possible to create an interaction between a pair of particles independently of collision detection using
createInteraction. This function looks for and uses matching Ig2 and Ip2 functors. Interaction will be
created regardless of distance between given particles (by passing a special parameter to the Ig2 functor
to force creation of the interaction even without any geometrical contact). Appropriate constitutive law
should be used to avoid deletion of the interaction at the next simulation step.

Yade [2]: O.materials.append(FrictMat(young=3e10,poisson=.2,density=1000))
Out[2]: 0

Yade [3]: O.bodies.append([
...: sphere([0,0,0],1),
...: sphere([0,0,1000],1)
...:])

3.1. Scene construction 51

Yade Documentation, Release 1.07.0

...:
Out[3]: [0, 1]

only add InteractionLoop, no other engines are needed now
Yade [4]: O.engines=[

...: InteractionLoop(

...: [Ig2_Sphere_Sphere_ScGeom(),],

...: [Ip2_FrictMat_FrictMat_FrictPhys()],

...: [] # not needed now

...:)

...:]

...:

Yade [5]: i=createInteraction(0,1)

created by functors in InteractionLoop
Yade [6]: i.geom, i.phys
Out[6]: (<ScGeom instance at 0x58ffb90>, <FrictPhys instance at 0x1459d240>)

This method will be rather slow if many interaction are to be created (the functor lookup will be repeated
for each of them). In such case, ask on yade-dev@lists.launchpad.net to have the createInteraction
function accept list of pairs id’s as well.

3.1.5 Base engines

A typical DEM simulation in Yade does at least the following at each step (see Function components for
details):

1. Reset forces from previous step
2. Detect new collisions
3. Handle interactions
4. Apply forces and update positions of particles

Each of these points corresponds to one or several engines:

O.engines=[
ForceResetter(), # reset forces
InsertionSortCollider([...]), # approximate collision detection
InteractionLoop([...],[...],[...]) # handle interactions
NewtonIntegrator() # apply forces and update positions

]

The order of engines is important. In majority of cases, you will put any additional engine after Inter-
actionLoop:

• if it apply force, it should come before NewtonIntegrator, otherwise the force will never be effective.
• if it makes use of bodies’ positions, it should also come before NewtonIntegrator, otherwise, po-

sitions at the next step will be used (this might not be critical in many cases, such as output for
visualization with VTKRecorder).

The O.engines sequence must be always assigned at once (the reason is in the fact that although engines
themselves are passed by reference, the sequence is copied from c++ to Python or from Python to c++).
This includes modifying an existing O.engines; therefore

O.engines.append(SomeEngine()) # wrong

will not work;

O.engines=O.engines+[SomeEngine()] # ok

must be used instead. For inserting an engine after position #2 (for example), use python slice notation:

52 Chapter 3. User’s manual

mailto:yade-dev@lists.launchpad.net

Yade Documentation, Release 1.07.0

O.engines=O.engines[:2]+[SomeEngine()]+O.engines[2:]

Note: When Yade starts, O.engines is filled with a reasonable default list, so that it is not strictly
necessary to redefine it when trying simple things. The default scene will handle spheres, boxes, and
facets with frictional properties correctly, and adjusts the timestep dynamically. You can find an example
in simple-scene-default-engines.py.

Functors choice

In the above example, we omited functors, only writing ellipses ... instead. As explained in Dispatchers
and functors, there are 4 kinds of functors and associated dispatchers. User can choose which ones to
use, though the choice must be consistent.

Bo1 functors

Bo1 functors must be chosen depending on the collider in use; they are given directly to the collider
(which internally uses BoundDispatcher).
At this moment (September 2010), the most common choice is InsertionSortCollider, which uses Aabb;
functors creating Aabb must be used in that case. Depending on particle shapes in your simulation,
choose appropriate functors:

O.engines=[...,
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()]),
...

]

Using more functors than necessary (such as Bo1_Facet_Aabb if there are no facets in the simulation)
has no performance penalty. On the other hand, missing functors for existing shapes will cause those
bodies to not collider with other bodies (they will freely interpenetrate).
There are other colliders as well, though their usage is only experimental:

• SpatialQuickSortCollider is correctness-reference collider operating on Aabb; it is significantly
slower than InsertionSortCollider.

• PersistentTriangulationCollider only works on spheres; it does not use a BoundDispatcher, as it
operates on spheres directly.

• FlatGridCollider is proof-of-concept grid-based collider, which computes grid positions internally
(no BoundDispatcher either)

Ig2 functors

Ig2 functor choice (all of the derive from IGeomFunctor) depends on
1. shape combinations that should collide; for instance:

InteractionLoop([Ig2_Sphere_Sphere_ScGeom()],[],[])

will handle collisions for Sphere + Sphere, but not for Facet + Sphere – if that is desired, an
additional functor must be used:

InteractionLoop([
Ig2_Sphere_Sphere_ScGeom(),
Ig2_Facet_Sphere_ScGeom()

],[],[])

Again, missing combination will cause given shape combinations to freely interpenetrate one an-
other.

3.1. Scene construction 53

Yade Documentation, Release 1.07.0

2. IGeom type accepted by the Law2 functor (below); it is the first part of functor’s name after Law2
(for instance, Law2_ScGeom_CpmPhys_Cpm accepts ScGeom).

Ip2 functors

Ip2 functors (deriving from IPhysFunctor) must be chosen depending on
1. Material combinations within the simulation. In most cases, Ip2 functors handle 2 instances of the

same Material class (such as Ip2_FrictMat_FrictMat_FrictPhys for 2 bodies with FrictMat)
2. IPhys accepted by the constitutive law (Law2 functor), which is the second part of the Law2 functor’s

name (e.g. Law2_ScGeom_FrictPhys_CundallStrack accepts FrictPhys)

Note: Unlike with Bo1 and Ig2 functors, unhandled combination of Materials is an error condition
signaled by an exception.

Law2 functor(s)

Law2 functor was the ultimate criterion for the choice of Ig2 and Ip2 functors; there are no restrictions
on its choice in itself, as it only applies forces without creating new objects.
In most simulations, only one Law2 functor will be in use; it is possible, though, to have several of them,
dispatched based on combination of IGeom and IPhys produced previously by Ig2 and Ip2 functors
respectively (in turn based on combination of Shapes and Materials).

Note: As in the case of Ip2 functors, receiving a combination of IGeom and IPhys which is not handled
by any Law2 functor is an error.

Warning: Many Law2 exist in Yade, and new ones can appear at any time. In some cases different
functors are only different implementations of the same contact law (e.g. Law2_ScGeom_FrictPhys_-
CundallStrack and Law2_L3Geom_FrictPhys_ElPerfPl). Also, sometimes, the peculiarity of one
functor may be reproduced as a special case of a more general one. Therefore, for a given constitutive
behavior, the user may have the choice between different functors. It is strongly recommended to
favor the most used and most validated implementation when facing such choice. A list of available
functors classified from mature to unmaintained is updated here to guide this choice.

Examples

Let us give several example of the chain of created and accepted types.

Basic DEM model

Suppose we want to use the Law2_ScGeom_FrictPhys_CundallStrack constitutive law. We see that
1. the Ig2 functors must create ScGeom. If we have for instance spheres and boxes in the simulation,

we will need functors accepting Sphere + Sphere and Box + Sphere combinations. We don’t want
interactions between boxes themselves (as a matter of fact, there is no such functor anyway). That
gives us Ig2_Sphere_Sphere_ScGeom and Ig2_Box_Sphere_ScGeom.

2. the Ip2 functors should create FrictPhys. Looking at InteractionPhysicsFunctors, there is only
Ip2_FrictMat_FrictMat_FrictPhys. That obliges us to use FrictMat for particles.

The result will be therefore:

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],

54 Chapter 3. User’s manual

https://yade-dem.org/wiki/ConstitutiveLaws

Yade Documentation, Release 1.07.0

[Law2_ScGeom_FrictPhys_CundallStrack()]
)

Concrete model

In this case, our goal is to use the Law2_ScGeom_CpmPhys_Cpm constitutive law.
• We use spheres and facets in the simulation, which selects Ig2 functors accepting those types and

producing ScGeom: Ig2_Sphere_Sphere_ScGeom and Ig2_Facet_Sphere_ScGeom.
• We have to use Material which can be used for creating CpmPhys. We find that CpmPhys is only

created by Ip2_CpmMat_CpmMat_CpmPhys, which determines the choice of CpmMat for all
particles.

Therefore, we will use:

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Facet_Sphere_ScGeom()],
[Ip2_CpmMat_CpmMat_CpmPhys()],
[Law2_ScGeom_CpmPhys_Cpm()]

)

3.1.6 Imposing conditions

In most simulations, it is not desired that all particles float freely in space. There are several ways of
imposing boundary conditions that block movement of all or some particles with regard to global space.

Motion constraints

• Body.dynamic determines whether a body will be accelerated by NewtonIntegrator; it is mandatory
to make it false for bodies with zero mass, where applying non-zero force would result in infinite
displacement.
Facets are case in the point: facet makes them non-dynamic by default, as they have zero volume
and zero mass (this can be changed, by passing dynamic=True to facet or setting Body.dynamic;
setting State.mass to a non-zero value must be done as well). The same is true for wall.
Making sphere non-dynamic is achieved simply by:

b = sphere([x,y,z],radius,dynamic=False)
b.dynamic=True #revert the previous

• State.blockedDOFs permits selective blocking of any of 6 degrees of freedom in global space. For
instance, a sphere can be made to move only in the xy plane by saying:

Yade [2]: O.bodies.append(sphere((0,0,0),1))
Out[2]: 0

Yade [3]: O.bodies[0].state.blockedDOFs='zXY'

In contrast to Body.dynamic, blockedDOFs will only block forces (and acceleration)
in selected directions. Actually, b.dynamic=False is nearly only a shorthand for
b.state.blockedDOFs=='xyzXYZ' . A subtle difference is that the former does reset the velocity
components automaticaly, while the latest does not. If you prescribed linear or angular velocity,
they will be applied regardless of blockedDOFs. It also implies that if the velocity is not zero when
degrees of freedom are blocked via blockedDOFs assignements, the body will keep moving at the
velocity it has at the time of blocking. The differences are shown below:

Yade [2]: b1 = sphere([0,0,0],1,dynamic=True)

Yade [3]: b1.state.blockedDOFs

3.1. Scene construction 55

Yade Documentation, Release 1.07.0

Out[3]: ''

Yade [4]: b1.state.vel = Vector3(1,0,0) #we want it to move...

Yade [5]: b1.dynamic = False #... at a constant velocity

Yade [6]: print b1.state.blockedDOFs, b1.state.vel
xyzXYZ Vector3(0,0,0)

Yade [7]: # oops, velocity has been reset when setting dynamic=False

Yade [8]: b1.state.vel = (1,0,0) # we can still assign it now

Yade [9]: print b1.state.blockedDOFs, b1.state.vel
xyzXYZ Vector3(1,0,0)

Yade [10]: b2 = sphere([0,0,0],1,dynamic=True) #another try

Yade [11]: b2.state.vel = (1,0,0)

Yade [12]: b2.state.blockedDOFs = "xyzXYZ" #this time we assign blockedDOFs directly, velocity is unchanged

Yade [13]: print b2.state.blockedDOFs, b2.state.vel
xyzXYZ Vector3(1,0,0)

It might be desirable to constrain motion of some particles constructed from a generated sphere packing,
following some condition, such as being at the bottom of a specimen; this can be done by looping over
all bodies with a conditional:
for b in O.bodies:

block all particles with z coord below .5:
if b.state.pos[2]<.5: b.dynamic=False

Arbitrary spatial predicates introduced above can be expoited here as well:
from yade import pack
pred=pack.inAlignedBox(lowerCorner,upperCorner)
for b in O.bodies:

if b.shape.name!=Sphere: continue # skip non-spheres
ask the predicate if we are inside
if pred(b.state.pos,b.shape.radius): b.dynamic=False

Imposing motion and forces

Imposed velocity

If a degree of freedom is blocked and a velocity is assigned along that direction (translational or rotational
velocity), then the body will move at constant velocity. This is the simpler and recommended method
to impose the motion of a body. This, for instance, will result in a constant velocity along x (it can still
be freely accelerated along y and z):

O.bodies.append(sphere((0,0,0),1))
O.bodies[0].state.blockedDOFs='x'
O.bodies[0].state.vel=(10,0,0)

Conversely, modifying the position directly is likely to break Yade’s algorithms, especially those related
to collision detection and contact laws, as they are based on bodies velocities. Therefore, unless you
really know what you are doing, don’t do that for imposing a motion:

O.bodies.append(sphere((0,0,0),1))
O.bodies[0].state.blockedDOFs='x'
O.bodies[0].state.pos=10*O.dt #REALLY BAD! Don't assign position

56 Chapter 3. User’s manual

Yade Documentation, Release 1.07.0

Imposed force

Applying a force or a torque on a body is done via functions of the ForceContainer. It is as simple as
this:

O.forces.addF(0,(1,0,0)) #applies for one step

By default, the force applies for one time step only, and is resetted at the beginning of each step. For this
reason, imposing a force at the begining of one step will have no effect at all, since it will be immediatly
resetted. The only way is to place a PyRunner inside the simulation loop.
Applying the force permanently is possible with an optional argument (in this case it does not matter if
the command comes at the begining of the time step):

O.forces.addF(0,(1,0,0),permanent=True) #applies permanently

The force will persist across iterations, until it is overwritten by another call to
O.forces.addF(id,f,True) or erased by O.forces.reset(resetAll=True). The permanent
force on a body can be checked with O.forces.permF(id).

Boundary controllers

Engines deriving from BoundaryController impose boundary conditions during simulation, either directly,
or by influencing several bodies. You are referred to their individual documentation for details, though
you might find interesting in particular

• UniaxialStrainer for applying strain along one axis at constant rate; useful for plotting strain-stress
diagrams for uniaxial loading case. See examples/concrete/uniax.py for an example.

• TriaxialStressController which applies prescribed stress/strain along 3 perpendicular axes on
cuboid-shaped packing using 6 walls (Box objects) (ThreeDTriaxialEngine is generalized such that
it allows independent value of stress along each axis)

• PeriTriaxController for applying stress/strain along 3 axes independently, for simulations using
periodic boundary conditions (Cell)

Field appliers

Engines deriving from FieldApplier acting on all particles. The one most used is GravityEngine applying
uniform acceleration field (GravityEngine is deprecated, use NewtonIntegrator.gravity instead!).

Partial engines

Engines deriving from PartialEngine define the ids attribute determining bodies which will be affected.
Several of them warrant explicit mention here:

• TranslationEngine and RotationEngine for applying constant speed linear and rotational motion
on subscribers.

• ForceEngine and TorqueEngine applying given values of force/torque on subscribed bodies at every
step.

• StepDisplacer for applying generalized displacement delta at every timestep; designed for precise
control of motion when testing constitutive laws on 2 particles.

The real value of partial engines is if you need to prescribe complex types of force or displacement fields.
For moving a body at constant velocity or for imposing a single force, the methods explained in Impos-
ing motion and forces are much simpler. There are several interpolating engines (InterpolatingDirect-
edForceEngine for applying force with varying magnitude, InterpolatingHelixEngine for applying spiral
displacement with varying angular velocity and possibly others); writing a new interpolating engine is
rather simple using examples of those that already exist.

3.1. Scene construction 57

https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 1.07.0

3.1.7 Convenience features

Labeling things

Engines and functors can define that label attribute. Whenever the O.engines sequence is modified,
python variables of those names are created/update; since it happens in the __builtins__ namespaces,
these names are immediately accessible from anywhere. This was used in Creating interactions to change
interaction radius in multiple functors at once.

Warning: Make sure you do not use label that will overwrite (or shadow) an object that you already
use under that variable name. Take care not to use syntactically wrong names, such as “er*452” or
“my engine”; only variable names permissible in Python can be used.

Simulation tags

Omega.tags is a dictionary (it behaves like a dictionary, although the implementation in c++ is different)
mapping keys to labels. Contrary to regular python dictionaries that you could create,

• O.tags is saved and loaded with simulation;
• O.tags has some values pre-initialized.

After Yade startup, O.tags contains the following:

Yade [2]: dict(O.tags) # convert to real dictionary
Out[2]:

{'author': 'root~(root@imfd7036)',
'd.id': '20140120T111010p3453',
'id': '20140120T111010p3453',
'id.d': '20140120T111010p3453',
'isoTime': '20140120T111010'}

author Real name, username and machine as obtained from your system at simulation creation
id Unique identifier of this Yade instance (or of the instance which created a loaded simulation). It is

composed of date, time and process number. Useful if you run simulations in parallel and want
to avoid overwriting each other’s outputs; embed O.tags['id'] in output filenames (either as
directory name, or as part of the file’s name itself) to avoid it. This is explained in Separating
output files from jobs in detail.

isoTime Time when simulation was created (with second resolution).
d.id, id.d Simulation description and id joined by period (and vice-versa). Description is used in batch

jobs; in non-batch jobs, these tags are identical to id.
You can add your own tags by simply assigning value, with the restriction that the left-hand side object
must be a string and must not contain =.

Yade [1]: O.tags['anythingThat I lik3']='whatever'

Yade [2]: O.tags['anythingThat I lik3']
Out[2]: 'whatever'

Saving python variables

Python variable lifetime is limited; in particular, if you save simulation, variables will be lost after
reloading. Yade provides limited support for data persistence for this reason (internally, it uses special
values of O.tags). The functions in question are saveVars and loadVars.
saveVars takes dictionary (variable names and their values) and a mark (identification string for the
variable set); it saves the dictionary inside the simulation. These variables can be re-created (after the
simulation was loaded from a XML file, for instance) in the yade.params.mark namespace by calling
loadVars with the same identification mark:

58 Chapter 3. User’s manual

Yade Documentation, Release 1.07.0

Yade [1]: a=45; b=pi/3

Yade [2]: saveVars('ab',a=a,b=b)

save simulation (we could save to disk just as well)
Yade [2]: O.saveTmp()

Yade [4]: O.loadTmp()

Yade [5]: loadVars('ab')

Yade [6]: yade.params.ab.a
Out[6]: 45

import like this
Yade [7]: from yade.params import ab

Yade [8]: ab.a, ab.b
Out[8]: (45, 1.0471975511965976)

also possible
Yade [9]: from yade.params import *

Yade [10]: ab.a, ab.b
Out[10]: (45, 1.0471975511965976)

Enumeration of variables can be tedious if they are many; creating local scope (which is a function
definition in Python, for instance) can help:

def setGeomVars():
radius=a*4
thickness=22
p_t=4/3*pi
dim=Vector3(1.23,2.2,3)
#
define as much as you want here
it all appears in locals() (and nothing else does)
#
saveVars('geom',loadNow=True,**locals())

setGeomVars()
from yade.params.geom import *
use the variables now

Note: Only types that can be pickled can be passed to saveVars.

3.2 Controlling simulation

3.2.1 Tracking variables

Running python code

A special engine PyRunner can be used to periodically call python code, specified via the command
parameter. Periodicity can be controlled by specifying computation time (realPeriod), virutal time
(virtPeriod) or iteration number (iterPeriod).
For instance, to print kinetic energy (using kineticEnergy) every 5 seconds, this engine will be put to O.engines::

PyRunner(command=”print ‘kinetic energy’,kineticEnergy()”,realPeriod=5)

3.2. Controlling simulation 59

http://docs.python.org/library/pickle.html

Yade Documentation, Release 1.07.0

For running more complex commands, it is convenient to define an external function and only call it
from within the engine. Since the command is run in the script’s namespace, functions defined within
scripts can be called. Let us print information on interaction between bodies 0 and 1 periodically:

def intrInfo(id1,id2):
try:

i=O.interactions[id1,id2]
assuming it is a CpmPhys instance
print id1,id2,i.phys.sigmaN

except:
in case the interaction doesn't exist (yet?)
print "No interaction between",id1,id2

O.engines=[...,
PyRunner(command="intrInfo(0,1)",realPeriod=5)

]

More useful examples will be given below.
The plot module provides simple interface and storage for tracking various data. Although originally
conceived for plotting only, it is widely used for tracking variables in general.
The data are in plot.data dictionary, which maps variable names to list of their values; the plot.addData
function is used to add them.

Yade [2]: from yade import plot

Yade [3]: plot.data
Out[3]:

{'eps': [0.0001, 0.001, nan],
'force': [nan, nan, 1000.0],
'sigma': [12, nan, nan]}

Yade [4]: plot.addData(sigma=12,eps=1e-4)

not adding sigma will add a NaN automatically
this assures all variables have the same number of records
Yade [5]: plot.addData(eps=1e-3)

adds NaNs to already existing sigma and eps columns
Yade [6]: plot.addData(force=1e3)

Yade [7]: plot.data
Out[7]:

{'eps': [0.0001, 0.001, nan, 0.0001, 0.001, nan],
'force': [nan, nan, 1000.0, nan, nan, 1000.0],
'sigma': [12, nan, nan, 12, nan, nan]}

retrieve only one column
Yade [8]: plot.data['eps']
Out[8]: [0.0001, 0.001, nan, 0.0001, 0.001, nan]

get maximum eps
Yade [9]: max(plot.data['eps'])
Out[9]: 0.001

New record is added to all columns at every time plot.addData is called; this assures that lines in different
columns always match. The special value nan or NaN (Not a Number) is inserted to mark the record
invalid.

Note: It is not possible to have two columns with the same name, since data are stored as a dictionary.

To record data periodically, use PyRunner. This will record the z coordinate and velocity of body #1,
iteration number and simulation time (every 20 iterations):

60 Chapter 3. User’s manual

http://en.wikipedia.org/wiki/NaN

Yade Documentation, Release 1.07.0

O.engines=O.engines+[PyRunner(command='myAddData()', iterPeriod=20)]

from yade import plot
def myAddData():

b=O.bodies[1]
plot.addData(z1=b.state.pos[2], v1=b.state.vel.norm(), i=O.iter, t=O.time)

Note: Arbitrary string can be used as column label for plot.data. If it cannot be used as keyword name
for plot.addData (since it is a python keyword (for), or has spaces inside (my funny column), you can
pass dictionary to plot.addData instead:

plot.addData(z=b.state.pos[2],**{'my funny column':b.state.vel.norm()})

An exception are columns having leading of trailing whitespaces. They are handled specially in plot.plots
and should not be used (see below).

Labels can be conveniently used to access engines in the myAddData function:

O.engines=[...,
UniaxialStrainer(...,label='strainer')

]
def myAddData():

plot.addData(sigma=strainer.avgStress,eps=strainer.strain)

In that case, naturally, the labeled object must define attributes which are used (UniaxialStrainer.strain
and UniaxialStrainer.avgStress in this case).

Plotting variables

Above, we explained how to track variables by storing them using plot.addData. These data can be
readily used for plotting. Yade provides a simple, quick to use, plotting in the plot module. Naturally,
since direct access to underlying data is possible via plot.data, these data can be processed in any way.
The plot.plots dictionary is a simple specification of plots. Keys are x-axis variable, and values are
tuple of y-axis variables, given as strings that were used for plot.addData; each entry in the dictionary
represents a separate figure:

plot.plots={
'i':('t',), # plot t(i)
't':('z1','v1') # z1(t) and v1(t)

}

Actual plot using data in plot.data and plot specification of plot.plots can be triggered by invoking the
plot.plot function.

Live updates of plots

Yade features live-updates of figures during calculations. It is controlled by following settings:
• plot.live - By setting yade.plot.live=True you can watch the plot being updated while the

calculations run. Set to False otherwise.
• plot.liveInterval - This is the interval in seconds between the plot updates.
• plot.autozoom - When set to True the plot will be automatically rezoomed.

Controlling line properties

In this subsection let us use a basic complete script like examples/simple-scene/simple-scene-plot.py,
which we will later modify to make the plots prettier. Line of interest from that file is, and generates a
picture presented below:

3.2. Controlling simulation 61

https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py

Yade Documentation, Release 1.07.0

plot.plots={'i':('t'),'t':('z_sph',None,('v_sph','go-'),'z_sph_half')}

0.0 0.5 1.0 1.5 2.0
1.4

1.5

1.6

1.7

1.8

1.9

2.0

z_
sp

h

z_sph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v
_s

p
h
,z

_s
p
h
_h

a
lf

v_sph

z_sph_half

Figure 3.5: Figure generated by examples/simple-scene/simple-scene-plot.py.

The line plots take an optional second string argument composed of a line color (eg. 'r', 'g' or
'b'), a line style (eg. '-', '–-' or ':') and a line marker ('o', 's' or 'd'). A red dotted line
with circle markers is created with ‘ro:’ argument. For a listing of all options please have a look at
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot
For example using following plot.plots() command, will produce a following graph:

plot.plots={'i':(('t','xr:'),),'t':(('z_sph','r:'),None,('v_sph','g--'),('z_sph_half','b-.'))}

And this one will produce a following graph:

plot.plots={'i':(('t','xr:'),),'t':(('z_sph','Hr:'),None,('v_sph','+g--'),('z_sph_half','*b-.'))}

Note: You can learn more in matplotlib tutorial http://matplotlib.sourceforge.net/users/pyplot_tuto-
rial.html and documentation http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-
line-properties

Note: Please note that there is an extra , in 'i':(('t','xr:'),), otherwise the 'xr:' wouldn’t be
recognized as a line style parameter, but would be treated as an extra data to plot.

Controlling text labels

It is possible to use TeX syntax in plot labels. For example using following two lines in examples/simple-
scene/simple-scene-plot.py, will produce a following picture:

62 Chapter 3. User’s manual

https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-line-properties
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-line-properties
https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py

Yade Documentation, Release 1.07.0

0.0 0.5 1.0 1.5 2.0
1.4

1.5

1.6

1.7

1.8

1.9

2.0

z_
sp

h

z_sph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v
_s

p
h
,z

_s
p
h
_h

a
lf

v_sph

z_sph_half

Figure 3.6: Figure generated by changing parameters to plot.plots as above.

3.2. Controlling simulation 63

Yade Documentation, Release 1.07.0

0.0 0.5 1.0 1.5 2.0
1.4

1.5

1.6

1.7

1.8

1.9

2.0

z_
sp

h

z_sph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v
_s

p
h
,z

_s
p
h
_h

a
lf

v_sph

z_sph_half

Figure 3.7: Figure generated by changing parameters to plot.plots as above.

64 Chapter 3. User’s manual

Yade Documentation, Release 1.07.0

plot.plots={'i':(('t','xr:'),),'t':(('z_sph','r:'),None,('v_sph','g--'),('z_sph_half','b-.'))}
plot.labels={'z_sph':'z_{sph}' , 'v_sph':'v_{sph}' , 'z_sph_half':'$z_{sph}/2$'}

0.0 0.5 1.0 1.5 2.0
1.4

1.5

1.6

1.7

1.8

1.9

2.0

z s
p
h

zsph

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v s
p
h
,z
sp
h
/
2

vsph

zsph/2

Figure 3.8: Figure generated by examples/simple-scene/simple-scene-plot.py, with TeX labels.

Greek letters are simply a 'α', 'β' etc. in those labels. To change the font style a
following command could be used:

yade.plot.matplotlib.rc('mathtext', fontset='stixsans')

But this is not part of yade, but a part of matplotlib, and if you want something more complex you really
should have a look at matplotlib users manual http://matplotlib.sourceforge.net/users/index.html

Multiple figures

Since plot.plots is a dictionary, multiple entries with the same key (x-axis variable) would not be possible,
since they overwrite each other:

Yade [1]: plot.plots={
...: 'i':('t',),
...: 'i':('z1','v1')
...: }
...:

Yade [2]: plot.plots
Out[2]: {'i': ('z1', 'v1')}

You can, however, distinguish them by prepending/appending space to the x-axis variable, which will be
removed automatically when looking for the variable in plot.data – both x-axes will use the i column:

3.2. Controlling simulation 65

https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
http://matplotlib.sourceforge.net/users/index.html

Yade Documentation, Release 1.07.0

Yade [1]: plot.plots={
...: 'i':('t',),
...: 'i ':('z1','v1') # note the space in 'i '
...: }
...:

Yade [2]: plot.plots
Out[2]: {'i': ('t',), 'i ': ('z1', 'v1')}

Split y1 y2 axes

To avoid big range differences on the y axis, it is possible to have left and right y axes separate (like
axes x1y2 in gnuplot). This is achieved by inserting None to the plot specifier; variables coming before
will be plot normally (on the left y-axis), while those after will appear on the right:

plot.plots={'i':('z1',None,'v1')}

Exporting

Plots can be exported to external files for later post-processing via that plot.saveGnuplot function. Note
that all data you added via plot.addData is saved - even data that you don’t plot live during simulation.
By editing the generated .gnuplot file you can plot any of the added Data afterwards.

• Data file is saved (compressed using bzip2) separately from the gnuplot file, so any other programs
can be used to process them. In particular, the numpy.genfromtxt (documented here) can be
useful to import those data back to python; the decompression happens automatically.

• The gnuplot file can be run through gnuplot to produce the figure; see plot.saveGnuplot documen-
tation for details.

3.2.2 Stop conditions

For simulations with pre-determined number of steps, number of steps can be prescribed:
absolute iteration number O.stopAtIter=35466 O.run() O.wait()

or

number of iterations to run from now
O.run(35466,True) # wait=True

causes the simulation to run 35466 iterations, then stopping.
Frequently, decisions have to be made based on evolution of the simulation itself, which is not yet known.
In such case, a function checking some specific condition is called periodically; if the condition is satisfied,
O.pause or other functions can be called to stop the stimulation. See documentation for Omega.run,
Omega.pause, Omega.step, Omega.stopAtIter for details.
For simulations that seek static equilibrium, the unbalancedForce can provide a useful metrics (see its
documentation for details); for a desired value of 1e-2 or less, for instance, we can use:

def checkUnbalanced():
if unbalancedForce<1e-2: O.pause()

O.engines=O.engines+[PyRunner(command="checkUnbalanced()",iterPeriod=100)]

this would work as well, without the function defined apart:
PyRunner(command="if unablancedForce<1e-2: O.pause()",iterPeriod=100)

O.run(); O.wait()
will continue after O.pause() will have been called

66 Chapter 3. User’s manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html

Yade Documentation, Release 1.07.0

Arbitrary functions can be periodically checked, and they can also use history of variables tracked via
plot.addData. For example, this is a simplified version of damage control in examples/concrete/uniax.py;
it stops when current stress is lower than half of the peak stress:

O.engines=[...,
UniaxialStrainer=(...,label='strainer'),
PyRunner(command='myAddData()',iterPeriod=100),
PyRunner(command='stopIfDamaged()',iterPeriod=100)

]

def myAddData():
plot.addData(t=O.time,eps=strainer.strain,sigma=strainer.stress)

def stopIfDamaged():
currSig=plot.data['sigma'][-1] # last sigma value
maxSig=max(plot.data['sigma']) # maximum sigma value
print something in any case, so that we know what is happening
print plot.data['eps'][-1],currSig
if currSig<.5*maxSig:

print "Damaged, stopping"
print 'gnuplot',plot.saveGnuplot(O.tags['id'])
import sys
sys.exit(0)

O.run(); O.wait()
this place is never reached, since we call sys.exit(0) directly

Checkpoints

Occasionally, it is useful to revert to simulation at some past point and continue from it with different
parameters. For instance, tension/compression test will use the same initial state but load it in 2 different
directions. Two functions, Omega.saveTmp and Omega.loadTmp are provided for this purpose; memory
is used as storage medium, which means that saving is faster, and also that the simulation will disappear
when Yade finishes.

O.saveTmp()
do something
O.saveTmp('foo')
O.loadTmp() # loads the first state
O.loadTmp('foo') # loads the second state

Warning: O.loadTmp cannot be called from inside an engine, since before loading a simulation, the
old one must finish the current iteration; it would lead to deadlock, since O.loadTmp would wait for
the current iteration to finish, while the current iteration would be blocked on O.loadTmp.
A special trick must be used: a separate function to be run after the current iteration is defined and
is invoked from an independent thread launched only for that purpose:

O.engines=[...,PyRunner('myFunc()',iterPeriod=345)]

def myFunc():
if someCondition:

import thread
the () are arguments passed to the function
thread.start_new_thread(afterIterFunc,())

def afterIterFunc():
O.pause(); O.wait() # wait till the iteration really finishes
O.loadTmp()

O.saveTmp()
O.run()

3.2. Controlling simulation 67

https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 1.07.0

3.2.3 Remote control

Yade can be controlled remotely over network. At yade startup, the following lines appear, among other
messages:

TCP python prompt on localhost:9000, auth cookie `dcekyu'
TCP info provider on localhost:21000

They inform about 2 ports on which connection of 2 different kind is accepted.

Python prompt

TCP python prompt is telnet server with authenticated connection, providing full python command-line.
It listens on port 9000, or higher if already occupied (by another yade instance, for example).
Using the authentication cookie, connection can be made using telnet:

$ telnet localhost 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Enter auth cookie: dcekyu
__ __ ____ __ _____ ____ ____
\ \ / /_ _| _ \ ___ ___ / / |_ _/ ___| _ \
\ V / _` | | | |/ _ \ / _ \ / / | || | | |_) |
| | (_| | |_| | __/ | (_) / / | || |___| __/
|_|__,_|____/ ___| ___/_/ |_| ____|_|

(connected from 127.0.0.1:40372)
>>>

The python pseudo-prompt >>> lets you write commands to manipulate simulation in variety of ways as
usual. Two things to notice:

1. The new python interpreter (>>>) lives in a namespace separate from Yade [1]: command-line.
For your convenience, from yade import * is run in the new python instance first, but local and
global variables are not accessible (only builtins are).

2. The (fake) >>> interpreter does not have rich interactive feature of IPython, which handles the
usual command-line Yade [1]:; therefore, you will have no command history, ? help and so on.

Note: By giving access to python interpreter, full control of the system (including reading user’s files)
is possible. For this reason, connection are only allowed from localhost, not over network remotely.
Of course you can log into the system via SSH over network to get remote access.

Warning: Authentication cookie is trivial to crack via bruteforce attack. Although the listener
stalls for 5 seconds after every failed login attempt (and disconnects), the cookie could be guessed by
trial-and-error during very long simulations on a shared computer.

Info provider

TCP Info provider listens at port 21000 (or higher) and returns some basic information about current
simulation upon connection; the connection terminates immediately afterwards. The information is
python dictionary represented as string (serialized) using standard pickle module.
This functionality is used by the batch system (described below) to be informed about individual sim-
ulation progress and estimated times. If you want to access this information yourself, you can study
core/main/yade-batch.in for details.

68 Chapter 3. User’s manual

http://docs.python.org/library/pickle.html
https://github.com/yade/trunk/blob/master/core/main/yade-batch.in

Yade Documentation, Release 1.07.0

3.2.4 Batch queuing and execution (yade-batch)

Yade features light-weight system for running one simulation with different parameters; it handles as-
signment of parameter values to python variables in simulation script, scheduling jobs based on number
of available and required cores and more. The whole batch consists of 2 files:
simulation script regular Yade script, which calls readParamsFromTable to obtain parameters from

parameter table. In order to make the script runnable outside the batch, readParamsFromTable
takes default values of parameters, which might be overridden from the parameter table.
readParamsFromTable knows which parameter file and which line to read by inspecting the PARAM_-
TABLE environment variable, set by the batch system.

parameter table simple text file, each line representing one parameter set. This file is read by read-
ParamsFromTable (using TableParamReader class), called from simulation script, as explained
above. For better reading of the text file you can make use of tabulators, these will be ignored by
readParamsFromTable. Parameters are not restricted to numerical values. You can also make use
of strings by “quoting” them (‘ ‘ may also be used instead of ” ”). This can be useful for nominal
parameters.

The batch can be run as

yade-batch parameters.table simulation.py

and it will intelligently run one simulation for each parameter table line. A minimal example is found in
examples/test/batch/params.table and examples/test/batch/sim.py, another example follows.

Example

Suppose we want to study influence of parameters density and initialVelocity on position of a sphere
falling on fixed box. We create parameter table like this:

description density initialVelocity # first non-empty line are column headings
reference 2400 10
hi_v = 20 # = to use value from previous line
lo_v = 5
comments are allowed
hi_rho 5000 10
blank lines as well:

hi_rho_v = 20
hi_rh0_lo_v = 5

Each line give one combination of these 2 parameters and assigns (which is optional) a description of
this simulation.
In the simulation file, we read parameters from table, at the beginning of the script; each parameter has
default value, which is used if not specified in the parameters file:

readParamsFromTable(
gravity=-9.81,
density=2400,
initialVelocity=20,
noTableOk=True # use default values if not run in batch

)
from yade.params.table import *
print gravity, density, initialVelocity

after the call to readParamsFromTable, corresponding python variables are created in the
yade.params.table module and can be readily used in the script, e.g.

GravityEngine(gravity=(0,0,gravity))

Let us see what happens when running the batch:

3.2. Controlling simulation 69

https://github.com/yade/trunk/blob/master/examples/test/batch/params.table
https://github.com/yade/trunk/blob/master/examples/test/batch/sim.py

Yade Documentation, Release 1.07.0

$ yade-batch batch.table batch.py
Will run `/usr/local/bin/yade-trunk' on `batch.py' with nice value 10, output redirected to `batch.@.log', 4 jobs at a time.
Will use table `batch.table', with available lines 2, 3, 4, 5, 6, 7.
Will use lines 2 (reference), 3 (hi_v), 4 (lo_v), 5 (hi_rho), 6 (hi_rho_v), 7 (hi_rh0_lo_v).
Master process pid 7030

These lines inform us about general batch information: nice level, log file names, how many cores will be
used (4); table name, and line numbers that contain parameters; finally, which lines will be used; master
PID is useful for killing (stopping) the whole batch with the kill command.

Job summary:
#0 (reference/4): PARAM_TABLE=batch.table:2 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice=10 -x batch.py > batch.reference.log 2>&1
#1 (hi_v/4): PARAM_TABLE=batch.table:3 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice=10 -x batch.py > batch.hi_v.log 2>&1
#2 (lo_v/4): PARAM_TABLE=batch.table:4 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice=10 -x batch.py > batch.lo_v.log 2>&1
#3 (hi_rho/4): PARAM_TABLE=batch.table:5 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice=10 -x batch.py > batch.hi_rho.log 2>&1
#4 (hi_rho_v/4): PARAM_TABLE=batch.table:6 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice=10 -x batch.py > batch.hi_rho_v.log 2>&1
#5 (hi_rh0_lo_v/4): PARAM_TABLE=batch.table:7 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --nice=10 -x batch.py > batch.hi_rh0_lo_v.log 2>&1

displays all jobs with command-lines that will be run for each of them. At this moment, the batch starts
to be run.

#0 (reference/4) started on Tue Apr 13 13:59:32 2010
#0 (reference/4) done (exit status 0), duration 00:00:01, log batch.reference.log
#1 (hi_v/4) started on Tue Apr 13 13:59:34 2010
#1 (hi_v/4) done (exit status 0), duration 00:00:01, log batch.hi_v.log
#2 (lo_v/4) started on Tue Apr 13 13:59:35 2010
#2 (lo_v/4) done (exit status 0), duration 00:00:01, log batch.lo_v.log
#3 (hi_rho/4) started on Tue Apr 13 13:59:37 2010
#3 (hi_rho/4) done (exit status 0), duration 00:00:01, log batch.hi_rho.log
#4 (hi_rho_v/4) started on Tue Apr 13 13:59:38 2010
#4 (hi_rho_v/4) done (exit status 0), duration 00:00:01, log batch.hi_rho_v.log
#5 (hi_rh0_lo_v/4) started on Tue Apr 13 13:59:40 2010
#5 (hi_rh0_lo_v/4) done (exit status 0), duration 00:00:01, log batch.hi_rh0_lo_v.log

information about job status changes is being printed, until:

All jobs finished, total time 00:00:08
Log files:
batch.reference.log batch.hi_v.log batch.lo_v.log batch.hi_rho.log batch.hi_rho_v.log batch.hi_rh0_lo_v.log
Bye.

Separating output files from jobs

As one might output data to external files during simulation (using classes such as VTKRecorder, it is
important to name files in such way that they are not overwritten by next (or concurrent) job in the same
batch. A special tag O.tags['id'] is provided for such purposes: it is comprised of date, time and PID,
which makes it always unique (e.g. 20100413T144723p7625); additional advantage is that alphabetical
order of the id tag is also chronological. To add the used parameterset or if set the description of the
job you could add O.tags[’params’] to the filename.
For smaller simulations, prepending all output file names with O.tags['id'] can be sufficient:

saveGnuplot(O.tags['id'])

For larger simulations, it is advisable to create separate directory of that name first, putting all files
inside afterwards:

os.mkdir(O.tags['id'])
O.engines=[

…
VTKRecorder(fileName=O.tags['id']+'/'+'vtk'),
…

70 Chapter 3. User’s manual

http://en.wikipedia.org/wiki/Nice_%28Unix%29
http://en.wikipedia.org/wiki/Process_identifier

Yade Documentation, Release 1.07.0

]
…
O.saveGnuplot(O.tags['id']+'/'+'graph1')

Controlling parallel compuation

Default total number of available cores is determined from /proc/cpuinfo (provided by Linux kernel);
in addition, if OMP_NUM_THREADS environment variable is set, minimum of these two is taken. The
-j/--jobs option can be used to override this number.
By default, each job uses all available cores for itself, which causes jobs to be effectively run in parallel.
Number of cores per job can be globally changed via the --job-threads option.
Table column named !OMP_NUM_THREADS (! prepended to column generally means to assign environment
variable, rather than python variable) controls number of threads for each job separately, if it exists.
If number of cores for a job exceeds total number of cores, warning is issued and only the total number
of cores is used instead.

Merging gnuplot from individual jobs

Frequently, it is desirable to obtain single figure for all jobs in the batch, for comparison purposes.
Somewhat heiristic way for this functionality is provided by the batch system. yade-batch must be run
with the --gnuplot option, specifying some file name that will be used for the merged figure:

yade-trunk --gnuplot merged.gnuplot batch.table batch.py

Data are collected in usual way during the simulation (using plot.addData) and saved to gnuplot file via
plot.saveGnuplot (it creates 2 files: gnuplot command file and compressed data file). The batch system
scans, once the job is finished, log file for line of the form gnuplot [something]. Therefore, in order to
print this magic line we put:

print 'gnuplot',plot.saveGnuplot(O.tags['id'])

and the end of the script (even after waitIfBatch()) , which prints:

gnuplot 20100413T144723p7625.gnuplot

to the output (redirected to log file).
This file itself contains single graph:
At the end, the batch system knows about all gnuplot files and tries to merge them together, by assembling
the merged.gnuplot file.

HTTP overview

While job is running, the batch system presents progress via simple HTTP server running at port 9080,
which can be acessed from regular web browser by requesting the http://localhost:9080 URL. This
page can be accessed remotely over network as well.

3.3 Postprocessing

3.3.1 3d rendering & videos

There are multiple ways to produce a video of simulation:
1. Capture screen output (the 3d rendering window) during the simulation − there are tools available

for that (such as Istanbul or RecordMyDesktop, which are also packaged for most Linux distribu-
tions). The output is “what you see is what you get”, with all the advantages and disadvantages.

3.3. Postprocessing 71

http://live.gnome.org/Istanbul
http://recordmydesktop.sourceforge.net/about.php

Yade Documentation, Release 1.07.0

Figure 3.9: Figure from single job in the batch.

2. Periodic frame snapshot using SnapshotEngine (see examples/bulldozer/bulldozer.py for a full
example):

O.engines=[
#...
SnapshotEngine(iterPeriod=100,fileBase='/tmp/bulldozer-',viewNo=0,label='snapshooter')

]

which will save numbered files like /tmp/bulldozer-0000.png. These files can be processed ex-
ternally (with mencoder and similar tools) or directly with the makeVideo:

makeVideo(frameSpec,out,renameNotOverwrite=True,fps=24,kbps=6000,bps=None)

The video is encoded using the default mencoder codec (mpeg4).
3. Specialized post-processing tools, notably Paraview. This is described in more detail in the follow-

ing section.

Paraview

Saving data during the simulation

Paraview is based on the Visualization Toolkit, which defines formats for saving various types of data.
One of them (with the .vtu extension) can be written by a special engine VTKRecorder. It is added to
the simulation loop:

O.engines=[
...
VTKRecorder(iterPeriod=100,recorders=['spheres','facets','colors'],fileName='/tmp/p1-')

]

72 Chapter 3. User’s manual

https://github.com/yade/trunk/blob/master/examples/bulldozer/bulldozer.py
http://www.mplayerhq.hu
http://www.paraview.org
http://www.vtk.org

Yade Documentation, Release 1.07.0

Figure 3.10: Merged figure from all jobs in the batch. Note that labels are prepended by job description
to make lines distinguishable.

3.3. Postprocessing 73

Yade Documentation, Release 1.07.0

Figure 3.11: Summary page available at port 9080 as batch is processed (updates every 5 seconds
automatically). Possible job statuses are pending, running, done, failed.

74 Chapter 3. User’s manual

Yade Documentation, Release 1.07.0

• iterPeriod determines how often to save simulation data (besides iterPeriod, you can also use
virtPeriod or realPeriod). If the period is too high (and data are saved only few times), the video
will have few frames.

• fileName is the prefix for files being saved. In this case, output files will be named
/tmp/p1-spheres.0.vtu and /tmp/p1-facets.0.vtu, where the number is the number of it-
eration; many files are created, putting them in a separate directory is advisable.

• recorders determines what data to save
exporter.VTKExporter plays a similar role, with the difference that it is more flexible. It will save any
user defined variable associated to the bodies.

Loading data into Paraview

All sets of files (spheres, facets, …) must be opened one-by-one in Paraview. The open dialogue
automatically collapses numbered files in one, making it easy to select all of them:

Click on the “Apply” button in the “Object inspector” sub-window to make loaded objects visible. You
can see tree of displayed objects in the “Pipeline browser”:

Rendering spherical particles. Glyphs Spheres will only appear as points. To make them look

as spheres, you have to add “glyph” to the p1-spheres.* item in the pipeline using the icon.
Then set (in the Object inspector)

• “Glyph type” to Sphere
• “Radius” to 1
• “Scale mode” to Scalar (Scalar is set above to be the radii value saved in the file, therefore spheres

with radius 1 will be scaled by their true radius)
• “Set scale factor” to 1
• optionally uncheck “Mask points” and “Random mode” (they make some particles not to be ren-

dered for performance reasons, controlled by the “Maximum Number of Points”)
After clicking “Apply”, spheres will appear. They will be rendered over the original white points, which
you can disable by clicking on the eye icon next to p1-spheres.* in the Pipeline browser.

3.3. Postprocessing 75

Yade Documentation, Release 1.07.0

76 Chapter 3. User’s manual

Yade Documentation, Release 1.07.0

Rendering spherical particles. PointSprite Another opportunity to display spheres is an using
PointSprite plugin. This technique requires much less RAM in comparison to Glyphs.

• “Tools -> Manage Plugins”
• “PointSprite_Plugin -> Load selected -> Close”
• Load VTU-files
• “Representation -> Point Sprite”
• “Point Sprite -> Scale By -> radii”
• “Edit Radius Transfer Function -> Proportional -> Multiplier = 1.0 -> Close”

Facet transparency If you want to make facet objects transparent, select p1-facets.* in the Pipeline
browser, then go to the Object inspector on the Display tab. Under “Style”, you can set the “Opacity”
value to something smaller than 1.

Animation You can move between frames (snapshots that were saved) via the “Animation” menu.
After setting the view angle, zoom etc to your satisfaction, the animation can be saved with File/Save
animation.

3.3.2 Micro-stress and micro-strain

It is sometimes useful to visualize a DEM simulation through equivalent strain fields or stress fields. This
is possible with TesselationWrapper. This class handles the triangulation of spheres in a scene, build
tesselation on request, and give access to computed quantities: volume, porosity and local deformation for
each sphere. The definition of microstrain and microstress is at the scale of particle-centered subdomains
shown below, as explained in [Catalano2013a] .

Micro-strain

Below is an output of the defToVtk function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble

3.3. Postprocessing 77

Yade Documentation, Release 1.07.0

University, 3SR lab.). The output is visualized with paraview, as explained in the previous section.
Similar results can be generated from simulations:

tt=TriaxialTest()
tt.generate("test.yade")
O.load("test.yade")
O.run(100,True)
TW=TesselationWrapper()
TW.triangulate() #compute regular Delaunay triangulation, don’t construct tesselation
TW.computeVolumes() #will silently tesselate the packing, then compute volume of each Voronoi cell
TW.volume(10) #get volume associated to sphere of id 10
TW.setState(0) #store current positions internaly for later use as the "0" state
O.run(100,True) #make particles move a little (let's hope they will!)
TW.setState(1) #store current positions internaly in the "1" (deformed) state
#Now we can define strain by comparing states 0 and 1, and average them at the particles scale
TW.defToVtk("strain.vtk")

Micro-stress

Stress fields can be generated by combining the volume returned by TesselationWrapper to per-particle
stress given by bodyStressTensors. Since the stress σ from bodyStressTensor implies a division by the
volume Vb of the solid particle, one has to re-normalize it in order to obtain the micro-stress as defined
in [Catalano2013a] (equation 39 therein), i.e. σk = σk × Vk

b/V
k
σ where Vk

σ is the volume assigned to
particle k in the tesselation. For instance:

#"b" being a body
TW=TesselationWrapper()
TW.computeVolumes()
s=bodyStressTensors()
stress = s[b.id]**4.*pi/3.*b.shape.radius**3/TW.volume(b.id)

78 Chapter 3. User’s manual

Yade Documentation, Release 1.07.0

As any other value, the stress can be exported to a vtk file for display in Paraview using ex-
port.VTKExporter.

3.4 Python specialties and tricks

3.4.1 Importing Yade in other Python applications

Yade can be imported in other Python applications. To do so, you need somehow to make yade executable
.py extended. The easiest way is to create a symbolic link, i.e. (suppose your Yade executable file is
called “yade-trunk” and you want make it “yadeimport.py”):

$ cd /path/where/you/want/yadeimport
$ ln -s /path/to/yade/executable/yade-trunk yadeimport.py

Then you need to make your yadeimport.py findable by Python. You can export PYTHONPATH
environment variable, or simply use sys.path directly in Python script:
import sys
sys.path.append('/path/where/you/want/yadeimport')
from yadeimport import *

print Matrix3(1,2,3, 4,5,6, 7,8,9)
print O.bodies
any other Yade code

3.5 Extending Yade

• new particle shape
• new constitutive law

3.6 Troubleshooting

3.6.1 Crashes

It is possible that you encounter crash of Yade, i.e. Yade terminates with error message such as

Segmentation fault (core dumped)

without further explanation. Frequent causes of such conditions are
• program error in Yade itself;
• fatal condition in your particular simulation (such as impossible dispatch);
• problem with graphics card driver.

Try to reproduce the error (run the same script) with debug-enabled version of Yade. Debugger will
be automatically launched at crash, showing backtrace of the code (in this case, we triggered crash by
hand):

Yade [1]: import os,signal
Yade [2]: os.kill(os.getpid(),signal.SIGSEGV)
SIGSEGV/SIGABRT handler called; gdb batch file is `/tmp/yade-YwtfRY/tmp-0'
GNU gdb (GDB) 7.1-ubuntu
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"

3.4. Python specialties and tricks 79

Yade Documentation, Release 1.07.0

and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
[Thread debugging using libthread_db enabled]
[New Thread 0x7f0fb1268710 (LWP 16471)]
[New Thread 0x7f0fb29f2710 (LWP 16470)]
[New Thread 0x7f0fb31f3710 (LWP 16469)]

…

What looks as cryptic message is valuable information for developers to locate source of the bug. In
particular, there is (usually) line <signal handler called>; lines below it are source of the bug (at
least very likely so):

Thread 1 (Thread 0x7f0fcee53700 (LWP 16465)):
#0 0x00007f0fcd8f4f7d in __libc_waitpid (pid=16497, stat_loc=<value optimized out>, options=0) at ../sysdeps/unix/sysv/linux/waitpid.c:41
#1 0x00007f0fcd88c7e9 in do_system (line=<value optimized out>) at ../sysdeps/posix/system.c:149
#2 0x00007f0fcd88cb20 in __libc_system (line=<value optimized out>) at ../sysdeps/posix/system.c:190
#3 0x00007f0fcd0b4b23 in crashHandler (sig=11) at core/main/pyboot.cpp:45
#4 <signal handler called>
#5 0x00007f0fcd87ed57 in kill () at ../sysdeps/unix/syscall-template.S:82
#6 0x000000000051336d in posix_kill (self=<value optimized out>, args=<value optimized out>) at ../Modules/posixmodule.c:4046
#7 0x00000000004a7c5e in call_function (f=Frame 0x1c54620, for file <ipython console>, line 1, in <module> (), throwflag=<value optimized out>) at ../Python/ceval.c:3750
#8 PyEval_EvalFrameEx (f=Frame 0x1c54620, for file <ipython console>, line 1, in <module> (), throwflag=<value optimized out>) at ../Python/ceval.c:2412

If you think this might be error in Yade, file a bug report as explained below. Do not forget to attach full
yade output from terminal, including startup messages and debugger output – select with right mouse
button, with middle button paste the bugreport to a file and attach it. Attach your simulation script as
well.

3.6.2 Reporting bugs

Bugs are general name for defects (functionality shortcomings, misdocumentation, crashes) or feature
requests. They are tracked at http://bugs.launchpad.net/yade.
When reporting a new bug, be as specific as possible; state version of yade you use, system version and
so on, as explained in the above section on crashes.

3.6.3 Getting help

Mailing lists

Yade has two mailing-lists. Both are hosted at http://www.launchpad.net and before posting, you must
register to Launchpad and subscribe to the list by adding yourself to “team” of the same name running
the list.
yade-users@lists.launchpad.net is general help list for Yade users. Add yourself to yade-users team

so that you can post messages. List archive is available.
yade-dev@lists.launchpad.net is for discussions about Yade development; you must be member of

yade-dev team to post. This list is archived as well.
Read How To Ask Questions The Smart Way before posting. Do not forget to state what version of
yade you use (shown when you start yade), what operating system (such as Ubuntu 10.04), and if you
have done any local modifications to source code.

Questions and answers

Launchpad provides interface for giving questions at https://answers.launchpad.net/yade/ which you
can use instead of mailing lists; at the moment, it functionality somewhat overlaps with yade-users, but

80 Chapter 3. User’s manual

http://bugs.launchpad.net/yade
http://www.launchpad.net
mailto:yade-users@lists.launchpad.net
https://launchpad.net/~yade-users
http://www.mail-archive.com/yade-users@lists.launchpad.net/
mailto:yade-dev@lists.launchpad.net
https://launchpad.net/~yade-dev
http://www.mail-archive.com/yade-dev@lists.launchpad.net/
http://catb.org/~esr/faqs/smart-questions.html
https://answers.launchpad.net/yade/

Yade Documentation, Release 1.07.0

has the advantage of tracking whether a particular question has already been answered.

Wiki

http://www.yade-dem.org/wiki/

Private and/or paid support

You might contact developers by their private mail (rather than by mailing list) if you do not want to
disclose details on the mailing list. This is also a suitable method for proposing financial reward for
implementation of a substantial feature that is not yet in Yade – typically, though, we will request this
feature to be part of the public codebase once completed, so that the rest of the community can benefit
from it as well.

3.6. Troubleshooting 81

http://www.yade-dem.org/wiki/

Yade Documentation, Release 1.07.0

82 Chapter 3. User’s manual

Chapter 4

Programmer’s manual

4.1 Build system

Yade uses cmake the cross-platform, open-source build system for managing the build process. It takes
care of configuration, compilation and installation. CMake is used to control the software compilation
process using simple platform and compiler independent configuration files. CMake generates native
makefiles and workspaces that can be used in the compiler environment of your choice.

4.1.1 Building

Yade source tree has the following structure (omiting, doc, examples and scripts which don’t participate
in the build process); we shall call each top-level component module:

core/ ## core simulation building blocks
extra/ ## miscillanea
gui/ ## user interfaces

qt4/ ## graphical user interface based on qt3 and OpenGL
py/ ## python console interface (phased out)

lib/ ## support libraries, not specific to simulations
pkg/ ## simulation-specific files

common/ ## generally useful classes
dem/ ## classes for Discrete Element Method

py/ ## python modules

Header installation

To allow flexibility in source layout, CMAKE will copy (symlink) all headers into flattened structure
within the build directory. First 2 components of the original directory are joind by dash, deeper levels
are discarded (in case of core and extra, only 1 level is used). The following table makes gives a few
examples:

Original header location Included as
core/Scene.hpp <yade/core/Scene.hpp>
lib/base/Logging.hpp <yade/lib-base/Logging.hpp>
lib/serialization/Serializable.hpp <yade/lib-serialization/Serializable.hpp>
pkg/dem/DataClass/SpherePack.hpp <yade/pkg-dem/SpherePack.hpp>
gui/qt3/QtGUI.hpp <yade/gui-qt3/QtGUI.hpp>

It is advised to use #include<yade/module/Class.hpp> style of inclusion rather than
#include"Class.hpp even if you are in the same directory.

83

http://www.cmake.org/

Yade Documentation, Release 1.07.0

Automatic compilation

In the pkg/ directory, situation is different. In order to maximally ease addition of modules to yade, all
*.cpp files are automatically scanned by CMAKE and considered for compilation. Each file may contain
multiple lines that declare features that are necessary for this file to be compiled:

YADE_REQUIRE_FEATURE(vtk);
YADE_REQUIRE_FEATURE(gts);

This file will be compiled only if both vtk and gts features are enabled. Depending on current feature
set, only selection of plugins will be compiled.
It is possible to disable compilation of a file by requiring any non-existent feature, such as:

YADE_REQUIRE_FEATURE(temporarily disabled 345uiysdijkn);

The YADE_REQUIRE_FEATURE macro expands to nothing during actual compilation.

Linking

The order in which modules might depend on each other is given as follows:
mod-
ule

resulting shared library dependencies

lib libyade-support.so can depend on external libraries, may not depend on any
other part of Yade.

core libcore.so yade-support; may depend on external libraries.
pkg libplugins.so core, yade-support
gui libQtGUI.so,

libPythonUI.so
lib, core, pkg

py (many files) lib, core, pkg, external

4.2 Development tools

4.2.1 Integrated Development Environment and other tools

A frequently used IDE is Kdevelop. We recommend using this software for navigating in the sources,
compiling and debugging. Other useful tools for debugging and profiling are Valgrind and KCachegrind.
A series a wiki pages are dedicated to these tools in the development section of the wiki.

4.2.2 Hosting and versioning

The Yade project is kindly hosted at launchpad, which is used for source code, bug tracking, planning,
package downloads and more.
The versioning software used is GIT, for which a short tutorial can be found in a Yade’s wiki pages. GIT
is a distributed revision control system. It is available packaged for all major linux distributions.
The source code is hosted on GitHub , which is periodically imported to Launchpad for building PPA-
packages. The repository can be http-browsed.

4.2.3 Build robot

A build robot hosted at 3SR lab. is tracking souce code changes. Each time a change in the source code
is commited to the main development branch via GIT, the “buildbot” downloads and compiles the new
version, and start a series of tests.
If a compilation error has been introduced, it will be notified to the yade-dev mailing list and to the
commiter, thus helping to fix problems quickly. If the compilation is successfull, the buildbot starts

84 Chapter 4. Programmer’s manual

https://yade-dem.org/wiki/Yade#Development
https://launchpad.net/yade/
http://git-scm.com/
https://www.yade-dem.org/wiki/Yade_on_github
https://github.com/yade/
https://github.com/yade/trunk
http://www.3s-r.hmg.inpg.fr/3sr/?lang=en

Yade Documentation, Release 1.07.0

unit regression tests and “check tests” (see below) and report the results. If all tests are passed, a new
version of the documentation is generated and uploaded to the website in html and pdf formats. As a
consequence, those two links always point to the documentation (the one you are reading now) of the last
successfull build, and the delay between commits and documentation updates are very short (minutes).
The buildbot activity and logs can be browsed online.

4.2.4 Regression tests

Yade contains two types of regression tests, some are unit tests while others are testing more complex
simulations. Altough both types can be considered regression tests, the usage is that we name the first
simply “regression tests”, while the latest are called “check tests”. Both series of tests can be ran at yade
startup by passing the options “test” or “check”

yade --test
yade --check

Unit regression tests

Unit regression tests are testing the output of individual functors and engines in well defined conditions.
They are defined in the folder py/tests/. The purpose of unit testing is to make sure that the behaviour
of the most important classes remains correct during code development. Since they test classes one by
one, unit tests can’t detect problems coming from the interaction between different engines in a typical
simulation. That is why check tests have been introduced.

Check tests

Check tests perform comparisons of simulation results between different versions of yade, as discussed
here. They differ with regression tests in the sense that they simulate more complex situations and
combinations of different engines, and usually don’t have a mathematical proof (though there is no
restriction on the latest). They compare the values obtained in version N with values obtained in a
previous version or any other “expected” results. The reference values must be hardcoded in the script
itself or in data files provided with the script. Check tests are based on regular yade scripts, so that users
can easily commit their own scripts to trunk in order to get some automatized testing after commits
from other developers.
Since the check tests history will be mostly based on standard output generated by “yade —check”, a
meaningfull checkTest should include some “print” command telling if something went wrong. If the
script itself fails for some reason and can’t generate an output, the log will contain “scriptName failure”.
If the script defines differences on obtained and awaited data, it should print some useful information
about the problem and increase the value of global variable resultStatus. After this occurs, the automatic
test will stop the execution with error message.
An example check test can be found in checkTestTriax.py. It shows results comparison, output, and
how to define the path to data files using “checksPath”. Users are encouraged to add their own scripts
into the scripts/test/checks/ folder. Discussion of some specific checktests design in users question is
welcome. Note that re-compiling is required before that added scripts can be launched by “yade —check”
(or direct changes have to be performed in “lib” subfolders). A check test should never need more than
a few seconds to run. If your typical script needs more, try and reduce the number of element or the
number of steps.

4.3 Conventions

The following rules that should be respected; documentation is treated separately.
• general

4.3. Conventions 85

https://www.yade-dem.org/doc/
https://yade-dem.org/doc/Yade.pdf
https://yade-dem.org/buildbot/
https://github.com/yade/trunk/blob/master/py/tests/
http://www.mail-archive.com/yade-dev@lists.launchpad.net/msg05784.html

Yade Documentation, Release 1.07.0

– C++ source files have .hpp and .cpp extensions (for headers and implementation, respec-
tively).

– All header files should have the #pragma once multiple-inclusion guard.
– Try to avoid using namespace … in header files.
– Use tabs for indentation. While this is merely visual in c++, it has semantic meaning in

python; inadverently mixing tabs and spaces can result in syntax errors.
• capitalization style

– Types should be always capitalized. Use CamelCase for composed names (GlobalEngine).
Underscores should be used only in special cases, such as functor names.

– Class data members and methods must not be capitalized, composed names should use use
lowercased camelCase (glutSlices). The same applies for functions in python modules.

– Preprocessor macros are uppercase, separated by underscores; those that are used outside the
core take (with exceptions) the form YADE_*, such as YADE_CLASS_BASE_DOC_* macro
family.

• programming style
– Be defensive, if it has no significant performance impact. Use assertions abundantly: they

don’t affect performance (in the optimized build) and make spotting error conditions much
easier.

– Use YADE_CAST and YADE_PTR_CAST where you want type-check during debug builds, but fast
casting in optimized build.

– Initialize all class variables in the default constructor. This avoids bugs that may manifest
randomly and are difficult to fix. Initializing with NaN’s will help you find otherwise unitialized
variable. (This is taken care of by YADE_CLASS_BASE_DOC_* macro family macros for
user classes)

4.3.1 Class naming

Although for historial reasons the naming scheme is not completely consistent, these rules should be
obeyed especially when adding a new class.
GlobalEngines and PartialEngines GlobalEngines should be named in a way suggesting that it is

a performer of certain action (like ForceResetter, InsertionSortCollider, Recorder); if this is not
appropriate, append the Engine to the characteristics (GravityEngine). PartialEngines have no
special naming convention different from GlobalEngines.

Dispatchers Names of all dispatchers end in Dispatcher. The name is composed of type it creates or,
in case it doesn’t create any objects, its main characteristics. Currently, the following dispatchers
1 are defined:

dispatcher arity dispatch types created type functor type functor prefix
BoundDispatcher 1 Shape Bound BoundFunctor Bo1
IGeomDispatcher 2 (symetric) 2 × Shape IGeom IGeomFunctor Ig2
IPhysDispatcher 2 (symetric) 2 × Material IPhys IPhysFunctor Ip2
LawDispatcher 2 (asymetric) IGeom IPhys (none) LawFunctor Law2

Respective abstract functors for each dispatchers are BoundFunctor, IGeomFunctor, IPhys-
Functor and LawFunctor.

Functors Functor name is composed of 3 parts, separated by underscore.
1. prefix, composed of abbreviated functor type and arity (see table above)
2. Types entering the dispatcher logic (1 for unary and 2 for binary functors)
3. Return type for functors that create instances, simple characteristics for functors that don’t

create instances.
1 Not considering OpenGL dispatchers, which might be replaced by regular virtual functions in the future.

86 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

To give a few examples:
• Bo1_Sphere_Aabb is a BoundFunctor which is called for Sphere, creating an instance of

Aabb.
• Ig2_Facet_Sphere_ScGeom is binary functor called for Facet and Sphere, creating and instace

of ScGeom.
• Law2_ScGeom_CpmPhys_Cpm is binary functor (LawFunctor) called for types ScGeom

(Geom) and CpmPhys.

4.3.2 Documentation

Documenting code properly is one of the most important aspects of sustained development.
Read it again.
Most code in research software like Yade is not only used, but also read, by developers or even by regular
users. Therefore, when adding new class, always mention the following in the documentation:

• purpose
• details of the functionality, unless obvious (algorithms, internal logic)
• limitations (by design, by implementation), bugs
• bibliographical reference, if using non-trivial published algorithms (see below)
• references to other related classes
• hyperlinks to bugs, blueprints, wiki or mailing list about this particular feature.

As much as it is meaningful, you should also
• update any other documentation affected
• provide a simple python script demonstrating the new functionality in scripts/test.

Sphinx documentation

Most c++ classes are wrapped in Python, which provides good introspection and interactive documen-
tation (try writing Material? in the ipython prompt; or help(CpmState)).
Syntax of documentation is ReST (reStructuredText, see reStructuredText Primer). It is the same for
c++ and python code.

• Documentation of c++ classes exposed to python is given as 3rd argument to YADE_CLASS_-
BASE_DOC_* macro family introduced below.

• Python classes/functions are documented using regular python docstrings. Besides explaining
functionality, meaning and types of all arguments should also be documented. Short pieces of code
might be very helpful. See the utils module for an example.

In addition to standard ReST syntax, yade provides several shorthand macros:
:yref: creates hyperlink to referenced term, for instance:

:yref:`CpmMat`

becomes CpmMat; link name and target can be different:

:yref:`Material used in the CPM model<CpmMat>`

yielding Material used in the CPM model.
:ysrc: creates hyperlink to file within the source tree (to its latest version in the repository), for instance

core/Cell.hpp. Just like with :yref:, alternate text can be used with

:ysrc:`Link text<target/file>`

4.3. Conventions 87

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/rest.html
https://github.com/yade/trunk/blob/master/core/Cell.hpp

Yade Documentation, Release 1.07.0

like this.
|ycomp| is used in attribute description for those that should not be provided by the used, but are

auto-computed instead; |ycomp| expands to (auto-computed).
|yupdate| marks attributes that are periodically update, being subset of the previous. |yupdate|

expands to (auto-updated).
$...$ delimits inline math expressions; they will be replaced by:

:math:`...`

and rendered via LaTeX. To write a single dollar sign, escape it with backslash \$.
Displayed mathematics (standalone equations) can be inserted as explained in Math support in
Sphinx.

Bibliographical references

As in any scientific documentation, references to publications are very important. To cite an article,
add it to BibTeX file in doc/references.bib, using the BibTeX format. Please adhere to the following
conventions:

1. Keep entries in the form Author2008 (Author is the first author), Author2008b etc if multiple
articles from one author;

2. Try to fill mandatory fields for given type of citation;
3. Do not use \'{i} funny escapes for accents, since they will not work with the HTML output; put

everything in straight utf-8.
In your docstring, the Author2008 article can be cited by [Author2008]_; for example:

According to [Allen1989]_, the integration scheme …

will be rendered as
According to [Allen1989], the integration scheme …

Separate class/function documentation

Some c++ might have long or content-rich documentation, which is rather inconvenient to type in the
c++ source itself as string literals. Yade provides a way to write documentation separately in py/_-
extraDocs.py file: it is executed after loading c++ plugins and can set __doc__ attribute of any object
directly, overwriting docstring from c++. In such (exceptional) cases:

1. Provide at least a brief description of the class in the c++ code nevertheless, for people only reading
the code.

2. Add notice saying “This class is documented in detail in the py/_extraDocs.py file”.
3. Add documentation to py/_etraDocs.py in this way:

module.YourClass.__doc__='''
This is the docstring for YourClass.

Class, methods and functions can be documented this way.

.. note:: It can use any syntax features you like.

'''

Note: Boost::python embeds function signatures in the docstring (before the one provided by the user).
Therefore, before creating separate documentation of your function, have a look at its __doc__ attribute
and copy the first line (and the blank lie afterwards) in the separate docstring. The first line is then
used to create the function signature (arguments and return value).

88 Chapter 4. Programmer’s manual

https://github.com/yade/trunk/blob/master/core/Cell.hpp
http://sphinx.pocoo.org/ext/math.html
http://sphinx.pocoo.org/ext/math.html
https://github.com/yade/trunk/blob/master/doc/references.bib
http://en.wikipedia.org/wiki/Bibtex#Entry_Types
https://github.com/yade/trunk/blob/master/py/_extraDocs.py
https://github.com/yade/trunk/blob/master/py/_extraDocs.py
https://github.com/yade/trunk/blob/master/py/_extraDocs.py
https://github.com/yade/trunk/blob/master/py/_etraDocs.py

Yade Documentation, Release 1.07.0

Internal c++ documentation

doxygen was used for automatic generation of c++ code. Since user-visible classes are defined with
sphinx now, it is not meaningful to use doxygen to generate overall documentation. However, take
care to document well internal parts of code using regular comments, including public and private data
members.

4.4 Support framework

Besides the framework provided by the c++ standard library (including STL), boost and other depen-
dencies, yade provides its own specific services.

4.4.1 Pointers

Shared pointers

Yade makes extensive use of shared pointers shared_ptr. 2 Although it probably has some performance
impacts, it greatly simplifies memory management, ownership management of c++ objects in python
and so forth. To obtain raw pointer from a shared_ptr, use its get() method; raw pointers should be
used in case the object will be used only for short time (during a function call, for instance) and not
stored anywhere.
Python defines thin wrappers for most c++ Yade classes (for all those registered with YADE_CLASS_-
BASE_DOC_* macro family and several others), which can be constructed from shared_ptr; in this
way, Python reference counting blends with the shared_ptr reference counting model, preventing crashes
due to python objects pointing to c++ objects that were destructed in the meantime.

Typecasting

Frequently, pointers have to be typecast; there is choice between static and dynamic casting.
• dynamic_cast (dynamic_pointer_cast for a shared_ptr) assures cast admissibility by checking

runtime type of its argument and returns NULL if the cast is invalid; such check obviously costs
time. Invalid cast is easily caught by checking whether the pointer is NULL or not; even if such
check (e.g. assert) is absent, dereferencing NULL pointer is easily spotted from the stacktrace
(debugger output) after crash. Moreover, shared_ptr checks that the pointer is non-NULL before
dereferencing in debug build and aborts with “Assertion ‘px!=0’ failed.” if the check fails.

• static_cast is fast but potentially dangerous (static_pointer_cast for shared_ptr). Static
cast will return non-NULL pointer even if types don’t allow the cast (such as casting from State*
to Material*); the consequence of such cast is interpreting garbage data as instance of the class
cast to, leading very likely to invalid memory access (segmentation fault, “crash” for short).

To have both speed and safety, Yade provides 2 macros:
YADE_CAST expands to static_cast in optimized builds and to dynamic_cast in debug builds.
YADE_PTR_CAST expands to static_pointer_cast in optimized builds and to dynamic_pointer_cast

in debug builds.

4.4.2 Basic numerics

The floating point type to use in Yade Real, which is by default typedef for double. 3

2 Either boost::shared_ptr or tr1::shared_ptr is used, but it is always imported with the using statement so that
unqualified shared_ptr can be used.

3 Historically, it was thought that Yade could be also run with single precision based on build-time parameter; it turned
out however that the impact on numerical stability was such disastrous that this option is not available now. There is,
however, QUAD_PRECISION parameter to scons, which will make Real a typedef for long double (extended precision; quad

4.4. Support framework 89

http://www.doxygen.org

Yade Documentation, Release 1.07.0

Yade uses the Eigen library for computations. It provides classes for 2d and 3d vectors, quaternions and
3x3 matrices templated by number type; their specialization for the Real type are typedef’ed with the
“r” suffix, and occasionally useful integer types with the “i” suffix:

• Vector2r, Vector2i
• Vector3r, Vector3i
• Quaternionr

• Matrix3r

Yade additionally defines a class named Se3r, which contains spatial position (Vector3r
Se3r::position) and orientation (Quaternionr Se3r::orientation), since they are frequently used
one with another, and it is convenient to pass them as single parameter to functions.
Eigen provides full rich linear algebra functionality. Some code firther uses the [cgal] library for compu-
tational geometry.
In Python, basic numeric types are wrapped and imported from the minieigen module; the types drop
the r type qualifier at the end, the syntax is otherwise similar. Se3r is not wrapped at all, only converted
automatically, rarely as it is needed, from/to a (Vector3,Quaternion) tuple/list.

cross product
Yade [2]: Vector3(1,2,3).cross(Vector3(0,0,1))
Out[2]: Vector3(2,-1,0)

construct quaternion from axis and angle
Yade [3]: Quaternion(Vector3(0,0,1),pi/2)
Out[3]: Quaternion((0,0,1),1.5707963267948966)

Note: Quaternions are internally stored as 4 numbers. Their usual human-readable representation
is, however, (normalized) axis and angle of rotation around that axis, and it is also how they are
input/output in Python. Raw internal values can be accessed using the [0] … [3] element access (or
.W(), .X(), .Y() and .Z() methods), in both c++ and Python.

4.4.3 Run-time type identification (RTTI)

Since serialization and dispatchers need extended type and inheritance information, which is not suffi-
ciently provided by standard RTTI. Each yade class is therefore derived from Factorable and it must
use macro to override its virtual functions providing this extended RTTI:
YADE_CLASS_BASE_DOC(Foo,Bar Baz,"Docstring) creates the following virtual methods (mediated via
the REGISTER_CLASS_AND_BASE macro, which is not user-visible and should not be used directly):

• std::string getClassName() returning class name (Foo) as string. (There is the
typeid(instanceOrType).name() standard c++ construct, but the name returned is compiler-
dependent.)

• unsigned getBaseClassNumber() returning number of base classes (in this case, 2).
• std::string getBaseClassName(unsigned i=0) returning name of i-th base class (here, Bar for

i=0 and Baz for i=1).

Warning: RTTI relies on virtual functions; in order for virtual functions to work, at least one virtual
method must be present in the implementation (.cpp) file. Otherwise, virtual method table (vtable)
will not be generated for this class by the compiler, preventing virtual methods from functioning
properly.

Some RTTI information can be accessed from python:

precision in the proper sense on IA64 processors); this option is experimental and is unlikely to be used in near future,
though.

90 Chapter 4. Programmer’s manual

http://eigen.tuxfamily.org

Yade Documentation, Release 1.07.0

Yade [2]: yade.system.childClasses('Shape')
Out[2]:

{'Box',
'ChainedCylinder',
'Clump',
'Cylinder',
'Facet',
'GridConnection',
'GridNode',
'Polyhedra',
'Sphere',
'Tetra',
'Wall'}

Yade [3]: Sphere().name ## getClassName()

AttributeError Traceback (most recent call last)
/tmp/buildd/yade-1.07.0/debian/tmp/usr/lib/x86_64-linux-gnu/yade/py/yade/__init__.py in <module>()
----> 1 Sphere().name ## getClassName()

AttributeError: 'Sphere' object has no attribute 'name'

4.4.4 Serialization

Serialization serves to save simulation to file and restore it later. This process has several necessary
conditions:

• classes know which attributes (data members) they have and what are their names (as strings);
• creating class instances based solely on its name;
• knowing what classes are defined inside a particular shared library (plugin).

This functionality is provided by 3 macros and 4 optional methods; details are provided below.
Serializable::preLoad, Serializable::preSave, Serializable::postLoad, Serializable::postSave

Prepare attributes before serialization (saving) or deserialization (loading) or process them after
serialization or deserialization.
See Attribute registration.

YADE_CLASS_BASE_DOC_* Inside the class declaration (i.e. in the .hpp file within the class Foo { /*
… */}; block). See Attribute registration.
Enumerate class attributes that should be saved and loaded; associate each attribute with its literal
name, which can be used to retrieve it. See YADE_CLASS_BASE_DOC_* macro family.
Additionally documents the class in python, adds methods for attribute access from python, and
documents each attribute.

REGISTER_SERIALIZABLE In header file, but after the class declaration block. See Class factory.
Associate literal name of the class with functions that will create its new instance (ClassFactory).

YADE_PLUGIN In the implementation .cpp file. See Plugin registration.
Declare what classes are declared inside a particular plugin at time the plugin is being loaded (yade
startup).

Attribute registration

All (serializable) types in Yade are one of the following:
• Type deriving from Serializable, which provide information on how to serialize themselves via over-

riding the Serializable::registerAttributes method; it declares data members that should
be serialzed along with their literal names, by which they are identified. This method then invokes

4.4. Support framework 91

Yade Documentation, Release 1.07.0

registerAttributes of its base class (until Serializable itself is reached); in this way, derived
classes properly serialize data of their base classes.
This funcionality is hidden behind the macro YADE_CLASS_BASE_DOC_* macro family used
in class declaration body (header file), which takes base class and list of attributes:

YADE_CLASS_BASE_DOC_ATTRS(ThisClass,BaseClass,"class documentation",((type1,attribute1,initValue1,,"Documentation for attribute 1"))((type2,attribute2,initValue2,,"Documentation for attribute 2"));

Note that attributes are encodes in double parentheses, not separated by com-
mas. Empty attribute list can be given simply by YADE_CLASS_BASE_DOC_-
ATTRS(ThisClass,BaseClass,"documentation",) (the last comma is mandatory), or by
omiting ATTRS from macro name and last parameter altogether.

• Fundamental type: strings, various number types, booleans, Vector3r and others. Their “handlers”
(serializers and deserializers) are defined in lib/serialization.

• Standard container of any serializable objects.
• Shared pointer to serializable object.

Yade uses the excellent boost::serialization library internally for serialization of data.

Note: YADE_CLASS_BASE_DOC_ATTRS also generates code for attribute access from python; this will
be discussed later. Since this macro serves both purposes, the consequence is that attributes that are
serialized can always be accessed from python.

Yade also provides callback for before/after (de) serialization, virtual functions Serializ-
able::preProcessAttributes and Serializable::postProcessAttributes, which receive one bool
deserializing argument (true when deserializing, false when serializing). Their default im-
plementation in Serializable doesn’t do anything, but their typical use is:

• converting some non-serializable internal data structure of the class (such as multi-dimensional
array, hash table, array of pointers) into a serializable one (pre-processing) and fill this non-
serializable structure back after deserialization (post-processing); for instance, InteractionCon-
tainer uses these hooks to ask its concrete implementation to store its contents to a unified storage
(vector<shared_ptr<Interaction> >) before serialization and to restore from it after deserial-
ization.

• precomputing non-serialized attributes from the serialized values; e.g. Facet computes its (local)
edge normals and edge lengths from vertices’ coordinates.

Class factory

Each serializable class must use REGISTER_SERIALIZABLE, which defines function to create that class by
ClassFactory. ClassFactory is able to instantiate a class given its name (as string), which is necessary
for deserialization.
Although mostly used internally by the serialization framework, programmer can ask for a class instanti-
ation using shared_ptr<Factorable> f=ClassFactory::instance().createShared("ClassName");,
casting the returned shared_ptr<Factorable> to desired type afterwards. Serializable itself derives
from Factorable, i.e. all serializable types are also factorable (It is possible that different mechanism
will be in place if boost::serialization is used, though.)

Plugin registration

Yade loads dynamic libraries containing all its functionality at startup. ClassFactory must be taught
about classes each particular file provides. YADE_PLUGIN serves this purpose and, contrary to YADE_-
CLASS_BASE_DOC_* macro family, must be place in the implementation (.cpp) file. It simple enu-
merates classes that are provided by this file:

YADE_PLUGIN((ClassFoo)(ClassBar));

92 Chapter 4. Programmer’s manual

http://www.boost.org/doc/libs/release/libs/serialization/

Yade Documentation, Release 1.07.0

Note: You must use parentheses around the class name even if there is only one (preprocessor limita-
tion): YADE_PLUGIN((classFoo));. If there is no class in this file, do not use this macro at all.

Internally, this macro creates function registerThisPluginClasses_ declared specially as __-
attribute__((constructor)) (see GCC Function Attributes); this attributes makes the function being
executed when the plugin is loaded via dlopen from ClassFactory::load(...). It registers all fac-
torable classes from that file in the Class factory.

Note: Classes that do not derive from Factorable, such as Shop or SpherePack, are not declared with
YADE_PLUGIN.

This is an example of a serializable class header:

/*! Homogeneous gravity field; applies gravity×mass force on all bodies. */
class GravityEngine: public GlobalEngine{

public:
virtual void action();

// registering class and its base for the RTTI system
YADE_CLASS_BASE_DOC_ATTRS(GravityEngine,GlobalEngine,

// documentation visible from python and generated reference documentation
"Homogeneous gravity field; applies gravity×mass force on all bodies.",
// enumerating attributes here, include documentation
((Vector3r,gravity,Vector3r::ZERO,"acceleration, zero by default [kgms−²]"))

);
};
// registration function for ClassFactory
REGISTER_SERIALIZABLE(GravityEngine);

and this is the implementation:

#include<yade/pkg-common/GravityEngine.hpp>
#include<yade/core/Scene.hpp>

// registering the plugin
YADE_PLUGIN((GravityEngine));

void GravityEngine::action(){
/* do the work here */

}

We can create a mini-simulation (with only one GravityEngine):

Yade [1]: O.engines=[GravityEngine(gravity=Vector3(0,0,-9.81))]

Yade [2]: O.save('abc.xml')

and the XML looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<!DOCTYPE boost_serialization>
<boost_serialization signature="serialization::archive" version="10">
<scene class_id="0" tracking_level="0" version="1">

<px class_id="1" tracking_level="1" version="0" object_id="_0">
<Serializable class_id="2" tracking_level="1" version="0" object_id="_1"></Serializable>
<dt>1e-08</dt>
<iter>0</iter>
<subStepping>0</subStepping>
<subStep>-1</subStep>
<time>0</time>
<speed>0</speed>
<stopAtIter>0</stopAtIter>

4.4. Support framework 93

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

Yade Documentation, Release 1.07.0

<stopAtTime>0</stopAtTime>
<isPeriodic>0</isPeriodic>
<trackEnergy>0</trackEnergy>
<doSort>0</doSort>
<runInternalConsistencyChecks>1</runInternalConsistencyChecks>
<selectedBody>-1</selectedBody>
<flags>0</flags>
<tags class_id="3" tracking_level="0" version="0">

<count>5</count>
<item_version>0</item_version>
<item>author=root~(root@imfd7036)</item>
<item>isoTime=20140120T110950</item>
<item>id=20140120T110950p3453</item>
<item>d.id=20140120T110950p3453</item>
<item>id.d=20140120T110950p3453</item>

</tags>
<engines class_id="4" tracking_level="0" version="0">

<count>1</count>
<item_version>1</item_version>
<item class_id="5" tracking_level="0" version="1">

<px class_id="7" class_name="GravityEngine" tracking_level="1" version="0" object_id="_2">
<FieldApplier class_id="8" tracking_level="1" version="0" object_id="_3">

<GlobalEngine class_id="9" tracking_level="1" version="0" object_id="_4">
<Engine class_id="6" tracking_level="1" version="0" object_id="_5">

<Serializable object_id="_6"></Serializable>
<dead>0</dead>
<ompThreads>-1</ompThreads>
<label></label>

</Engine>
</GlobalEngine>

</FieldApplier>
<gravity class_id="10" tracking_level="0" version="0">

<x>0</x>
<y>0</y>
<z>-9.8100000000000005</z>

</gravity>
<mask>0</mask>
<warnOnce>1</warnOnce>

</px>
</item>

</engines>
<_nextEngines>

<count>0</count>
<item_version>1</item_version>

</_nextEngines>
<bodies class_id="11" tracking_level="0" version="1">

<px class_id="12" tracking_level="1" version="0" object_id="_7">
<Serializable object_id="_8"></Serializable>
<body class_id="13" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

</body>
</px>

</bodies>
<interactions class_id="14" tracking_level="0" version="1">

<px class_id="15" tracking_level="1" version="0" object_id="_9">
<Serializable object_id="_10"></Serializable>
<interaction class_id="16" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

</interaction>
<serializeSorted>0</serializeSorted>
<dirty>1</dirty>

94 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

</px>
</interactions>
<energy class_id="17" tracking_level="0" version="1">

<px class_id="18" tracking_level="1" version="0" object_id="_11">
<Serializable object_id="_12"></Serializable>
<energies class_id="19" tracking_level="0" version="0">

<size>0</size>
</energies>
<names class_id="20" tracking_level="0" version="0">

<count>0</count>
<item_version>0</item_version>

</names>
<resetStep>

<count>0</count>
</resetStep>

</px>
</energy>
<materials class_id="22" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

</materials>
<bound class_id="23" tracking_level="0" version="1">

<px class_id="-1"></px>
</bound>
<cell class_id="25" tracking_level="0" version="1">

<px class_id="26" tracking_level="1" version="0" object_id="_13">
<Serializable object_id="_14"></Serializable>
<trsf class_id="27" tracking_level="0" version="0">

<m00>1</m00>
<m01>0</m01>
<m02>0</m02>
<m10>0</m10>
<m11>1</m11>
<m12>0</m12>
<m20>0</m20>
<m21>0</m21>
<m22>1</m22>

</trsf>
<refHSize>

<m00>1</m00>
<m01>0</m01>
<m02>0</m02>
<m10>0</m10>
<m11>1</m11>
<m12>0</m12>
<m20>0</m20>
<m21>0</m21>
<m22>1</m22>

</refHSize>
<hSize>

<m00>1</m00>
<m01>0</m01>
<m02>0</m02>
<m10>0</m10>
<m11>1</m11>
<m12>0</m12>
<m20>0</m20>
<m21>0</m21>
<m22>1</m22>

</hSize>
<prevHSize>

<m00>1</m00>
<m01>0</m01>

4.4. Support framework 95

Yade Documentation, Release 1.07.0

<m02>0</m02>
<m10>0</m10>
<m11>1</m11>
<m12>0</m12>
<m20>0</m20>
<m21>0</m21>
<m22>1</m22>

</prevHSize>
<velGrad>

<m00>0</m00>
<m01>0</m01>
<m02>0</m02>
<m10>0</m10>
<m11>0</m11>
<m12>0</m12>
<m20>0</m20>
<m21>0</m21>
<m22>0</m22>

</velGrad>
<nextVelGrad>

<m00>0</m00>
<m01>0</m01>
<m02>0</m02>
<m10>0</m10>
<m11>0</m11>
<m12>0</m12>
<m20>0</m20>
<m21>0</m21>
<m22>0</m22>

</nextVelGrad>
<prevVelGrad>

<m00>0</m00>
<m01>0</m01>
<m02>0</m02>
<m10>0</m10>
<m11>0</m11>
<m12>0</m12>
<m20>0</m20>
<m21>0</m21>
<m22>0</m22>

</prevVelGrad>
<homoDeform>1</homoDeform>
<velGradChanged>0</velGradChanged>

</px>
</cell>
<miscParams class_id="28" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

</miscParams>
<dispParams class_id="29" tracking_level="0" version="0">

<count>0</count>
<item_version>1</item_version>

</dispParams>
</px>

</scene>
</boost_serialization>

Warning: Since XML files closely reflect implementation details of Yade, they will not be compatible
between different versions. Use them only for short-term saving of scenes. Python is the high-level
description Yade uses.

96 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

Python attribute access

The macro YADE_CLASS_BASE_DOC_* macro family introduced above is (behind the scenes) also
used to create functions for accessing attributes from Python. As already noted, set of serialized at-
tributes and set of attributes accessible from Python are identical. Besides attribute access, these
wrapper classes imitate also some functionality of regular python dictionaries:

Yade [1]: s=Sphere()

Yade [2]: s.radius ## read-access
Out[2]: nan

Yade [3]: s.radius=4. ## write access

Yade [4]: s.dict().keys() ## show all available keys
Out[4]: ['color', 'highlight', 'wire', 'radius']

Yade [5]: for k in s.dict().keys(): print s.dict()[k] ## iterate over keys, print their values
...:

Vector3(1,1,1)
False
False
4.0

Yade [6]: s.dict()['radius'] ## same as: 'radius' in s.keys()
Out[6]: 4.0

Yade [7]: s.dict() ## show dictionary of both attributes and values
Out[7]: {'color': Vector3(1,1,1), 'highlight': False, 'radius': 4.0, 'wire': False}

4.4.5 YADE_CLASS_BASE_DOC_* macro family

There is several macros that hide behind them the functionality of Sphinx documentation, Run-time type
identification (RTTI), Attribute registration, Python attribute access, plus automatic attribute initializa-
tion and documentation. They are all defined as shorthands for base macro YADE_CLASS_BASE_DOC_-
ATTRS_INIT_CTOR_PY with some arguments left out. They must be placed in class declaration’s body
(.hpp file):

#define YADE_CLASS_BASE_DOC(klass,base,doc) \
YADE_CLASS_BASE_DOC_ATTRS(klass,base,doc,)

#define YADE_CLASS_BASE_DOC_ATTRS(klass,base,doc,attrs) \
YADE_CLASS_BASE_DOC_ATTRS_CTOR(klass,base,doc,attrs,)

#define YADE_CLASS_BASE_DOC_ATTRS_CTOR(klass,base,doc,attrs,ctor) \
YADE_CLASS_BASE_DOC_ATTRS_CTOR_PY(klass,base,doc,attrs,ctor,)

#define YADE_CLASS_BASE_DOC_ATTRS_CTOR_PY(klass,base,doc,attrs,ctor,py) \
YADE_CLASS_BASE_DOC_ATTRS_INIT_CTOR_PY(klass,base,doc,attrs,,ctor,py)

#define YADE_CLASS_BASE_DOC_ATTRS_INIT_CTOR_PY(klass,base,doc,attrs,init,ctor,py) \
YADE_CLASS_BASE_DOC_ATTRS_DEPREC_INIT_CTOR_PY(klass,base,doc,attrs,,init,ctor,py)

Expected parameters are indicated by macro name components separated with underscores. Their mean-
ing is as follows:
klass (unquoted) name of this class (used for RTTI and python)
base (unquoted) name of the base class (used for RTTI and python)
doc docstring of this class, written in the ReST syntax. This docstring will appear in generated docu-

mentation (such as CpmMat). It can be as long as necessary, but sequences interpreted by c++
compiler must be properly escaped (therefore some backslashes must be doubled, like in σ = εE:

":math:`\\sigma=\\epsilon E"

4.4. Support framework 97

Yade Documentation, Release 1.07.0

Use \n and \t for indentation inside the docstring. Hyperlink the documentation abundantly with
yref (all references to other classes should be hyperlinks).
See Sphinx documentation for syntax details.

attrs Attribute must be written in the form of parethesized list:

((type1,attr1,initValue1,attrFlags,"Attribute 1 documentation"))
((type2,attr2,,,"Attribute 2 documentation")) // initValue and attrFlags unspecified

This will expand to
1. data members declaration in c++ (note that all attributes are public):

public: type1 attr1;
type2 attr2;

2. Initializers of the default (argument-less) constructor, for attributes that have non-empty
initValue:

Klass(): attr1(initValue1), attr2() { /* constructor body */ }

No initial value will be assigned for attribute of which initial value is left empty (as
is for attr2 in the above example). Note that you still have to write the commas.

3. Registration of the attribute in the serialization system (unless disabled by attrFlags – see
below)

4. Registration of the attribute in python (unless disabled by attrFlags), so that it can be accessed as klass().name1.
The attribute is read-write by default, see attrFlags to change that.
This attribute will carry the docstring provided, along with knowledge of the initial value.
You can add text description to the default value using the comma operator of c++ and
casting the char* to (void):

((Real,dmgTau,((void)"deactivated if negative",-1),,"Characteristic time for normal viscosity. [s]"))

leading to CpmMat::dmgTau.
The attribute is registered via boost::python::add_property specifying return_by_-
value policy rather than return_internal_reference, which is the default when using
def_readwrite. The reason is that we need to honor custom converters for those values;
see note in Custom converters for details.

Attribute flags
By default, an attribute will be serialized and will be read-write from python. There is a number
of flags that can be passed as the 4th argument (empty by default) to change that:
• Attr::noSave avoids serialization of the attribute (while still keeping its accessibility from

Python)
• Attr::readonly makes the attribute read-only from Python
• Attr::triggerPostLoad will trigger call to postLoad function to handle attribute change

after its value is set from Python; this is to ensure consistency of other precomputed data
which depend on this value (such as Cell.trsf and such)

• Attr::hidden will not expose the attribute to Python at all
• Attr::noResize will not permit changing size of the array from Python [not yet used]

Flags can be combined as usual using bitwise disjunction | (such as Attr::noSave |
Attr::readonly), though in such case the value should be parenthesized to avoid a warning with
some compilers (g++ specifically), i.e. (Attr::noSave | Attr::readonly).

98 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

Currently, the flags logic handled at runtime; that means that even for attributes with
Attr::noSave, their serialization template must be defined (although it will never be used). In
the future, the implementation might be template-based, avoiding this necessity.

deprec List of deprecated attribute names. The syntax is

((oldName1,newName1,"Explanation why renamed etc."))
((oldName2,newName2,"! Explanation why removed and what to do instaed."))

This will make accessing oldName1 attribute from Python return value of newName, but displaying
warning message about the attribute name change, displaying provided explanation. This happens
whether the access is read or write.
If the explanation’s first character is ! (bang), the message will be displayed upon attribute access,
but exception will be thrown immediately. Use this in cases where attribute is no longer meaningful
or was not straightforwardsly replaced by another, but more complex adaptation of user’s script is
needed. You still have to give newName2, although its value will never be used – you can use any
variable you like, but something must be given for syntax reasons).

Warning: Due to compiler limitations, this feature only works if Yade is compiled with gcc >=
4.4. In the contrary case, deprecated attribute functionality is disabled, even if such attributes
are declared.

init Parethesized list of the form:

((attr3,value3)) ((attr4,value4))

which will be expanded to initializers in the default ctor:

Klass(): /* attributes declared with the attrs argument */ attr4(value4), attr5(value5) { /* constructor body */ }

The purpose of this argument is to make it possible to initialize constants and references (which
are not declared as attributes using this macro themselves, but separately), as that cannot be done
in constructor body. This argument is rarely used, though.

ctor will be put directly into the generated constructor’s body. Mostly used for calling createIndex();
in the constructor.

Note: The code must not contain commas ouside parentheses (since preprocessor uses commas
to separate macro arguments). If you need complex things at construction time, create a separate
init() function and call it from the constructor instead.

py will be appeneded directly after generated python code that registers the class and all its attributes.
You can use it to access class methods from python, for instance, to override an existing attribute
with the same name etc:

.def_readonly("omega",&CpmPhys::omega,"Damage internal variable")

.def_readonly("Fn",&CpmPhys::Fn,"Magnitude of normal force.")

def_readonly will not work for custom types (such as std::vector), as it bypasses conversion
registry; see Custom converters for details.

Special python constructors

The Python wrapper automatically create constructor that takes keyword (named) arguments corre-
sponding to instance attributes; those attributes are set to values provided in the constructor. In some
cases, more flexibility is desired (such as InteractionLoop, which takes 3 lists of functors). For such cases,
you can override the function Serializable::pyHandleCustomCtorArgs, which can arbitrarily modify
the new (already existing) instance. It should modify in-place arguments given to it, as they will be
passed further down to the routine which sets attribute values. In such cases, you should document the
constructor:

4.4. Support framework 99

Yade Documentation, Release 1.07.0

.. admonition:: Special constructor

Constructs from lists of …

which then appears in the documentation similar to InteractionLoop.

Static attributes

Some classes (such as OpenGL functors) are instantiated automatically; since we want their attributes
to be persistent throughout the session, they are static. To expose class with static attributes, use the
YADE_CLASS_BASE_DOC_STATICATTRS macro. Attribute syntax is the same as for YADE_CLASS_BASE_-
DOC_ATTRS:

class SomeClass: public BaseClass{
YADE_CLASS_BASE_DOC_STATICATTRS(SomeClass,BaseClass,"Documentation of SomeClass",

((Type1,attr1,default1,"doc for attr1"))
((Type2,attr2,default2,"doc for attr2"))

);
};

additionally, you have to allocate memory for static data members in the .cpp file (otherwise, error
about undefined symbol will appear when the plugin is loaded):
There is no way to expose class that has both static and non-static attributes using YADE_CLASS_BASE_*
macros. You have to expose non-static attributes normally and wrap static attributes separately in the
py parameter.

Returning attribute by value or by reference

When attribute is passed from c++ to python, it can be passed either as
• value: new python object representing the original c++ object is constructed, but not bound to it;

changing the python object doesn’t modify the c++ object, unless explicitly assigned back to it,
where inverse conversion takes place and the c++ object is replaced.

• reference: only reference to the underlying c++ object is given back to python; modifying python
object will make the c++ object modified automatically.

The way of passing attributes given to YADE_CLASS_BASE_DOC_ATTRS in the attrs parameter is deter-
mined automatically in the following manner:

• Vector3, Vector3i, Vector2, Vector2i, Matrix3 and Quaternion objects are passed by reference. For instance::
O.bodies[0].state.pos[0]=1.33

will assign correct value to x component of position, without changing the other ones.
• Yade classes (all that use shared_ptr when declared in python: all classes deriving from Serializable declared with YADE_CLASS_BASE_DOC_*, and some others) are passed as references (technically speaking, they are passed by value of the shared_ptr, but by virtue of its sharedness, they appear as references). For instance::

O.engines[4].damping=.3
will change damping parameter on the original engine object, not on its copy.

• All other types are passed by value. This includes, most importantly, sequence types declared in Custom converters, such as std::vector<shared_ptr<Engine> >. For this reason, ::
O.engines[4]=NewtonIntegrator()

will not work as expected; it will replace 5th element of a copy of the sequence, and this change
will not propagate back to c++.

4.4.6 Multiple dispatch

Multiple dispatch is generalization of virtual methods: a Dispatcher decides based on type(s) of its
argument(s) which of its Functors to call. Numer of arguments (currently 1 or 2) determines arity of the
dispatcher (and of the functor): unary or binary. For example:

100 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()])

creates InsertionSortCollider, which internally contains Collider.boundDispatcher, a BoundDispatcher (a
Dispatcher), with 2 functors; they receive Sphere or Facet instances and create Aabb. This code would
look like this in c++:

shared_ptr<InsertionSortCollider> collider=(new InsertionSortCollider);
collider->boundDispatcher->add(new Bo1_Sphere_Aabb());
collider->boundDispatcher->add(new Bo1_Facet_Aabb());

There are currenly 4 predefined dispatchers (see dispatcher-names) and corresponding functor types.
They are inherit from template instantiations of Dispatcher1D or Dispatcher2D (for functors,
Functor1D or Functor2D). These templates themselves derive from DynlibDispatcher (for dispatch-
ers) and FunctorWrapper (for functors).

Example: IGeomDispatcher

Let’s take (the most complicated perhaps) IGeomDispatcher. IGeomFunctor, which is dispatched based
on types of 2 Shape instances (a Functor), takes a number of arguments and returns bool. The functor
“call” is always provided by its overridden Functor::go method; it always receives the dispatched
instances as first argument(s) (2 × const shared_ptr<Shape>&) and a number of other arguments it
needs:

class IGeomFunctor: public Functor2D<
bool, //return type
TYPELIST_7(const shared_ptr<Shape>&, // 1st class for dispatch

const shared_ptr<Shape>&, // 2nd class for dispatch
const State&, // other arguments passed to ::go
const State&, // …
const Vector3r&, // …
const bool&, // …
const shared_ptr<Interaction>& // …

)
>

The dispatcher is declared as follows:

class IGeomDispatcher: public Dispatcher2D<
Shape, // 1st class for dispatch
Shape, // 2nd class for dispatch
IGeomFunctor, // functor type
bool, // return type of the functor

// follow argument types for functor call
// they must be exactly the same as types
// given to the IGeomFunctor above.
TYPELIST_7(const shared_ptr<Shape>&,

const shared_ptr<Shape>&,
const State&,
const State&,
const Vector3r&,
const bool &,
const shared_ptr<Interaction>&

),

// handle symetry automatically
// (if the dispatcher receives Sphere+Facet,
// the dispatcher might call functor for Facet+Sphere,
// reversing the arguments)
false

>
{ /* … */ }

4.4. Support framework 101

Yade Documentation, Release 1.07.0

Functor derived from IGeomFunctor must then
• override the ::go method with appropriate arguments (they must match exactly types given to

TYPELIST_* macro);
• declare what types they should be dispatched for, and in what order if they are not the same.

class Ig2_Facet_Sphere_ScGeom: public IGeomFunctor{
public:

// override the IGeomFunctor::go
// (it is really inherited from FunctorWrapper template,
// therefore not declare explicitly in the
// IGeomFunctor declaration as such)
// since dispatcher dispatches only for declared types
// (or types derived from them), we can do
// static_cast<Facet>(shape1) and static_cast<Sphere>(shape2)
// in the ::go body, without worrying about types being wrong.
virtual bool go(

// objects for dispatch
const shared_ptr<Shape>& shape1, const shared_ptr<Shape>& shape2,
// other arguments
const State& state1, const State& state2, const Vector3r& shift2,
const bool& force, const shared_ptr<Interaction>& c

);
/* … */

// this declares the type we want to be dispatched for, matching
// first 2 arguments to ::go and first 2 classes in TYPELIST_7 above
// shape1 is a Facet and shape2 is a Sphere
// (or vice versa, see lines below)
FUNCTOR2D(Facet,Sphere);

// declare how to swap the arguments
// so that we can receive those as well
DEFINE_FUNCTOR_ORDER_2D(Facet,Sphere);
/* … */

};

Dispatch resolution

The dispatcher doesn’t always have functors that exactly match the actual types it receives. In the same
way as virtual methods, it tries to find the closest match in such way that:

1. the actual instances are derived types of those the functor accepts, or exactly the accepted types;
2. sum of distances from actual to accepted types is sharp-minimized (each step up in the class

hierarchy counts as 1)
If no functor is able to accept given types (first condition violated) or multiple functors have the same
distance (in condition 2), an exception is thrown.
This resolution mechanism makes it possible, for instance, to have a hierarchy of ScGeom classes (for
different combination of shapes), but only provide a LawFunctor accepting ScGeom, rather than having
different laws for each shape combination.

Note: Performance implications of dispatch resolution are relatively low. The dispatcher lookup is only
done once, and uses fast lookup matrix (1D or 2D); then, the functor found for this type(s) is cached
within the Interaction (or Body) instance. Thus, regular functor call costs the same as dereferencing
pointer and calling virtual method. There is blueprint to avoid virtual function call as well.

Note: At the beginning, the dispatch matrix contains just entries exactly matching given functors.
Only when necessary (by passing other types), appropriate entries are filled in as well.

102 Chapter 4. Programmer’s manual

https://blueprints.launchpad.net/yade/+spec/devirtualize-functor-calls

Yade Documentation, Release 1.07.0

Indexing dispatch types

Classes entering the dispatch mechanism must provide for fast identification of themselves and of their
parent class. 4 This is called class indexing and all such classes derive from Indexable. There are
top-level Indexables (types that the dispatchers accept) and each derived class registers its index
related to this top-level Indexable. Currently, there are:

Top-level Indexable used by
Shape BoundFunctor, IGeomDispatcher
Material IPhysDispatcher
IPhys LawDispatcher
IGeom LawDispatcher

The top-level Indexable must use the REGISTER_INDEX_COUNTER macro, which sets up the machinery
for identifying types of derived classes; they must then use the REGISTER_CLASS_INDEX macro and call
createIndex() in their constructor. For instance, taking the Shape class (which is a top-level Indexable):

// derive from Indexable
class Shape: public Serializable, public Indexable {

// never call createIndex() in the top-level Indexable ctor!
/* … */

// allow index registration for classes deriving from ``Shape``
REGISTER_INDEX_COUNTER(Shape);

};

Now, all derived classes (such as Sphere or Facet) use this:

class Sphere: public Shape{
/* … */
YADE_CLASS_BASE_DOC_ATTRS_CTOR(Sphere,Shape,"docstring",

((Type1,attr1,default1,"docstring1"))
/* … */,
// this is the CTOR argument

// important; assigns index to the class at runtime
createIndex();

);
// register index for this class, and give name of the immediate parent class
// (i.e. if there were a class deriving from Sphere, it would use
// REGISTER_CLASS_INDEX(SpecialSphere,Sphere),
// not REGISTER_CLASS_INDEX(SpecialSphere,Shape)!)
REGISTER_CLASS_INDEX(Sphere,Shape);

};

At runtime, each class within the top-level Indexable hierarchy has its own unique numerical index.
These indices serve to build the dispatch matrix for each dispatcher.

Inspecting dispatch in python

If there is a need to debug/study multiple dispatch, python provides convenient interface for this low-level
functionality.
We can inspect indices with the dispIndex property (note that the top-level indexable Shape has negative
(invalid) class index; we purposively didn’t call createIndex in its constructor):

Yade [1]: Sphere().dispIndex, Facet().dispIndex, Wall().dispIndex
Out[1]: (1, 5, 10)

4 The functionality described in Run-time type identification (RTTI) serves a different purpose (serialization) and would
hurt the performance here. For this reason, classes provide numbers (indices) in addition to strings.

4.4. Support framework 103

Yade Documentation, Release 1.07.0

Yade [2]: Shape().dispIndex # top-level indexable
Out[2]: -1

Dispatch hierarchy for a particular class can be shown with the dispHierarchy() function, returning
list of class names: 0th element is the instance itself, last element is the top-level indexable (again, with
invalid index); for instance:

Yade [1]: ScGeom().dispHierarchy() # parent class of all other ScGeom_ classes
Out[1]: ['ScGeom', 'GenericSpheresContact', 'IGeom']

Yade [2]: ScGridCoGeom().dispHierarchy(), ScGeom6D().dispHierarchy(), CylScGeom().dispHierarchy()
Out[2]:

(['ScGridCoGeom', 'ScGeom6D', 'ScGeom', 'GenericSpheresContact', 'IGeom'],
['ScGeom6D', 'ScGeom', 'GenericSpheresContact', 'IGeom'],
['CylScGeom', 'ScGeom', 'GenericSpheresContact', 'IGeom'])

Yade [3]: CylScGeom().dispHierarchy(names=False) # show numeric indices instead
Out[3]: [4, 1, 0, -1]

Dispatchers can also be inspected, using the .dispMatrix() method:

Yade [1]: ig=IGeomDispatcher([
...: Ig2_Sphere_Sphere_ScGeom(),
...: Ig2_Facet_Sphere_ScGeom(),
...: Ig2_Wall_Sphere_ScGeom()
...:])
...:

Yade [2]: ig.dispMatrix()
Out[2]:

{('Facet', 'Sphere'): 'Ig2_Facet_Sphere_ScGeom',
('Sphere', 'Facet'): 'Ig2_Facet_Sphere_ScGeom',
('Sphere', 'Sphere'): 'Ig2_Sphere_Sphere_ScGeom',
('Sphere', 'Wall'): 'Ig2_Wall_Sphere_ScGeom',
('Wall', 'Sphere'): 'Ig2_Wall_Sphere_ScGeom'}

Yade [3]: ig.dispMatrix(False) # don't convert to class names
Out[3]:

{(1, 1): 'Ig2_Sphere_Sphere_ScGeom',
(1, 5): 'Ig2_Facet_Sphere_ScGeom',
(1, 10): 'Ig2_Wall_Sphere_ScGeom',
(5, 1): 'Ig2_Facet_Sphere_ScGeom',
(10, 1): 'Ig2_Wall_Sphere_ScGeom'}

We can see that functors make use of symmetry (i.e. that Sphere+Wall are dispatched to the same
functor as Wall+Sphere).
Finally, dispatcher can be asked to return functor suitable for given argument(s):

Yade [1]: ld=LawDispatcher([Law2_ScGeom_CpmPhys_Cpm()])

Yade [2]: ld.dispMatrix()
Out[2]: {('GenericSpheresContact', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm'}

see how the entry for ScGridCoGeom will be filled after this request
Yade [3]: ld.dispFunctor(ScGridCoGeom(),CpmPhys())
Out[3]: <Law2_ScGeom_CpmPhys_Cpm instance at 0x13a1b2b0>

Yade [4]: ld.dispMatrix()
Out[4]:

{('GenericSpheresContact', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm',
('ScGridCoGeom', 'CpmPhys'): 'Law2_ScGeom_CpmPhys_Cpm'}

104 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

OpenGL functors

OpenGL rendering is being done also by 1D functors (dispatched for the type to be rendered). Since it
is sufficient to have exactly one class for each rendered type, the functors are found automatically. Their
base functor types are GlShapeFunctor, GlBoundFunctor, GlIGeomFunctor and so on. These classes
register the type they render using the RENDERS macro:

class Gl1_Sphere: public GlShapeFunctor {
public :

virtual void go(const shared_ptr<Shape>&,
const shared_ptr<State>&,
bool wire,
const GLViewInfo&

);
RENDERS(Sphere);
YADE_CLASS_BASE_DOC_STATICATTRS(Gl1_Sphere,GlShapeFunctor,"docstring",

((Type1,staticAttr1,informativeDefault,"docstring"))
/* … */

);
};
REGISTER_SERIALIZABLE(Gl1_Sphere);

You can list available functors of a particular type by querying child classes of the base functor:

Yade [2]: yade.system.childClasses('GlShapeFunctor')
Out[2]:

{'Gl1_Box',
'Gl1_ChainedCylinder',
'Gl1_Cylinder',
'Gl1_Facet',
'Gl1_GridConnection',
'Gl1_Polyhedra',
'Gl1_Sphere',
'Gl1_Tetra',
'Gl1_Wall'}

Note: OpenGL functors may disappear in the future, being replaced by virtual functions of each class
that can be rendered.

4.4.7 Parallel execution

Yade was originally not designed with parallel computation in mind, but rather with maximum flexibility
(for good or for bad). Parallel execution was added later; in order to not have to rewrite whole Yade
from scratch, relatively non-instrusive way of parallelizing was used: OpenMP. OpenMP is standartized
shared-memory parallel execution environment, where parallel sections are marked by special #pragma
in the code (which means that they can compile with compiler that doesn’t support OpenMP) and a few
functions to query/manipulate OpenMP runtime if necessary.
There is parallelism at 3 levels:

• Computation, interaction (python, GUI) and rendering threads are separate. This is done via
regular threads (boost::threads) and is not related to OpenMP.

• ParallelEngine can run multiple engine groups (which are themselves run serially) in parallel; it
rarely finds use in regular simulations, but it could be used for example when coupling with an
independent expensive computation:

ParallelEngine([
[Engine1(),Engine2()], # Engine1 will run before Engine2
[Engine3()] # Engine3() will run in parallel with the group [Engine1(),Engine2()]

arbitrary number of groups can be used
])

4.4. Support framework 105

http://www.openmp.org

Yade Documentation, Release 1.07.0

Engine2 will be run after Engine1, but in parallel with Engine3.

Warning: It is your reponsibility to avoid concurrent access to data when using
ParallelEngine. Make sure you understand very well what the engines run in parallel
do.

• Parallelism inside Engines. Some loops over bodies or interactions are parallelized (notably Inter-
actionLoop and NewtonIntegrator, which are treated in detail later (FIXME: link)):

#pragma omp parallel for
for(long id=0; id<size; id++){

const shared_ptr<Body>& b(scene->bodies[id]);
/* … */

}

Note: OpenMP requires loops over contiguous range of integers (OpenMP 3 also
accepts containers with random-access iterators).

If you consider running parallelized loop in your engine, always evalue its benefits.
OpenMP has some overhead fo creating threads and distributing workload, which is
proportionally more expensive if the loop body execution is fast. The results are highly
hardware-dependent (CPU caches, RAM controller).

Maximum number of OpenMP threads is determined by the OMP_NUM_THREADS environment variable
and is constant throughout the program run. Yade main program also sets this variable (before loading
OpenMP libraries) if you use the -j/--threads option. It can be queried at runtime with the omp_-
get_max_threads function.
At places which are susceptible of being accessed concurrently from multiple threads, Yade provides some
mutual exclusion mechanisms, discussed elsewhere (FIXME):

• simultaneously writeable container for ForceContainer,
• mutex for Body::state.

4.4.8 Timing

Yade provides 2 services for measuring time spent in different pars of the code. One has the granularity
of engine and can be enabled at runtime. The other one is finer, but requires adjusting and recompiling
the code being measured.

Per-engine timing

The coarser timing works by merely accumulating numebr of invocations and time (with the precision
of the clock_gettime function) spent in each engine, which can be then post-processed by associated
Python module yade.timing. There is a static bool variable controlling whether such measurements
take place (disabled by default), which you can change

TimingInfo::enabled=True; // in c++

O.timingEnabled=True ## in python

After running the simulation, yade.timing.stats() function will show table with the results and per-
centages:

Yade [1]: TriaxialTest(numberOfGrains=100).load()

Yade [2]: O.engines[0].label='firstEngine' ## labeled engines will show by labels in the stats table

Yade [3]: import yade.timing;

106 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

Yade [4]: O.timingEnabled=True

Yade [5]: yade.timing.reset() ## not necessary if used for the first time

Yade [6]: O.run(50); O.wait()

Yade [7]: yade.timing.stats()
Name Count Time Rel. time

"firstEngine" 50 104us 0.68%
InsertionSortCollider 28 4869us 31.94%
InteractionLoop 50 7715us 50.61%
GlobalStiffnessTimeStepper 2 93us 0.62%
TriaxialCompressionEngine 50 532us 3.49%
TriaxialStateRecorder 3 251us 1.65%
NewtonIntegrator 50 1677us 11.00%
TOTAL 15244us 100.00%

Exec count and time can be accessed and manipulated through Engine::timingInfo from c++ or
Engine().execCount and Engine().execTime properties in Python.

In-engine and in-functor timing

Timing within engines (and functors) is based on TimingDeltas class. It is made for timing loops
(functors’ loop is in their respective dispatcher) and stores cummulatively time differences between
checkpoints.

Note: Fine timing with TimingDeltas will only work if timing is enabled globally (see previous section).
The code would still run, but giving zero times and exec counts.

1. Engine::timingDeltas must point to an instance of TimingDeltas (prefferably instantiate Tim-
ingDeltas in the constructor):

// header file
class Law2_ScGeom_CpmPhys_Cpm: public LawFunctor {

/* … */
YADE_CLASS_BASE_DOC_ATTRS_CTOR(Law2_ScGeom_CpmPhys_Cpm,LawFunctor,"docstring",

/* attrs */,
/* constructor */
timingDeltas=shared_ptr<TimingDeltas>(new TimingDeltas); // timingDeltas object is automatically initialized when using -DCMAKE_CXX_FLAGS="-DUSE_TIMING_DELTAS" cmake option

);
// ...

};

2. Inside the loop, start the timing by calling timingDeltas->start();

3. At places of interest, call timingDeltas->checkpoint("label"). The label is used only for post-
processing, data are stored based on the checkpoint position, not the label.

Warning: Checkpoints must be always reached in the same order, otherwise the
timing data will be garbage. Your code can still branch, but you have to put check-
points to places which are in common.

void Law2_ScGeom_CpmPhys_Cpm::go(shared_ptr<IGeom>& _geom,
shared_ptr<IPhys>& _phys,
Interaction* I,
Scene* scene)

{
timingDeltas->start(); // the point at which the first timing starts
// prepare some variables etc here
timingDeltas->checkpoint("setup");

4.4. Support framework 107

Yade Documentation, Release 1.07.0

// find geometrical data (deformations) here
timingDeltas->checkpoint("geom");
// compute forces here
timingDeltas->checkpoint("material");
// apply forces, cleanup here
timingDeltas->checkpoint("rest");

}

4. Alternatively, you can compile Yade using -DCMAKE_CXX_FLAGS=”-DUSE_TIMING_DELTAS” cmake option and use predefined macros TIMING_DELTAS_START and TIMING_DELTAS_CHECKPOINT. Without -DUSE_TIMING_DELTAS options, those macros are empty and do nothing.

void Law2_ScGeom_CpmPhys_Cpm::go(shared_ptr<IGeom>& _geom,
shared_ptr<IPhys>& _phys,
Interaction* I,
Scene* scene)

{
TIMING_DELTAS_START();
// prepare some variables etc here
TIMING_DELTAS_CHECKPOINT("setup")
// find geometrical data (deformations) here
TIMING_DELTAS_CHECKPOINT("geom")
// compute forces here
TIMING_DELTAS_CHECKPOINT("material")
// apply forces, cleanup here
TIMING_DELTAS_CHECKPOINT("rest")

}

The output might look like this (note that functors are nested inside dispatchers and TimingDeltas
inside their engine/functor):

Name Count Time Rel. time

ForceReseter 400 9449µs 0.01%
BoundDispatcher 400 1171770µs 1.15%
InsertionSortCollider 400 9433093µs 9.24%
IGeomDispatcher 400 15177607µs 14.87%
IPhysDispatcher 400 9518738µs 9.33%
LawDispatcher 400 64810867µs 63.49%
Law2_ScGeom_CpmPhys_Cpm

setup 4926145 7649131µs 15.25%
geom 4926145 23216292µs 46.28%
material 4926145 8595686µs 17.14%
rest 4926145 10700007µs 21.33%
TOTAL 50161117µs 100.00%

NewtonIntegrator 400 1866816µs 1.83%
"strainer" 400 21589µs 0.02%
"plotDataCollector" 160 64284µs 0.06%
"damageChecker" 9 3272µs 0.00%
TOTAL 102077490µs 100.00%

Warning: Do not use TimingDeltas in parallel sections, results might not be meaningful. In par-
ticular, avoid timing functors inside InteractionLoop when running with multiple OpenMP threads.

TimingDeltas data are accessible from Python as list of (label,*time*,*count*) tuples, one tuple repre-
senting each checkpoint:

deltas=someEngineOrFunctor.timingDeltas.data()
deltas[0][0] # 0th checkpoint label
deltas[0][1] # 0th checkpoint time in nanoseconds
deltas[0][2] # 0th checkpoint execution count
deltas[1][0] # 1st checkpoint label

…
deltas.reset()

108 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

Timing overhead

The overhead of the coarser, per-engine timing, is very small. For simulations with at least several
hundreds of elements, they are below the usual time variance (a few percent).
The finer TimingDeltas timing can have major performance impact and should be only used during
debugging and performance-tuning phase. The parts that are file-timed will take disproportionally
longer time that the rest of engine; in the output presented above, LawDispatcher takes almost 2⁄3 of
total simulation time in average, but the number would be twice of thrice lower typically (note that each
checkpoint was timed almost 5 million times in this particular case).

4.4.9 OpenGL Rendering

Yade provides 3d rendering based on QGLViewer. It is not meant to be full-featured rendering and
post-processing, but rather a way to quickly check that scene is as intended or that simulation behaves
sanely.

Note: Although 3d rendering runs in a separate thread, it has performance impact on the computa-
tion itself, since interaction container requires mutual exclusion for interaction creation/deletion. The
InteractionContainer::drawloopmutex is either held by the renderer (OpenGLRenderingEngine) or
by the insertion/deletion routine.

Warning: There are 2 possible causes of crash, which are not prevented because of serious perfor-
mance penalty that would result:

1. access to BodyContainer, in particular deleting bodies from simulation; this is a rare operation,
though.

2. deleting Interaction::phys or Interaction::geom.

Renderable entities (Shape, State, Bound, IGeom, IPhys) have their associated OpenGL functors. An
entity is rendered if

1. Rendering such entities is enabled by appropriate attribute in OpenGLRenderingEngine
2. Functor for that particular entity type is found via the dispatch mechanism.

Gl1_* functors operating on Body’s attributes (Shape, State, Bound) are called with the OpenGL con-
text translated and rotated according to State::pos and State::ori. Interaction functors work in global
coordinates.

4.5 Simulation framework

Besides the support framework mentioned in the previous section, some functionality pertaining to
simulation itself is also provided.
There are special containers for storing bodies, interactions and (generalized) forces. Their internal func-
tioning is normally opaque to the programmer, but should be understood as it can influence performance.

4.5.1 Scene

Scene is the object containing the whole simulation. Although multiple scenes can be present in the
memory, only one of them is active. Saving and loading (serializing and deserializing) the Scene object
should make the simulation run from the point where it left off.

Note: All Engines and functors have interally a Scene* scene pointer which is updated regularly by
engine/functor callers; this ensures that the current scene can be accessed from within user code.
For outside functions (such as those called from python, or static functions in Shop), you can use
Omega::instance().getScene() to retrieve a shared_ptr<Scene> of the current scene.

4.5. Simulation framework 109

http://www.libqglviewer.com

Yade Documentation, Release 1.07.0

4.5.2 Body container

Body container is linear storage of bodies. Each body in the simulation has its unique id, under which it
must be found in the BodyContainer. Body that is not yet part of the simulation typically has id equal
to invalid value Body::ID_NONE, and will have its id assigned upon insertion into the container. The
requirements on BodyContainer are

• O(1) access to elements,
• linear-addressability (0…n indexability),
• store shared_ptr, not objects themselves,
• no mutual exclusion for insertion/removal (this must be assured by the called, if desired),
• intelligent allocation of id for new bodies (tracking removed bodies),
• easy iteration over all bodies.

Note: Currently, there is “abstract” class BodyContainer, from which derive concrete implementations;
the initial idea was the ability to select at runtime which implementation to use (to find one that performs
the best for given simulation). This incurs the penalty of many virtual function calls, and will probably
change in the future. All implementations of BodyContainer were removed in the meantime, except
BodyVector (internally a vector<shared_ptr<Body> > plus a few methods around), which is the fastest.

Insertion/deletion

Body insertion is typically used in FileGenerator‘s:

shared_ptr<Body> body(new Body);
// … (body setup)
scene->bodies->insert(body); // assigns the id

Bodies are deleted only rarely:

scene->bodies->erase(id);

Warning: Since mutual exclusion is not assured, never insert/erase bodies from parallel sections,
unless you explicitly assure there will be no concurrent access.

Iteration

The container can be iterated over using FOREACH macro (shorthand for BOOST_FOREACH):

FOREACH(const shared_ptr<Body>& b, *scene->bodies){
if(!b) continue; // skip deleted bodies
/* do something here */

}

Note a few important things:
1. Always use const shared_ptr<Body>& (const reference); that avoids incrementing and decrement-

ing the reference count on each shared_ptr.
2. Take care to skip NULL bodies (if(!b) continue): deleted bodies are deallocated from the

container, but since body id’s must be persistent, their place is simply held by an empty shared_-
ptr<Body>() object, which is implicitly convertible to false.

In python, the BodyContainer wrapper also has iteration capabilities; for convenience (which is different
from the c++ iterator), NULL bodies as silently skipped:

110 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

Yade [2]: O.bodies.append([Body(),Body(),Body()])
Out[2]: [0, 1, 2]

Yade [3]: O.bodies.erase(1)
Out[3]: True

Yade [4]: [b.id for b in O.bodies]
Out[4]: [0, 2]

In loops parallelized using OpenMP, the loop must traverse integer interval (rather than using iterators):

const long size=(long)bodies.size(); // store this value, since it doesn't change during the loop
#pragma omp parallel for
for(long _id=0; _id<size; _id++){

const shared_ptr<Body>& b(bodies[_id]);
if(!b) continue;
/* … */

}

4.5.3 InteractionContainer

Interactions are stored in special container, and each interaction must be uniquely identified by pair of
ids (id1,id2).

• O(1) access to elements,
• linear-addressability (0…n indexability),
• store shared_ptr, not objects themselves,
• mutual exclusion for insertion/removal,
• easy iteration over all interactions,
• addressing symmetry, i.e. interaction(id1,id2)�interaction(id2,id1)

Note: As with BodyContainer, there is “abstract” class InteractionContainer, and then its concrete
implementations. Currently, only InteractionVecMap implementation is used and all the other were
removed. Therefore, the abstract InteractionContainer class may disappear in the future, to avoid
unnecessary virtual calls.
Further, there is a blueprint for storing interactions inside bodies, as that would give extra advantage of
quickly getting all interactions of one particular body (currently, this necessitates loop over all interac-
tions); in that case, InteractionContainer would disappear.

Insert/erase

Creating new interactions and deleting them is delicate topic, since many eleents of simulation must be
synchronized; the exact workflow is described in Handling interactions. You will almost certainly never
need to insert/delete an interaction manually from the container; if you do, consider designing your code
differently.

// both insertion and erase are internally protected by a mutex,
// and can be done from parallel sections safely
scene->interactions->insert(shared_ptr<Interaction>(new Interactions(id1,id2)));
scene->interactions->erase(id1,id2);

Iteration

As with BodyContainer, iteration over interactions should use the FOREACH macro:

4.5. Simulation framework 111

https://blueprints.launchpad.net/yade/+spec/intrs-inside-bodies

Yade Documentation, Release 1.07.0

FOREACH(const shared_ptr<Interaction>& i, *scene->interactions){
if(!i->isReal()) continue;
/* … */

}

Again, note the usage const reference for i. The check if(!i->isReal()) filters away interactions
that exist only potentially, i.e. there is only Bound overlap of the two bodies, but not (yet) overlap of
bodies themselves. The i->isReal() function is equivalent to i->geom && i->phys. Details are again
explained in Handling interactions.
In some cases, such as OpenMP-loops requiring integral index (OpenMP >= 3.0 allows parallelization
using random-access iterator as well), you need to iterate over interaction indices instead:

inr nIntr=(int)scene->interactions->size(); // hoist container size
#pragma omp parallel for
for(int j=0; j<nIntr, j++){

const shared_ptr<Interaction>& i(scene->interactions[j]);
if(!->isReal()) continue;
/* … */

}

4.5.4 ForceContainer

ForceContainer holds “generalized forces”, i.e. forces, torques, (explicit) dispalcements and rotations for
each body.
During each computation step, there are typically 3 phases pertaining to forces:

1. Resetting forces to zero (usually done by the ForceResetter engine)
2. Incrementing forces from parallel sections (solving interactions – from LawFunctor)
3. Reading absolute force values sequentially for each body: forces applied from different interactions

are summed together to give overall force applied on that body (NewtonIntegrator, but also various
other engine that read forces)

This scenario leads to special design, which allows fast parallel write access:
• each thread has its own storage (zeroed upon request), and only writes to its own storage; this

avoids concurrency issues. Each thread identifies itself by the omp_get_thread_num() function
provided by the OpenMP runtime.

• before reading absolute values, the container must be synchronized, i.e. values from all threads
are summed up and stored separately. This is a relatively slow operation and we provide Force-
Container::syncCount that you might check to find cummulative number of synchronizations and
compare it against number of steps. Ideally, ForceContainer is only synchronized once at each
step.

• the container is resized whenever an element outside the current range is read/written to (the
read returns zero in that case); this avoids the necessity of tracking number of bodies, but also is
potential danger (such as scene->forces.getForce(1000000000), which will probably exhaust
your RAM). Unlike c++, Python does check given id against number of bodies.

// resetting forces (inside ForceResetter)
scene->forces.reset()

// in a parallel section
scene->forces.addForce(id,force); // add force

// container is not synced after we wrote to it, sync before reading
scene->forces.sync();
const Vector3r& f=scene->forces.getForce(id);

Synchronization is handled automatically if values are read from python:

112 Chapter 4. Programmer’s manual

Yade Documentation, Release 1.07.0

Yade [1]: O.bodies.append(Body())
Out[1]: 1

Yade [2]: O.forces.addF(0,Vector3(1,2,3))

Yade [3]: O.forces.f(0)
Out[3]: Vector3(1,2,3)

Yade [4]: O.forces.f(100)

IndexError Traceback (most recent call last)
/tmp/buildd/yade-1.07.0/debian/tmp/usr/lib/x86_64-linux-gnu/yade/py/yade/__init__.py in <module>()
----> 1 O.forces.f(100)

IndexError: Body id out of range.

4.5.5 Handling interactions

Creating and removing interactions is a rather delicate topic and number of components must cooperate
so that the whole behaves as expected.
Terminologically, we distinguish
potential interactions, having neither geometry nor physics. Interaction.isReal can be used to query

the status (Interaction::isReal() in c++).
real interactions, having both geometry and physics. Below, we shall discuss the possibility of inter-

actions that only have geometry but no physics.
During each step in the simulation, the following operations are performed on interactions in a typical
simulation:

1. Collider creates potential interactions based on spatial proximity. Not all pairs of bodies are
susceptible of entering interaction; the decision is done in Collider::mayCollide:
• clumps may not enter interactions (only their members can)
• clump members may not interact if they belong to the same clump
• bitwise AND on both bodies’ masks must be non-zero (i.e. there must be at least one bit set

in common)
2. Collider erases interactions that were requested for being erased (see below).
3. InteractionLoop (via IGeomDispatcher) calls appropriate IGeomFunctor based on Shape combina-

tion of both bodies, if such functor exists. For real interactions, the functor updates associated
IGeom. For potential interactions, the functor returns

false if there is no geometrical overlap, and the interaction will stillremain potential-
only

true if there is geometrical overlap; the functor will have created an IGeom in such case.

Note: For real interactions, the functor must return true, even if there is no more
spatial overlap between bodies. If you wish to delete an interaction without geometrical
overlap, you have to do this in the LawFunctor.
This behavior is deliberate, since different laws have different requirements, though ide-
ally using relatively small number of generally useful geometry functors.

Note: If there is no functor suitable to handle given combination of shapes, the inter-
action will be left in potential state, without raising any error.

4. For real interactions (already existing or just created in last step), InteractionLoop (via IPhys-
Dispatcher) calls appropriate IPhysFunctor based on Material combination of both bodies. The

4.5. Simulation framework 113

Yade Documentation, Release 1.07.0

functor must update (or create, if it doesn’t exist yet) associated IPhys instance. It is an error if
no suitable functor is found, and an exception will be thrown.

5. For real interactions, InteractionLoop (via LawDispatcher) calls appropriate LawFunctor based on
combination of IGeom and IPhys of the interaction. Again, it is an error if no functor capable of
handling it is found.

6. LawDispatcher can decide that an interaction should be removed (such as if bodies get too far
apart for non-cohesive laws; or in case of complete damage for damage models). This is done by
calling

InteractionContainer::requestErase(id1,id2)

Such interaction will not be deleted immediately, but will be reset to potential state.
At next step, the collider will call InteractionContainer::erasePending, which will
only completely erase interactions the collider indicates; the rest will be kept in potential
state.

Creating interactions explicitly

Interactions may still be created explicitly with utils.createInteraction, without any spatial requirements.
This function searches current engines for dispatchers and uses them. IGeomFunctor is called with the
force parameter, obliging it to return true even if there is no spatial overlap.

4.5.6 Associating Material and State types

Some models keep extra state information in the Body.state object, therefore requiring strict association
of a Material with a certain State (for instance, CpmMat is associated to CpmState and this combination
is supposed by engines such as CpmStateUpdater).
If a Material has such a requirement, it must override 2 virtual methods:

1. Material.newAssocState, which returns a new State object of the corresponding type. The default
implementation returns State itself.

2. Material.stateTypeOk, which checks whether a given State object is of the corresponding type (this
check is run at the beginning of the simulation for all particles).

In c++, the code looks like this (for CpmMat):

class CpmMat: public FrictMat {
public:

virtual shared_ptr<State> newAssocState() const { return shared_ptr<State>(new CpmState); }
virtual bool stateTypeOk(State* s) const { return (bool)dynamic_cast<CpmState*>(s); }

/* ... */
};

This allows one to construct Body objects from functions such as utils.sphere only by knowing the
requires Material type, enforcing the expectation of the model implementor.

4.6 Runtime structure

4.6.1 Startup sequence

Yade’s main program is python script in core/main/main.py.in; the build system replaces a few
${variables} in that file before copying it to its install location. It does the following:

1. Process command-line options, set environment variables based on those options.
2. Import main yade module (import yade), residing in py/__init__.py.in. This module locates

plugins (recursive search for files lib*.so in the lib installation directory). yade.boot module is
used to setup temporary directory, … and, most importantly, loads plugins.

114 Chapter 4. Programmer’s manual

https://github.com/yade/trunk/blob/master/core/main/main.py.in
https://github.com/yade/trunk/blob/master/py/__init__.py.in
https://github.com/yade/trunk/blob/master/core/main/pyboot.cpp

Yade Documentation, Release 1.07.0

3. Manage further actions, such as running scripts given at command line, opening qt.Controller (if
desired), launching the ipython prompt.

4.6.2 Singletons

There are several “global variables” that are always accessible from c++ code; properly speaking, they
are Singletons, classes of which exactly one instance always exists. The interest is to have some general
functionality acessible from anywhere in the code, without the necessity of passing pointers to such objects
everywhere. The instance is created at startup and can be always retrieved (as non-const reference) using
the instance() static method (e.g. Omega::instance().getScene()).
There are 3 singletons:
SerializableSingleton Handles serialization/deserialization; it is not used anywhere except for the

serialization code proper.
ClassFactory Registers classes from plugins and able to factor instance of a class given its name as

string (the class must derive from Factorable). Not exposed to python.
Omega Access to simulation(s); deserves separate section due to its importance.

Omega

The Omega class handles all simulation-related functionality: loading/saving, running, pausing.
In python, the wrapper class to the singleton is instantiated 5 as global variable O. For convenience,
Omega is used as proxy for scene’s attribute: although multiple Scene objects may be instantiated in
c++, it is always the current scene that Omega represents.
The correspondence of data is literal: Omega.materials corresponds to Scene::materials of the current
scene; likewise for materials, bodies, interactions, tags, cell, engines, initializers, miscParams.
To give an overview of (some) variables:

Python c++
Omega.iter Scene::iter
Omega.dt Scene::dt
Omega.time Scene::time
Omega.realtime Omega::getRealTime()
Omega.stopAtIter Scene::stopAtIter

Omega in c++ contains pointer to the current scene (Omega::scene, retrieved by
Omega::instance().getScene()). Using Omega.switchScene, it is possible to swap this pointer
with Omega::sceneAnother, a completely independent simulation. This can be useful for example (and
this motivated this functionality) if while constructing simulation, another simulation has to be run to
dynamically generate (i.e. by running simulation) packing of spheres.

4.6.3 Engine loop

Running simulation consists in looping over Engines and calling them in sequence. This loop is defined
in Scene::moveToNextTimeStep function in core/Scene.cpp. Before the loop starts, O.initializers are
called; they are only run once. The engine loop does the following in each iteration over O.engines:

1. set Engine::scene pointer to point to the current Scene.
2. Call Engine::isActivated(); if it returns false, the engine is skipped.
3. Call Engine::action()
4. If O.timingEnabled, increment Engine::execTime by the difference from the last time reading (either

after the previous engine was run, or immediately before the loop started, if this engine comes first).
Increment Engine::execCount by 1.

5 It is understood that instantiating Omega() in python only instantiates the wrapper class, not the singleton itself.

4.6. Runtime structure 115

http://en.wikipedia.org/wiki/Singleton_pattern
https://github.com/yade/trunk/blob/master/core/Scene.cpp#L73

Yade Documentation, Release 1.07.0

After engines are processed, virtual time is incremented by timestep and iteration number is incremented
by 1.

Background execution

The engine loop is (normally) executed in background thread (handled by SimulationFlow class), leaving
foreground thread free to manage user interaction or running python script. The background thread is
managed by O.run() and O.pause() commands. Foreground thread can be blocked until the loop finishes
using O.wait().
Single iteration can be run without spawning additional thread using O.step().

4.7 Python framework

4.7.1 Wrapping c++ classes

Each class deriving from Serializable is automatically exposed to python, with access to its (registered)
attributes. This is achieved via YADE_CLASS_BASE_DOC_* macro family. All classes registered
in class factory are default-constructed in Omega::buildDynlibDatabase. Then, each serializable class
calls Serializable::pyRegisterClass virtual method, which injects the class wrapper into (initially
empty) yade.wrapper module. pyRegisterClass is defined by YADE_CLASS_BASE_DOC and knows about
class, base class, docstring, attributes, which subsequently all appear in boost::python class definition.
Wrapped classes define special constructor taking keyword arguments corresponding to class attributes;
therefore, it is the same to write:

Yade [1]: f1=ForceEngine()

Yade [2]: f1.ids=[0,4,5]

Yade [3]: f1.force=Vector3(0,-1,-2)

and

Yade [1]: f2=ForceEngine(ids=[0,4,5],force=Vector3(0,-1,-2))

Yade [2]: print f1.dict()
{'ompThreads': -1, 'force': Vector3(0,-1,-2), 'ids': [0, 4, 5], 'dead': False, 'label': ''}

Yade [3]: print f2.dict()
{'ompThreads': -1, 'force': Vector3(0,-1,-2), 'ids': [0, 4, 5], 'dead': False, 'label': ''}

Wrapped classes also inherit from Serializable several special virtual methods: dict() returning all reg-
istered class attributes as dictionary (shown above), clone() returning copy of instance (by copying
attribute values), updateAttrs() and updateExistingAttrs() assigning attributes from given dictionary
(the former thrown for unknown attribute, the latter doesn’t).
Read-only property name wraps c++ method getClassName() returning class name as string. (Since
c++ class and the wrapper class always have the same name, getting python type using __class__ and
its property __name__ will give the same value).

Yade [1]: s=Sphere()

Yade [2]: s.__class__.__name__
Out[2]: 'Sphere'

4.7.2 Subclassing c++ types in python

In some (rare) cases, it can be useful to derive new class from wrapped c++ type in pure python.
This is done in the yade.pack module module: Predicate is c++ base class; from this class, several c++

116 Chapter 4. Programmer’s manual

https://github.com/yade/trunk/blob/master/core/SimulationFlow.hpp

Yade Documentation, Release 1.07.0

classes are derived (such as inGtsSurface), but also python classes (such as the trivial inSpace predicate).
inSpace derives from python class Predicate; it is, however, not direct wrapper of the c++ Predicate
class, since virtual methods would not work.
boost::python provides special boost::python::wrapper template for such cases, where each overrid-
able virtual method has to be declared explicitly, requesting python override of that method, if present.
See Overridable virtual functions for more details.

4.7.3 Reference counting

Python internally uses reference counting on all its objects, which is not visible to casual user. It has to
be handled explicitly if using pure Python/C API with Py_INCREF and similar functions.
boost::python used in Yade fortunately handles reference counting internally. Additionally, it auto-
matically integrates reference counting for shared_ptr and python objects, if class A is wrapped as
boost::python::class_<A,shared_ptr<A>>. Since all Yade classes wrapped using YADE_CLASS_-
BASE_DOC_* macro family are wrapped in this way, returning shared_ptr<…> objects from is the
preferred way of passing objects from c++ to python.
Returning shared_ptr is much more efficient, since only one pointer is returned and reference count
internally incremented. Modifying the object from python will modify the (same) object in c++ and
vice versa. It also makes sure that the c++ object will not be deleted as long as it is used somewhere in
python, preventing (important) source of crashes.

4.7.4 Custom converters

When an object is passed from c++ to python or vice versa, then either
1. the type is basic type which is transparently passed between c++ and python (int, bool, std::string

etc)
2. the type is wrapped by boost::python (such as Yade classes, Vector3 and so on), in which case

wrapped object is returned; 6

Other classes, including template containers such as std::vector must have their custom converters
written separately. Some of them are provided in py/wrapper/customConverters.cpp, notably converters
between python (homogeneous, i.e. with all elements of the same type) sequences and c++ std::vector
of corresponding type; look in that source file to add your own converter or for inspiration.
When an object is crossing c++/python boundary, boost::python’s global “converters registry” is
searched for class that can perform conversion between corresponding c++ and python types. The
“converters registry” is common for the whole program instance: there is no need to register convert-
ers in each script (by importing _customConverters, for instance), as that is done by yade at startup
already.

Note: Custom converters only work for value that are passed by value to python (not “by reference”):
some attributes defined using YADE_CLASS_BASE_DOC_* macro family are passed by value, but if
you define your own, make sure that you read and understand Why is my automatic to-python conversion
not being found?.
In short, the default for def_readwrite and def_readonly is to return references to underlying c++
objects, which avoids performing conversion on them. For that reason, return value policy must be set
to return_by_value explicitly, using slighly more complicated add_property syntax, as explained at
the page referenced.

6 Wrapped classes are automatically registered when the class wrapper is created. If wrapped class derives from
another wrapped class (and if this dependency is declared with the boost::python::bases template, which Yade’s
classes do automatically), parent class must be registered before derived class, however. (This is handled via loop in
Omega::buildDynlibDatabase, which reiterates over classes, skipping failures, until they all successfully register) Math
classes (Vector3, Matrix3, Quaternion) are wrapped by hand, to be found in py/mathWrap/miniEigen.cpp; this module is
imported at startup. On systems, where minieigen is available as a separate package, the Yade’s miniEigen is skipped.

4.7. Python framework 117

http://wiki.python.org/moin/boost.python/OverridableVirtualFunctions
http://en.wikipedia.org/wiki/Reference_counting
http://docs.python.org/c-api/index.html
http://wiki.python.org/moin/boost.python/PointersAndSmartPointers
http://wiki.python.org/moin/boost.python/PointersAndSmartPointers
https://github.com/yade/trunk/blob/master/py/wrapper/customConverters.cpp
http://www.boost.org/doc/libs/1_42_0/libs/python/doc/v2/faq.html#topythonconversionfailed
http://www.boost.org/doc/libs/1_42_0/libs/python/doc/v2/faq.html#topythonconversionfailed
https://github.com/yade/trunk/blob/master/py/mathWrap/miniEigen.cpp

Yade Documentation, Release 1.07.0

4.8 Maintaining compatibility

In Yade development, we identified compatibility to be very strong desire of users. Compatibility concerns
python scripts, not simulations saved in XML or old c++ code.

4.8.1 Renaming class

Script scripts/rename-class.py should be used to rename class in c++ code. It takes 2 parameters (old
name and new name) and must be run from top-level source directory:

$ scripts/rename-class.py OldClassName NewClassName
Replaced 4 occurences, moved 0 files and 0 directories
Update python scripts (if wanted) by running: perl -pi -e 's/\bOldClassName\b/NewClassName/g' `ls **/*.py |grep -v py/system.py`

This has the following effects:
1. If file or directory has basename OldClassName (plus extension), it will be renamed using bzr.
2. All occurences of whole word OldClassName will be replaced by NewClassName in c++ sources.
3. An extry is added to py/system.py, which contains map of deprecated class names. At yade startup,

proxy class with OldClassName will be created, which issues a DeprecationWarning when being
instantiated, informing you of the new name you should use; it creates an instance of NewClassName,
hence not disruting your script’s functioning:

Yade [3]: SimpleViscoelasticMat()
/usr/local/lib/yade-trunk/py/yade/__init__.py:1: DeprecationWarning: Class `SimpleViscoelasticMat' was renamed to (or replaced by) `ViscElMat', update your code! (you can run 'yade --update script.py' to do that automatically)
-> [3]: <ViscElMat instance at 0x2d06770>

As you have just been informed, you can run yade --update to all old names with their new names in
scripts you provide:

$ yade-trunk --update script1.py some/where/script2.py

This gives you enough freedom to make your class name descriptive and intuitive.

4.8.2 Renaming class attribute

Renaming class attribute is handled from c++ code. You have the choice of merely warning at accessing
old attribute (giving the new name), or of throwing exception in addition, both with provided explanation.
See deprec parameter to YADE_CLASS_BASE_DOC_* macro family for details.

4.9 Debian packaging instructions

In order to make parallel installation of several Yade version possible, we adopted similar strategy as e.g.
gcc packagers in Debian did:

1. Real Yade packages are named yade-0.30 (for stable versions) or yade-bzr2341 (for snapshots).
2. They provide yade or yade-snapshot virtual packages respectively.
3. Each source package creates several installable packages (using bzr2341 as example version):

(a) yade-bzr2341 with the optimized binaries; the executable binary is yade-bzr2341
(yade-bzr2341-multi, …)

(b) yade-bzr2341-dbg with debug binaries (debugging symbols, non-optimized, and with crash
handlers); the executable binary is yade-bzr2341-dbg

(c) yade-bzr2341-doc with sample scripts and some documentation (see bug #398176 however)
(d) (future?) yade-bzr2341-reference with reference documentation (see bug #401004)

118 Chapter 4. Programmer’s manual

https://github.com/yade/trunk/blob/master/scripts/rename-class.py
https://github.com/yade/trunk/blob/master/py/system.py
https://bugs.launchpad.net/yade/+bug/398176
https://bugs.launchpad.net/yade/+bug/401004

Yade Documentation, Release 1.07.0

4. Using Debian alternatives, the highest installed package provides additionally commands without
the version specification like yade, yade-multi, … as aliases to that version’s binaries. (yade-dbg,
… for the debuggin packages). The exact rule is:
(a) Stable releases have always higher priority than snapshots
(b) Higher versions/revisions have higher pripority than lower versions/revisions.

4.9.1 Prepare source package

Debian packaging files are located in debian/ directory. They contain build recipe debian/rules, de-
pendecy and package declarations debian/control and maintainer scripts. Some of those files are only
provided as templates, where some variables (such as version number) are replaced by special script.
The script scripts/debian-prep processes templates in debian/ and creates files which can be used by
debian packaging system. Before running this script:

1. If you are releasing stable version, make sure there is file named RELEASE containing single line
with version number (such as 0.30). This will make scripts/debian-prep create release packages.
In absence of this file, snapshots packaging will be created instead. Release or revision number (as
detected by running bzr revno in the source tree) is stored in VERSION file, where it is picked up
during package build and embedded in the binary.

2. Find out for which debian/ubuntu series your package will be built. This is the name that will
appear on the top of (newly created) debian/changelog file. This name will be usually unstable,
testing or stable for debian and karmic, lucid etc for ubuntu. WHen package is uploaded to
Launchpad’s build service, the package will be built for this specified release.

Then run the script from the top-level directory, giving series name as its first (only) argument:

$ scripts/debian-prep lucid

After this, signed debian source package can be created:

$ debuild -S -sa -k62A21250 -I -Iattic

(-k gives GPG key identifier, -I skips .bzr and similar directories, -Iattic will skip the useless attic
directory).

4.9.2 Create binary package

Local in-tree build Once files in debian/ are prepared, packages can be build by issuing:: $ fakeroot
debian/rules binary

Clean system build Using pbuilder system, package can be built in a chroot containing clean de-
bian/ubuntu system, as if freshly installed. Package dependencies are automatically installed and
package build attempted. This is a good way of testing packaging before having the package built
remotely at Launchpad. Details are provided at wiki page.

Launchpad build service Launchpad provides service to compile package for different ubuntu releases
(series), for all supported architectures, and host archive of those packages for download via APT.
Having appropriate permissions at Launchpad (verified GPG key), source package can be uploaded
to yade’s archive by:

$ dput ppa:yade-users/ppa ../yade-bzr2341_1_source.changes

After several hours (depending on load of Launchpad build farm), new binary packages will be
published at https://launchpad.net/~yade-users/+archive/ppa.
This process is well documented at https://help.launchpad.net/Packaging/PPA.

4.9. Debian packaging instructions 119

http://www.debian-administration.org/articles/91
https://github.com/yade/trunk/blob/master/debian/
https://github.com/yade/trunk/blob/master/debian/rules
https://github.com/yade/trunk/blob/master/debian/control
https://github.com/yade/trunk/blob/master/scripts/debian-prep
https://github.com/yade/trunk/blob/master/debian/
https://github.com/yade/trunk/blob/master/scripts/debian-prep
https://www.yade-dem.org/wiki/DebianPackages
https://launchpad.net/~yade-users/+archive/ppa
https://help.launchpad.net/Packaging/PPA

Yade Documentation, Release 1.07.0

120 Chapter 4. Programmer’s manual

Chapter 5

Installation

Yade can be installed from packages (precompiled binaries) or source code. The choice depends on what
you need: if you don’t plan to modify Yade itself, package installation is easier. In the contrary case,
you must download and install source code.

5.1 Packages

Pre-built packages are provided for all currently supported Debian and Ubuntu versions of distributions
and available on yade-dem.org server.
These are daily versions of packages and are updating regularly and include all the newly added features.
To install daily-version one needs to add this repository to your /etc/apt/sources.list, add a PGP-key
AA915EEB as a trusted and install yadedaily

sudo bash -c 'echo "deb http://www.yade-dem.org/packages/ precise/" >> /etc/apt/sources.list'
wget -O - http://www.yade-dem.org/packages/yadedev_pub.gpg | sudo apt-key add -
sudo apt-get install yadedaily

If you have another distribution, not Ubuntu Precise, be sure to use the correct name in the first line
(for instanse, jessie, trusty or wheezy).
After that you can normally start Yade using “yadedaily” or “yadedaily-batch” command.
Git-repository for packaging stuff is available on GitHub. Each branch corresponds to one distribution
e.g. precise, jessie etc. The scripts for building all of this stuff is here. It uses pbuilder to build packages,
so all packages are building in a clean environment.
If you do not need yadedaily-package any more, just remove the corresponding line in
/etc/apt/sources.list. To remove our key from keyring, execute the following commands:

sudo apt-key remove AA915EEB
sudo apt-get purge yadedaily

Since 2011 all Ubuntu versions (starting from 11.10, Oneiric) and Debian (starting from Wheezy) are
having already Yade in their main repositories. There are only stable releases are placed. To install the
program, run the following:

sudo apt-get install yade

To check, what version of Yade is in specific Distribution, check the links for Ubuntu and Debian.

121

http://yade-dem.org/packages/
https://github.com/yade/yadedaily/
https://github.com/yade/trunk/tree/master/scripts/ppa
https://launchpad.net/ubuntu/+source/yade
http://packages.qa.debian.org/y/yade.html

Yade Documentation, Release 1.07.0

5.2 Source code

Installation from source code is reasonable, when you want to add or modify constitutive laws, engines
or functions... Installing the latest trunk version allows one to use newly added features, which are not
yet available in packaged versions.

5.2.1 Download

If you want to install from source, you can install either a release (numbered version, which is frozen)
or the current developement version (updated by the developers frequently). You should download the
development version (called trunk) if you want to modify the source code, as you might encounter
problems that will be fixed by the developers. Release version will not be modified (except for updates
due to critical and easy-to-fix bugs), but they are in a more stabilized state that trunk generally.

1. Releases can be downloaded from the download page, as compressed archive. Uncompressing the
archive gives you a directory with the sources.

2. developement version (trunk) can be obtained from the code repository at github.
We use GIT (the git command) for code management (install the git package in your distribution and
create a GitHub account):

git clone git@github.com:yade/trunk.git

will download the whole code repository of trunk. Check out Yade on github wiki page for more.
Alternatively, a read-only checkout is possible via https without a GitHub account (easier if you don’t
want to modify the main Yade branch):

git clone https://github.com/yade/trunk.git

For those behind firewall, you can download any revision of the repository as compressed archive.
Release and trunk sources are compiled in the same way.

5.2.2 Prerequisites

Yade relies on a number of external software to run; they are checked before the compilation starts.
Some of them are only optional. The last ones are only relevant for using the fluid coupling module
(FlowEngine).

• cmake build system
• gcc compiler (g++); other compilers will not work; you need g++>=4.2 for openMP support
• boost 1.35 or later
• qt4 library
• freeglut3
• libQGLViewer
• python, numpy, ipython
• matplotlib
• eigen3 algebra library
• gdb debugger
• sqlite3 database engine
• Loki library
• VTK library (optional but recommended)
• CGAL library (optional)

122 Chapter 5. Installation

https://launchpad.net/yade/+download
https://github.com/yade/
http://git-scm.com/
https://www.yade-dem.org/wiki/Yade_on_github
https://www.yade-dem.org/source/
http://www.cmake.org/
http://www.gcc.gnu.org
http://www.boost.org/
http://www.qt.nokia.com
http://freeglut.sourceforge.net
http://www.libqglviewer.com
http://www.python.org
http://numpy.scipy.org
http://ipython.scipy.org
http://matplotlib.sf.net
http://eigen.tuxfamily.org
http://www.gnu.org/software/gdb
http://www.sqlite.org
http://loki-lib.sf.net
http://www.vtk.org/
http://www.cgal.org/

Yade Documentation, Release 1.07.0

• SuiteSparse sparse algebra library (fluid coupling, optional, requires eigen>=3.1)
• OpenBLAS optimized and parallelized alternative to the standard blas+lapack (fluid coupling,

optional)
• Metis matrix preconditioning (fluid coupling, optional)

Most of the list above is very likely already packaged for your distribution. The following commands
have to be executed in command line of corresponding distributions. Just copy&paste to the terminal.
To perform commands you should have root privileges

Warning: If you have Ubuntu 12.10 or older, you need to install libqglviewer-qt4-dev package
instead of libqglviewer-dev.

• Ubuntu, Debian and their derivatives:

sudo apt-get install cmake git freeglut3-dev libloki-dev \
libboost-all-dev fakeroot dpkg-dev build-essential g++ \
python-dev ipython python-matplotlib libsqlite3-dev python-numpy python-tk gnuplot \
libgts-dev python-pygraphviz libvtk5-dev python-scientific libeigen3-dev \
python-xlib python-qt4 pyqt4-dev-tools gtk2-engines-pixbuf python-argparse \
libqglviewer-dev python-imaging libjs-jquery python-sphinx python-git python-bibtex \
libxmu-dev libxi-dev libcgal-dev help2man libbz2-dev zlib1g-dev \

Some of packages (for example, cmake, eigen3) are mandatory, some of them are optional. Watch for
notes and warnings/errors, which are shown by cmake during configuration step. If the missing package
is optional, some of Yade features will be disabled (see the messages at the end of configuration).
Additional packages, which can become mandatory later:

sudo apt-get install python-gts python-minieigen \

For effective usage of direct solvers in the fluid coupling, the following libraries are recommended, together
with eigen>=3.1: blas, lapack, suitesparse, and metis. All four of them are available in many different
versions. Different combinations are possible and not all of them will work. The following was found
to be effective on ubuntu 12.04 and debian wheezy. (openblas provides its own version of lapack, and
suitesparse-metis will trigger the installation of parmetis):

sudo apt-get install libopenblas-dev libsuitesparse-metis-dev \

Some packages listed here are relatively new and they can be absent in your distribution (for example,
libmetis-dev or python-gts). They can be installed from our external PPA or just ignored. In this case
some features can be disabled.
If you are using other distribuition, than Debian or its derivatives, you should install the softwares listed
above. Their names can differ from the names of Debian-packages.

5.2.3 Compilation

You should create a separate build-place-folder, where Yade will be configured and where the source code
will be compiled. Then inside this build-directory you should start cmake to configure the compilation
process:

cmake -DINSTALL_PREFIX=/path/to/installfolder /path/to/sources

Additional options can be configured in the same line with the following syntax:

cmake -DOPTION1=VALUE1 -DOPTION2=VALUE2

The following options are available:
• INSTALL_PREFIX: path where Yade should be installed (/usr/local by default)
• LIBRARY_OUTPUT_PATH: path to install libraries (lib by default)
• DEBUG: compile in debug-mode (OFF by default)

5.2. Source code 123

http://www.cise.ufl.edu/research/sparse/SuiteSparse/
http://www.openblas.net/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/
https://launchpad.net/~yade-users/+archive/external/

Yade Documentation, Release 1.07.0

• CMAKE_VERBOSE_MAKEFILE: output additional information during compiling (OFF by de-
fault)

• SUFFIX: suffix, added after binary-names (version number by default)
• NOSUFFIX: do not add a suffix after binary-name (OFF by default)
• YADE_VERSION: explicitely set version number (is defined from git-directory by default)
• ENABLE_GUI: enable GUI option (ON by default)
• ENABLE_CGAL: enable CGAL option (ON by default)
• ENABLE_VTK: enable VTK-export option (ON by default)
• ENABLE_OPENMP: enable OpenMP-parallelizing option (ON by default)
• ENABLE_GTS: enable GTS-option (ON by default)
• ENABLE_GL2PS: enable GL2PS-option (ON by default)
• ENABLE_LINSOLV: enable LINSOLV-option (ON by default)
• ENABLE_PFVFLOW: enable PFVFLOW-option, FlowEngine (ON by default)
• runtimePREFIX: used for packaging, when install directory is not the same is runtime directory

(/usr/local by default)
• CHUNKSIZE: used, if you want several sources to be compiled at once. Increases compilation

speed and RAM-consumption during it (1 by default).
For using an extended parameters of cmake, please, follow the corresponding documentation on cmake-
webpage.
If the compilation is finished without errors, you will see all enabled and disabled options. Then start
the standard the compilation process:

make

Installing performs with the following command:

make install

The “install” command will in fact also recompile if source files have been modified. Hence there is no
absolute need to type the two commands separately.
The compilation process can take a long time, be patient. An additional parameter on many cores
systems -j can be added to decrease compilation time and split the compilation on many cores. For
example, on 4-core machines it would be reasonable to set the parameter -j4. Note, the Yade requires
approximately 2GB/core for compilation, otherwise the swap-file will be used and a compilation time
dramatically increases.
For building the documentation you should at first execute the command “make install” and then “make
doc” to build it. The generated files will be stored in your current build directory/doc/sphinx/_build.
“make manpage” command generates and moves manpages in a standard place. “make check” command
executes standard test to check the functionality of compiled program.
Yade can be compiled not only by GCC-compiler, but also by CLANG front-end for the LLVM compiler.
For that you set the environment variables CC and CXX upon detecting the C and C++ compiler to
use:

export CC=/usr/bin/clang
export CXX=/usr/bin/clang++
cmake -DOPTION1=VALUE1 -DOPTION2=VALUE2

Clang does not support OpenMP-parallelizing for the moment, that is why the feature will be disabled.

124 Chapter 5. Installation

http://clang.llvm.org/

Chapter 6

DEM Background

In this chapter, we mathematically describe general features of explicit DEM simulations, with some
reference to Yade implementation of these algorithms. They are given roughly in the order as they
appear in simulation; first, two particles might establish a new interaction, which consists in

1. detecting collision between particles;
2. creating new interaction and determining its properties (such as stiffness); they are either precom-

puted or derived from properties of both particles;
Then, for already existing interactions, the following is performed:

1. strain evaluation;
2. stress computation based on strains;
3. force application to particles in interaction.

This simplified description serves only to give meaning to the ordering of sections within this chapter.
A more detailed description of this simulation loop is given later.
In this chapter we refer to kinematic variables of the contacts as ‘‘strains‘‘, although at this scale it
is also common to speak of ‘‘displacements‘‘. Which semantic is more appropriate depends on the
conceptual model one is starting from, and therefore it cannot be decided independently of specific
problems. The reader familiar with displacements can mentaly replace normal strain and shear strain by
normal displacement and shear displacement, respectively, without altering the meaning of what follows.

6.1 Collision detection

6.1.1 Generalities

Exact computation of collision configuration between two particles can be relatively expensive (for in-
stance between Sphere and Facet). Taking a general pair of bodies i and j and their ‘‘exact‘‘ (In the
sense of precision admissible by numerical implementation.) spatial predicates (called Shape in Yade)
represented by point sets Pi, Pj the detection generally proceeds in 2 passes:

1. fast collision detection using approximate predicate P̃i and P̃j; they are pre-constructed in such a
way as to abstract away individual features of Pi and Pj and satisfy the condition

∀x ∈ R3 : x ∈ Pi ⇒ x ∈ P̃i (6.1)

(likewise for Pj). The approximate predicate is called ‘‘bounding volume” (Bound in Yade) since it
bounds any particle’s volume from outside (by virtue of the implication). It follows that (Pi∩Pj) ̸=

125

Yade Documentation, Release 1.07.0

∅ ⇒ (P̃i ∩ P̃j) ̸= ∅ and, by applying modus tollens,(
P̃i ∩ P̃j

)
= ∅ ⇒ (

Pi ∩ Pj

)
= ∅ (6.2)

which is a candidate exclusion rule in the proper sense.
2. By filtering away impossible collisions in (6.2), a more expensive, exact collision detection algo-

rithms can be run on possible interactions, filtering out remaining spurious couples (P̃i ∩ P̃j) ̸=
∅∧

(
Pi∩Pj

)
= ∅. These algorithms operate on Pi and Pj and have to be able to handle all possible

combinations of shape types.
It is only the first step we are concerned with here.

6.1.2 Algorithms

Collision evaluation algorithms have been the subject of extensive research in fields such as robotics,
computer graphics and simulations. They can be roughly divided in two groups:
Hierarchical algorithms which recursively subdivide space and restrict the number of approximate

checks in the first pass, knowing that lower-level bounding volumes can intersect only if they
are part of the same higher-level bounding volume. Hierarchy elements are bounding volumes of
different kinds: octrees [Jung1997], bounding spheres [Hubbard1996], k-DOP’s [Klosowski1998].

Flat algorithms work directly with bounding volumes without grouping them in hierarchies first; let
us only mention two kinds commonly used in particle simulations:

Sweep and prune algorithm operates on axis-aligned bounding boxes, which overlap
if and only if they overlap along all axes. These algorithms have roughly O(n logn)
complexity, where n is number of particles as long as they exploit temporal coherence
of the simulation.

Grid algorithms represent continuous R3 space by a finite set of regularly spaced
points, leading to very fast neighbor search; they can reach the O(n) complexity
[Munjiza1998] and recent research suggests ways to overcome one of the major draw-
backs of this method, which is the necessity to adjust grid cell size to the largest
particle in the simulation ([Munjiza2006], the ‘‘multistep” extension).

Temporal coherence expresses the fact that motion of particles in simulation is not arbitrary but
governed by physical laws. This knowledge can be exploited to optimize performance.

Numerical stability of integrating motion equations dictates an upper limit on ∆t (sect. Stability consid-
erations) and, by consequence, on displacement of particles during one step. This consideration is taken
into account in [Munjiza2006], implying that any particle may not move further than to a neighboring
grid cell during one step allowing the O(n) complexity; it is also explored in the periodic variant of the
sweep and prune algorithm described below.
On a finer level, it is common to enlarge P̃i predicates in such a way that they satisfy the (6.1) condition
during several timesteps; the first collision detection pass might then be run with stride, speeding up
the simulation considerably. The original publication of this optimization by Verlet [Verlet1967] used
enlarged list of neighbors, giving this technique the name Verlet list. In general cases, however, where
neighbor lists are not necessarily used, the term Verlet distance is employed.

6.1.3 Sweep and prune

Let us describe in detail the sweep and prune algorithm used for collision detection in Yade (class
InsertionSortCollider). Axis-aligned bounding boxes (Aabb) are used as P̃i; each Aabb is given by lower
and upper corner ∈ R3 (in the following, P̃x0

i , P̃x1
i are minimum/maximum coordinates of P̃i along the

x-axis and so on). Construction of Aabb from various particle Shape‘s (such as Sphere, Facet, Wall)
is straightforward, handled by appropriate classes deriving form BoundFunctor (Bo1_Sphere_Aabb,
Bo1_Facet_Aabb, …).

126 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

Presence of overlap of two Aabb‘s can be determined from conjunction of separate overlaps of intervals
along each axis (fig-sweep-and-prune):(

P̃i ∩ P̃j

)
̸= ∅ ⇔ ∧

w∈{x,y,z}

[((
P̃w0
i , P̃w1

i

)
∩
(
P̃w0
j , P̃w1

j

))
̸= ∅

]

where (a, b) denotes interval in R.

P1

P2
P3

P̃x0
1

+x

+y

P̃x1
1

P̃x0
2

P̃x0
3

P̃x1
2

P̃x1
3

P̃y1
3

P̃y0
3

P̃y1
2

P̃y0
2

P̃y1
1

P̃y0
1

P̃3P̃2

P̃1

Figure 6.1: Sweep and prune algorithm (shown in 2D), where Aabb of each sphere is represented by
minimum and maximum value along each axis. Spatial overlap of Aabb‘s is present if they overlap along
all axes. In this case, P̃1 ∩ P̃2 ̸= ∅ (but note that P1 ∩ P2 = ∅) and P̃2 ∩ P̃3 ̸= ∅.}

The collider keeps 3 separate lists (arrays) Lw for each axis w ∈ {x, y, z}

Lw =
∪
i

{
P̃w0
i , P̃w1

i

}

where i traverses all particles. Lw arrays (sorted sets) contain respective coordinates of minimum and
maximum corners for each Aabb (we call these coordinates bound in the following); besides bound, each
of list elements further carries id referring to particle it belongs to, and a flag whether it is lower or
upper bound.
In the initial step, all lists are sorted (using quicksort, average O(n logn)) and one axis is used to create
initial interactions: the range between lower and upper bound for each body is traversed, while bounds
in-between indicate potential Aabb overlaps which must be checked on the remaining axes as well.
At each successive step, lists are already pre-sorted. Inversions occur where a particle’s coordinate has
just crossed another particle’s coordinate; this number is limited by numerical stability of simulation and
its physical meaning (giving spatio-temporal coherence to the algorithm). The insertion sort algorithm
swaps neighboring elements if they are inverted, and has complexity between bigO{n} and bigO{n^2},
for pre-sorted and unsorted lists respectively. For our purposes, we need only to handle inversions, which
by nature of the sort algorithm are detected inside the sort loop. An inversion might signify:

• overlap along the current axis, if an upper bound inverts (swaps) with a lower bound (i.e. that the
upper bound with a higher coordinate was out of order in coming before the lower bound with a
lower coordinate). Overlap along the other 2 axes is checked and if there is overlap along all axes,
a new potential interaction is created.

• End of overlap along the current axis, if lower bound inverts (swaps) with an upper bound. If there
is only potential interaction between the two particles in question, it is deleted.

• Nothing if both bounds are upper or both lower.

6.1. Collision detection 127

Yade Documentation, Release 1.07.0

Aperiodic insertion sort

Let us show the sort algorithm on a sample sequence of numbers:

|| 3 7 2 4 ||

Elements are traversed from left to right; each of them keeps inverting (swapping) with neighbors to the
left, moving left itself, until any of the following conditions is satisfied:
(≤) the sorting order with the left neighbor is correct, or
(||) the element is at the beginning of the sequence.

We start at the leftmost element (the current element is marked i)

|| 3 7 2 4 ||.

It obviously immediately satisfies (||), and we move to the next element:

|| 3 7
≤

gg 2 4 ||.

Condition (≤) holds, therefore we move to the right. The 2 is not in order (violating (≤)) and two
inversions take place; after that, (||) holds:

|| 3 7 2
̸≤

hh 4 ||,

|| 3 2
̸≤

hh 7 4 ||,

|| 2 3 7 4 ||.

The last element 4 first violates (≤), but satisfies it after one inversion

|| 2 3 7 4
̸≤

hh ||,

|| 2 3 4
≤

gg 7 ||.

All elements having been traversed, the sequence is now sorted.
It is obvious that if the initial sequence were sorted, elements only would have to be traversed without
any inversion to handle (that happens in O(n) time).
For each inversion during the sort in simulation, the function that investigates change in Aabb overlap
is invoked, creating or deleting interactions.
The periodic variant of the sort algorithm is described in Periodic insertion sort algorithm, along with
other periodic-boundary related topics.

Optimization with Verlet distances

As noted above, [Verlet1967] explored the possibility of running the collision detection only sparsely by
enlarging predicates P̃i.
In Yade, this is achieved by enlarging Aabb of particles by fixed relative length (or Verlet’s distance) in all
dimensions ∆L (InsertionSortCollider.sweepLength). Suppose the collider run last time at stepm and the

128 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

current step is n. NewtonIntegrator tracks the cummulated distance traversed by each particle between
m and n by comparing the current position with the reference position from time n (Bound::refPos),

Lmn = |Xn − Xm| (6.3)

triggering the collider re-run as soon as one particle gives:

Lmn > ∆L. (6.4)

InsertionSortCollider.targetInterv is used to adjust ∆L independently for each particle. Larger ∆L will
be assigned to the fastest ones, so that all particles would ideally reach the edge of their bounds after this
“target” number of iterations. Results of using Verlet distance depend highly on the nature of simulation
and choice of InsertionSortCollider.targetInterv. Adjusting the sizes independently for each particle is
especially efficient if some parts of a problem have high-speed particles will others are not moving. If
it is not the case, no significant gain should be expected as compared to targetInterv=0 (assigning the
same ∆L to all particles).
The number of particles and the number of available threads is also to be considered for choosing an
appropriate Verlet’s distance. A larger distance will result in less time spent in the collider (which runs
single-threaded) and more time in computing interactions (multi-threaded). Typically, large ∆L will be
used for large simulations with more than 105 particles on multi-core computers. On the other hand
simulations with less than 104 particles on single processor will probably benefit from smaller ∆L. Users
benchmarks may be found on Yade’s wiki (see e.g. https://yade-dem.org/wiki/Colliders_performace).

6.2 Creating interaction between particles

Collision detection described above is only approximate. Exact collision detection depends on the ge-
ometry of individual particles and is handled separately. In Yade terminology, the Collider creates only
potential interactions; potential interactions are evaluated exactly using specialized algorithms for colli-
sion of two spheres or other combinations. Exact collision detection must be run at every timestep since
it is at every step that particles can change their mutual position (the collider is only run sometimes if
the Verlet distance optimization is in use). Some exact collision detection algorithms are described in
Strain evaluation; in Yade, they are implemented in classes deriving from IGeomFunctor (prefixed with
Ig2).
Besides detection of geometrical overlap (which corresponds to IGeom in Yade), there are also non-
geometrical properties of the interaction to be determined (IPhys). In Yade, they are computed for
every new interaction by calling a functor deriving from IPhysFunctor (prefixed with Ip2) which accepts
the given combination of Material types of both particles.

6.2.1 Stiffnesses

Basic DEM interaction defines two stiffnesses: normal stiffness KN and shear (tangent) stiffness KT .
It is desirable that KN be related to fictitious Young’s modulus of the particles’ material, while KT is
typically determined as a given fraction of computed KN. The KT/KN ratio determines macroscopic
Poisson’s ratio of the arrangement, which can be shown by dimensional analysis: elastic continuum has
two parameters (E and ν) and basic DEM model also has 2 parameters with the same dimensions KN and
KT/KN; macroscopic Poisson’s ratio is therefore determined solely by KT/KN and macroscopic Young’s
modulus is then proportional to KN and affected by KT/KN.
Naturally, such analysis is highly simplifying and does not account for particle radius distribution, packing
configuration and other possible parameters such as the interaction radius introduced later.

Normal stiffness

The algorithm commonly used in Yade computes normal interaction stiffness as stiffness of two springs
in serial configuration with lengths equal to the sphere radii (fig-spheres-contact-stiffness).

6.2. Creating interaction between particles 129

https://yade-dem.org/wiki/Colliders_performace

Yade Documentation, Release 1.07.0

E1

E2

l1 = r1 l2 = r2

l = l1 + l2

Figure 6.2: Series of 2 springs representing normal stiffness of contact between 2 spheres.

Let us define distance l = l1+ l2, where li are distances between contact point and sphere centers, which
are initially (roughly speaking) equal to sphere radii. Change of distance between the sphere centers ∆l
is distributed onto deformations of both spheres ∆l = ∆l1 + ∆l2 proportionally to their compliances.
Displacement change ∆li generates force Fi = Ki∆li, where Ki assures proportionality and has physical
meaning and dimension of stiffness; Ki is related to the sphere material modulus Ei and some length l̃i
proportional to ri.

∆l = ∆l1 + ∆l2

Ki = Eil̃i

KN∆l = F = F1 = F2

KN (∆l1 + ∆l2) = F

KN

(
F

K1

+
F

K2

)
= F

K−1
1 + K−1

2 = K−1
N

KN =
K1K2

K1 + K2

KN =
E1l̃1E2l̃2

E1l̃1 + E2l̃2

The most used class computing interaction properties Ip2_FrictMat_FrictMat_FrictPhys uses l̃i = 2ri.
Some formulations define an equivalent cross-section Aeq, which in that case appears in the l̃i term as
Ki = Eil̃i = Ei

Aeq
li

. Such is the case for the concrete model (Ip2_CpmMat_CpmMat_CpmPhys), where
Aeq = min(r1, r2).
For reasons given above, no pretense about equality of particle-level Ei and macroscopic modulus E should
be made. Some formulations, such as [Hentz2003], introduce parameters to match them numerically.
This is not appropriate, in our opinion, since it binds those values to particular features of the sphere
arrangement that was used for calibration.

6.2.2 Other parameters

Non-elastic parameters differ for various material models. Usually, though, they are averaged from
the particles’ material properties, if it makes sense. For instance, Ip2_CpmMat_CpmMat_CpmPhys
averages most quantities, while Ip2_FrictMat_FrictMat_FrictPhys computes internal friction angle as
φ = min(φ1, φ2) to avoid friction with bodies that are frictionless.

6.3 Strain evaluation

In the general case, mutual configuration of two particles has 6 degrees of freedom (DoFs) just like a
beam in 3D space: both particles have 6 DoFs each, but the interaction itself is free to move and rotate
in space (with both spheres) having 6 DoFs itself; then 12− 6 = 6. They are shown at fig-spheres-dofs.

130 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

initial configuration

twisting (1DoF)

normal straining (1DoF) shearing (2 DoFs)

bending (2 DoFs)

Figure 6.3: Degrees of freedom of configuration of two spheres. Normal strain appears if there is a
difference of linear velocity along the interaction axis (n); shearing originates from the difference of
linear velocities perpendicular to n and from the part of ω1+ω2 perpendicular to n; twisting is caused
by the part of ω1 −ω2 parallel with n; bending comes from the part of ω1 −ω2 perpendicular to n.

We will only describe normal and shear components of strain in the following, leaving torsion and bending
aside. The reason is that most constitutive laws for contacts do not use the latter two.

6.3.1 Normal strain

Constants

Let us consider two spheres with initial centers C̄1, C̄2 and radii r1, r2 that enter into contact. The
order of spheres within the contact is arbitrary and has no influence on the behavior. Then we define
lengths

d0 = |C̄2 − C̄1|

d1 = r1 +
d0 − r1 − r2

2
, d2 = d0 − d1.

These quantities are constant throughout the life of the interaction and are computed only once when
the interaction is established. The distance d0 is the reference distance and is used for the conversion
of absolute displacements to dimensionless strain, for instance. It is also the distance where (for usual
contact laws) there is neither repulsive nor attractive force between the spheres, whence the name
equilibrium distance.

d0 = d1 + d2

C̄2C̄1

d1 d2

r1

r2

C̄

Figure 6.4: Geometry of the initial contact of 2 spheres; this case pictures spheres which already overlap
when the contact is created (which can be the case at the beginning of a simulation) for the sake of
generality. The initial contact point C̄ is in the middle of the overlap zone.

6.3. Strain evaluation 131

Yade Documentation, Release 1.07.0

Distances d1 and d2 define reduced (or expanded) radii of spheres; geometrical radii r1 and r2 are used
only for collision detection and may not be the same as d1 and d2, as shown in fig. fig-sphere-sphere.
This difference is exploited in cases where the average number of contacts between spheres should be
increased, e.g. to influence the response in compression or to stabilize the packing. In such case,
interactions will be created also for spheres that do not geometrically overlap based on the interaction
radius RI, a dimensionless parameter determining „non-locality“ of contact detection. For RI = 1, only
spheres that touch are considered in contact; the general condition reads

d0 ≤ RI(r1 + r2). (6.5)

The value of RI directly influences the average number of interactions per sphere (percolation), which
for some models is necessary in order to achieve realistic results. In such cases, Aabb (or P̃i predicates
in general) must be enlarged accordingly (Bo1_Sphere_Aabb.aabbEnlargeFactor).

Contact cross-section

Some constitutive laws are formulated with strains and stresses (Law2_ScGeom_CpmPhys_Cpm, the
concrete model described later, for instance); in that case, equivalent cross-section of the contact must
be introduced for the sake of dimensionality. The exact definition is rather arbitrary; the CPM model
(Ip2_CpmMat_CpmMat_CpmPhys) uses the relation

Aeq = πmin(r1, r2)2 (6.6)

which will be used to convert stresses to forces, if the constitutive law used is formulated in terms of
stresses and strains. Note that other values than π can be used; it will merely scale macroscopic packing
stiffness; it is only for the intuitive notion of a truss-like element between the particle centers that we
choose Aeq representing the circle area. Besides that, another function than min(r1, r2) can be used,
although the result should depend linearly on r1 and r2 so that the equation gives consistent results if
the particle dimensions are scaled.

Variables

The following state variables are updated as spheres undergo motion during the simulation (as C◦
1 and

C◦
2 change):

n◦ =
C◦

2 −C◦
1

|C◦
2 −C◦

1|
≡ ̂C◦

2 −C◦
1 (6.7)

and

C◦ = C◦
1 +

(
d1 −

d0 − |C◦
2 −C◦

1|

2

)
n. (6.8)

The contact point C◦ is always in the middle of the spheres’ overlap zone (even if the overlap is neg-
ative, when it is in the middle of the empty space between the spheres). The contact plane is always
perpendicular to the contact plane normal n◦ and passes through C◦.
Normal displacement and strain can be defined as

uN = |C◦
2 −C◦

1|− d0,

εN =
uN

d0

=
|C◦

2 −C◦
1|

d0

− 1.

Since uN is always aligned with n, it can be stored as a scalar value multiplied by n if necessary.
For massively compressive simulations, it might be beneficial to use the logarithmic strain, such that the
strain tends to −∞ (rather than −1) as centers of both spheres approach. Otherwise, repulsive force

132 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

would remain finite and the spheres could penetrate through each other. Therefore, we can adjust the
definition of normal strain as follows:

εN =

{
log

(
|C◦

2−C◦
1|

d0

)
if |C◦

2 −C◦
1| < d0

|C◦
2−C◦

1|

d0
− 1 otherwise.

Such definition, however, has the disadvantage of effectively increasing rigidity (up to infinity) of contacts,
requiring ∆t to be adjusted, lest the simulation becomes unstable. Such dynamic adjustment is possible
using a stiffness-based time-stepper (GlobalStiffnessTimeStepper in Yade).

6.3.2 Shear strain

In order to keep uT consistent (e.g. that uT must be constant if two spheres retain mutually constant
configuration but move arbitrarily in space), then either uT must track spheres’ spatial motion or must
(somehow) rely on sphere-local data exclusively.
Geometrical meaning of shear strain is shown in fig-shear-2d.

uT

C

n

Figure 6.5: Evolution of shear displacement uT due to mutual motion of spheres, both linear and
rotational. Left configuration is the initial contact, right configuration is after displacement and rotation
of one particle.

The classical incremental algorithm is widely used in DEM codes and is described frequently ([Lud-
ing2008], [Alonso2004]). Yade implements this algorithm in the ScGeom class. At each step, shear
displacement uT is updated; the update increment can be decomposed in 2 parts: motion of the inter-
action (i.e. C and n) in global space and mutual motion of spheres.

1. Contact moves dues to changes of the spheres’ positions C1 and C2, which updates current C◦

and n◦ as per (6.8) and (6.7). u−
T is perpendicular to the contact plane at the previous step n−

and must be updated so that u−
T + (∆uT) = u◦

T ⊥ n◦; this is done by perpendicular projection to
the plane first (which might decrease |uT |) and adding what corresponds to spatial rotation of the
interaction instead:

(∆uT)1 = −u−
T × (n− × n◦)

(∆uT)2 = −u−
T ×

(
∆t

2
n◦ · (ω⊖

1 +ω⊖
2)

)
n◦

2. Mutual movement of spheres, using only its part perpendicular to n◦; v12 denotes mutual velocity
of spheres at the contact point:

v12 =
(
v⊖2 +ω−

2 × (−d2n
◦)
)
−
(
v⊖1 +ω⊖

1 × (d1n
◦)
)

v⊥12 = v12 − (n◦ · v12)n◦

(∆uT)3 = −∆tv⊥12

6.3. Strain evaluation 133

Yade Documentation, Release 1.07.0

Finally, we compute

u◦
T = u−

T + (∆uT)1 + (∆uT)2 + (∆uT)3.

6.4 Stress evaluation (example)

Once strain on a contact is computed, it can be used to compute stresses/forces acting on both spheres.
The constitutive law presented here is the most usual DEM formulation, originally proposed by Cundall.
While the strain evaluation will be similar to algorithms described in the previous section regardless
of stress evaluation, stress evaluation itself depends on the nature of the material being modeled. The
constitutive law presented here is the most simple non-cohesive elastic case with dry friction, which Yade
implements in Law2_ScGeom_FrictPhys_CundallStrack (all constitutive laws derive from base class
LawFunctor).
In DEM generally, some constitutive laws are expressed using strains and stresses while others prefer
displacement/force formulation. The law described here falls in the latter category.
When new contact is established (discussed in Engines) it has its properties (IPhys) computed from
Materials associated with both particles. In the simple case of frictional material FrictMat, Ip2_-
FrictMat_FrictMat_FrictPhys creates a new FrictPhys instance, which defines normal stiffness KN,
shear stiffness KT and friction angle φ.
At each step, given normal and shear displacements uN, uT , normal and shear forces are computed (if
uN > 0, the contact is deleted without generating any forces):

FN = KNuNn,

FtT = KTuT

where FN is normal force and FT is trial shear force. A simple non-associated stress return algorithm is
applied to compute final shear force

FT =

{
FtT

|FN| tan φ

Ft
T

if |FT | > |FN| tanφ,

FtT otherwise.

Summary force F = FN + FT is then applied to both particles – each particle accumulates forces and
torques acting on it in the course of each step. Because the force computed acts at contact point C,
which is difference from spheres’ centers, torque generated by F must also be considered.

F1+ = F F2+ = −F

T1+ = d1(−n)× F T2+ = d2n× F.

6.5 Motion integration

Each particle accumulates generalized forces (forces and torques) from the contacts in which it partici-
pates. These generalized forces are then used to integrate motion equations for each particle separately;
therefore, we omit i indices denoting the i-th particle in this section.
The customary leapfrog scheme (also known as the Verlet scheme) is used, with some adjustments for
rotation of non-spherical particles, as explained below. The “leapfrog” name comes from the fact that
even derivatives of position/orientation are known at on-step points, whereas odd derivatives are known
at mid-step points. Let us recall that we use a−, a◦, a+ for on-step values of a at t− ∆t, t and t+ ∆t

respectively; and a⊖, a⊕ for mid-step values of a at t− ∆t/2, t+ ∆t/2.
Described integration algorithms are implemented in the NewtonIntegrator class in Yade.

134 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

6.5.1 Position

Integrating motion consists in using current acceleration ü◦ on a particle to update its position from the
current value u◦ to its value at the next timestep u+. Computation of acceleration, knowing current
forces F acting on the particle in question and its mass m, is simply

ü◦ = F/m.

Using the 2nd order finite difference with step ∆t, we obtain

ü◦ ∼=
u− − 2u◦ + u+

∆t2

from which we express

u+ = 2u◦ − u− + ü◦
∆t2 =

= u◦ + ∆t

(
u◦ − u−

∆t
+ ü◦

∆t

)
︸ ︷︷ ︸

(†)

.

Typically, u− is already not known (only u◦ is); we notice, however, that

u̇⊖ ≃ u◦ − u−

∆t
,

i.e. the mean velocity during the previous step, which is known. Plugging this approximate into the (†)
term, we also notice that mean velocity during the current step can be approximated as

u̇⊕ ≃ u̇⊖ + ü◦
∆t,

which is (†); we arrive finally at

u+ = u◦ + ∆t
(
u̇
⊖ + ü

◦
∆t

)
.

The algorithm can then be written down by first computing current mean velocity u̇
⊕ which we need to

store for the next step (just as we use its old value u̇⊖ now), then computing the position for the next
time step u+:

u̇
⊕ = u̇

⊖ + ü
◦
∆t

u+ = u◦ + u̇
⊕
∆t.

Positions are known at times i∆t (if ∆t is constant) while velocities are known at i∆t+ ∆t
2
. The facet that

they interleave (jump over each other) in such way gave rise to the colloquial name “leapfrog” scheme.

6.5.2 Orientation (spherical)

Updating particle orientation q◦ proceeds in an analogous way to position update. First, we compute
current angular acceleration ω̇

◦ from known current torque T . For spherical particles where the inertia
tensor is diagonal in any orientation (therefore also in current global orientation), satisfying I11 = I22 =
I33, we can write

ω̇◦
i = T i/I11,

6.5. Motion integration 135

Yade Documentation, Release 1.07.0

We use the same approximation scheme, obtaining an equation analogous to (??)

ω⊕ = ω⊖ + ∆tω̇
◦
.

The quaternion ∆q representing rotation vector ω⊕∆t is constructed, i.e. such that

(∆q)ϑ = |ω⊕|,

(∆q)u = ω̂⊕

Finally, we compute the next orientation q+ by rotation composition

q+ = ∆qq◦.

6.5.3 Orientation (aspherical)

Integrating rotation of aspherical particles is considerably more complicated than their position, as their
local reference frame is not inertial. Rotation of rigid body in the local frame, where inertia matrix I is
diagonal, is described in the continuous form by Euler’s equations (i ∈ {1, 2, 3} and i, j, k are subsequent
indices):

T i = Iiiω̇i + (Ikk − Ijj)ωjωk.

Due to the presence of the current values of both ω and ω̇, they cannot be solved using the standard
leapfrog algorithm (that was the case for translational motion and also for the spherical bodies’ rotation
where this equation reduced to T = Iω̇).
The algorithm presented here is described by [Allen1989] (pg. 84–89) and was designed by Fincham
for molecular dynamics problems; it is based on extending the leapfrog algorithm by mid-step/on-step
estimators of quantities known at on-step/mid-step points in the basic formulation. Although it has
received criticism and more precise algorithms are known ([Omelyan1999], [Neto2006], [Johnson2008]),
this one is currently implemented in Yade for its relative simplicity.
Each body has its local coordinate system based on the principal axes of inertia for that body. We use •̃ to
denote vectors in local coordinates. The orientation of the local system is given by the current particle’s
orientation q◦ as a quaternion; this quaternion can be expressed as the (current) rotation matrix A.
Therefore, every vector a is transformed as ã = qaq∗ = Aa. Since A is a rotation (orthogonal) matrix,
the inverse rotation A−1 = AT .
For given particle in question, we know

• Ĩ
◦
(constant) inertia matrix; diagonal, since in local, principal coordinates,

• T◦ external torque,
• q◦ current orientation (and its equivalent rotation matrix A),
• ω⊖ mid-step angular velocity,
• L⊖ mid-step angular momentum; this is an auxiliary variable that must be tracked in addition for

use in this algorithm. It will be zero in the initial step.
Our goal is to compute new values of the latter three, that is L⊕, q+, ω⊕. We first estimate current
angular momentum and compute current local angular velocity:

L◦ = L⊖ + T◦∆t

2
, L̃

◦
= AL◦,

L⊕ = L⊖ + T◦∆t, L̃
⊕
= AL⊕,

ω̃
◦
= Ĩ

◦−1L̃
◦
,

ω̃
⊕
= Ĩ

◦−1L̃
⊕
.

136 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

Then we compute q̇◦, using q◦ and ω̃
◦:

q̇◦
w

q̇◦
x

q̇◦
y

q̇◦
z

 =
1

2


q◦
w −q◦

x −q◦
y −q◦

z

q◦
x q◦

w −q◦
z q◦

y

q◦
y q◦

z q◦
w −q◦

x

q◦
z −q◦

y q◦
x q◦

w




0

ω̃
◦
x

ω̃
◦
y

ω̃
◦
z

 ,

q⊕ = q◦ + q̇◦∆t

2
.

We evaluate q̇⊕ from q⊕ and ω̃
⊕ in the same way as in (??) but shifted by ∆t/2 ahead. Then we can

finally compute the desired values

q+ = q◦ + q̇⊕∆t,

ω⊕ = A−1ω̃
⊕

6.5.4 Clumps (rigid aggregates)

DEM simulations frequently make use of rigid aggregates of particles to model complex shapes [Price2007]
called clumps, typically composed of many spheres. Dynamic properties of clumps are computed from
the properties of its members: the clump’s mass mc is summed over members, the inertia tensor Ic with
respect to the clump’s centroid is computed using the parallel axes theorem; local axes are oriented such
that they are principal and inertia tensor is diagonal and clump’s orientation is changed to compensate
rotation of the local system, as to not change the clump members’ positions in global space. Initial
positions and orientations of all clump members in local coordinate system are stored.
In Yade (class Clump), clump members behave as stand-alone particles during simulation for purposes of
collision detection and contact resolution, except that they have no contacts created among themselves
within one clump. It is at the stage of motion integration that they are treated specially. Instead of inte-
grating each of them separately, forces/torques on those particles Fi, T i are converted to forces/torques
on the clump itself. Let us denote ri relative position of each particle with regards to clump’s centroid,
in global orientation. Then summary force and torque on the clump are

Fc =
∑

Fi,

Tc =
∑

ri × Fi + Ti.

Motion of the clump is then integrated, using aspherical rotation integration. Afterwards, clump members
are displaced in global space, to keep their initial positions and orientations in the clump’s local coordinate
system. In such a way, relative positions of clump members are always the same, resulting in the behavior
of a rigid aggregate.

6.5.5 Numerical damping

In simulations of quasi-static phenomena, it it desirable to dissipate kinetic energy of particles. Since most
constitutive laws (including Law_ScGeom_FrictPhys_Basic shown above, Stress evaluation (example))
do not include velocity-based damping (such as one in [Addetta2001]), it is possible to use artificial
numerical damping. The formulation is described in [Pfc3dManual30], although our version is slightly
adapted. The basic idea is to decrease forces which increase the particle velocities and vice versa by
(∆F)d, comparing the current acceleration sense and particle velocity sense. This is done by component,
which makes the damping scheme clearly non-physical, as it is not invariant with respect to coordinate
system rotation; on the other hand, it is very easy to compute. Cundall proposed the form (we omit
particle indices i since it applies to all of them separately):

(∆F)dw
Fw

= −λd sgn(Fwu̇⊖
w), w ∈ {x, y, z}

where λd is the damping coefficient. This formulation has several advantages [Hentz2003]:

6.5. Motion integration 137

Yade Documentation, Release 1.07.0

• it acts on forces (accelerations), not constraining uniform motion;
• it is independent of eigenfrequencies of particles, they will be all damped equally;
• it needs only the dimensionless parameter λd which does not have to be scaled.

In Yade, we use the adapted form

(∆F)dw
Fw

= −λd sgn Fw
(
u̇⊖
w +

ü◦
w∆t

2

)
︸ ︷︷ ︸

≃u̇◦
w

,
(6.9)

where we replaced the previous mid-step velocity u̇⊖ by its on-step estimate in parentheses. This is to
avoid locked-in forces that appear if the velocity changes its sign due to force application at each step,
i.e. when the particle in question oscillates around the position of equilibrium with 2∆t period.
In Yade, damping (6.9) is implemented in the NewtonIntegrator engine; the damping coefficient λd is
NewtonIntegrator.damping.

6.5.6 Stability considerations

Critical timestep

In order to ensure stability for the explicit integration sceheme, an upper limit is imposed on ∆t:

∆tcr =
2

ωmax
(6.10)

where ωmax is the highest eigenfrequency within the system.

Single mass-spring system

Single 1D mass-spring system with mass m and stiffness K is governed by the equation

mẍ = −Kx

where x is displacement from the mean (equilibrium) position. The solution of harmonic oscillation is
x(t) = A cos(ωt+φ) where phase φ and amplitude A are determined by initial conditions. The angular
frequency

ω(1) =

√
K

m
(6.11)

does not depend on initial conditions. Since there is one single mass, ω(1)
max = ω(1). Plugging (6.11) into

(6.10), we obtain

∆t(1)cr = 2/ω(1)
max = 2

√
m/K

for a single oscillator.

General mass-spring system

In a general mass-spring system, the highest frequency occurs if two connected masses mi, mj are in
opposite motion; let us suppose they have equal velocities (which is conservative) and they are connected
by a spring with stiffness Ki: displacement ∆xi of mi will be accompained by ∆xj = −∆xi of mj, giving

138 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

∆Fi = −Ki(∆xi − (−∆xi)) = −2Ki∆xi. That results in apparent stiffness K(2)
i = 2Ki, giving maximum

eigenfrequency of the whole system

ωmax = max
i

√
K
(2)
i /mi.

The overall critical timestep is then

∆tcr =
2

ωmax
= min

i
2

√
mi

K
(2)
i

= min
i

2

√
mi

2Ki

= min
i

√
2

√
mi

Ki

. (6.12)

This equation can be used for all 6 degrees of freedom (DOF) in translation and rotation, by considering
generalized mass and stiffness matrices M and K, and replacing fractions mi

Ki
by eigen values of M.K−1.

The critical timestep is then associated to the eigen mode with highest frequency :

∆tcr = min∆tcrk, k ∈ {1, ..., 6}. (6.13)

DEM simulations

In DEM simulations, per-particle stiffness Kij is determined from the stiffnesses of contacts in which
it participates [Chareyre2005]. Suppose each contact has normal stiffness KNk, shear stiffness KTk =
ξKNk and is oriented by normal nk. A translational stiffness matrix Kij can be defined as the sum of
contributions of all contacts in which it participates (indices k), as

Kij =
∑
k

(KNk − KTk)ninj + KTk =
∑
j

KNk ((1− ξ)ninj + ξ) (6.14)

with i and j ∈ {x, y, z}. Equations (6.13) and (6.14) determine ∆tcr in a simulation. A similar approach
generalized to all 6 DOFs is implemented by the GlobalStiffnessTimeStepper engine in Yade. The
derivation of generalized stiffness including rotational terms is very similar but not developped here, for
simplicity. For full reference, see “PFC3D - Theoretical Background”.
Note that for computation efficiency reasons, eigenvalues of the stiffness matrices are not computed.
They are only approximated assuming than DOF’s are uncoupled, and using diagonal terms of K.M−1.
They give good approximates in typical mechanical systems.
There is one important condition thatωmax > 0: if there are no contacts between particles andωmax = 0,
we would obtain value ∆tcr = ∞. While formally correct, this value is numerically erroneous: we were
silently supposing that stiffness remains constant during each timestep, which is not true if contacts are
created as particles collide. In case of no contact, therefore, stiffness must be pre-estimated based on
future interactions, as shown in the next section.

Estimation of ∆tcr by wave propagation speed

Estimating timestep in absence of interactions is based on the connection between interaction stiffnesses
and the particle’s properties. Note that in this section, symbols E and ρ refer exceptionally to Young’s
modulus and density of particles, not of macroscopic arrangement.
In Yade, particles have associated Material which defines density ρ (Material.density), and also may
define (in ElastMat and derived classes) particle’s “Young’s modulus” E (ElastMat.young). ρ is used
when particle’s mass m is initially computed from its ρ, while E is taken in account when creating new
interaction between particles, affecting stiffness KN. Knowing m and KN, we can estimate (6.14) for
each particle; we obviously neglect

• number of interactions per particle Ni; for a “reasonable” radius distribution, however, there is a
geometrically imposed upper limit (6 for a 2D-packing of spheres with equal radii, for instance);

• the exact relationship the between particles’ rigidities Ei, Ej, supposing only that KN is somehow
proportional to them.

6.5. Motion integration 139

Yade Documentation, Release 1.07.0

By defining E and ρ, particles have continuum-like quantities. Explicit integration schemes for continuum
equations impose a critical timestep based on sonic speed

√
E/ρ; the elastic wave must not propagate

farther than the minimum distance of integration points lmin during one step. Since E, ρ are parameters
of the elastic continuum and lmin is fixed beforehand, we obtain

∆t(c)cr = lmin

√
ρ

E
.

For our purposes, we define E and ρ for each particle separately; lmin can be replaced by the sphere’s
radius Ri; technically, lmin = 2Ri could be used, but because of possible interactions of spheres and facets
(which have zero thickness), we consider lmin = Ri instead. Then

∆t(p)cr = min
i

Ri

√
ρi

Ei

.

This algorithm is implemented in the utils.PWaveTimeStep function.
Let us compare this result to (6.12); this necessitates making several simplifying hypotheses:

• all particles are spherical and have the same radius R;
• the sphere’s material has the same E and ρ

• the average number of contacts per sphere is N;
• the contacts have sufficiently uniform spatial distribution around each particle;
• the ξ = KN/KT ratio is constant for all interactions;
• contact stiffness KN is computed from E using a formula of the form

KN = Eπ ′R ′, (6.15)

where π ′ is some constant depending on the algorithm in usefootnote{For example, π ′ = π/2

in the concrete particle model (Ip2_CpmMat_CpmMat_CpmPhys), while π ′ = 2 in the classical
DEMmodel (Ip2_FrictMat_FrictMat_FrictPhys) as implemented in Yade.} and R ′ is half-distance
between spheres in contact, equal to R for the case of interaction radius RI = 1. If RI = 1 (and
R ′ ≡ R by consequence), all interactions will have the same stiffness KN. In other cases, we will
consider KN as the average stiffness computed from average R ′ (see below).

As all particles have the same parameters, we drop the i index in the following formulas.
We try to express the average per-particle stiffness from (6.14). It is a sum over all interactions where KN

and ξ are scalars that will not rotate with interaction, while nw is w-th component of unit interaction
normal n. Since we supposed uniform spatial distribution, we can replace n2

w by its average value n2
w.

Recognizing components of n as direction cosines, the average values of n2
w is 1/3. %we find the average

value by integrating over all possible orientations, which are uniformly distributed in space:
Moreover, since all directions are equal, we can write the per-body stiffness as K = Kw for all w ∈ {x, y, z}.
We obtain

K =
∑

KN

(
(1− ξ)

1

3
+ ξ

)
=

∑
KN

1− 2ξ

3

and can put constant terms (everything) in front of the summation.
∑

1 equals the number of contacts
per sphere, i.e. N. Arriving at

K = NKN

1− 2ξ

3
,

140 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

we substitute K into (6.12) using (6.15):

∆tcr =
√
2

√
m

K
=

√
2

√
4
3
πR3ρ

NEπ ′R1−2ξ
3

= R

√
ρ

E︸ ︷︷ ︸
∆t

(p)
cr

2

√
π/π ′

N(1− 2ξ)
.

The ratio of timestep ∆t
(p)
cr predicted by the p-wave velocity and numerically stable timestep ∆tcr is the

inverse value of the last (dimensionless) term:

∆t
(p)
cr

∆tcr
= 2

√
N(1+ ξ)

π/π ′ .

Actual values of this ratio depend on characteristics of packing N, KN/KT = ξ ratio and the way of
computing contact stiffness from particle rigidity. Let us show it for two models in Yade:
Concrete particle model computes contact stiffness from the equivalent area Aeq first (6.6),

Aeq = πR2KN =
AeqE

d0

.

d0 is the initial contact length, which will be, for interaction radius (6.5) RI > 1, in average
larger than 2R. For RI = 1.5 (sect. sect-calibration-elastic-properties), we can roughly estimate
d0 = 1.25 · 2R = 5

2
R, getting

KN = E

(
2

5
π

)
R

where 2
5
π = π ′ by comparison with (6.15).

Interaction radius RI = 1.5 leads to average N ≈ 12 interactions per sphere for dense packing of
spheres with the same radius R. ξ = 0.2 is calibrated (sect. sect-calibration-elastic-properties) to
match the desired macroscopic Poisson’s ratio ν = 0.2.
Finally, we obtain the ratio

∆t
(p)
cr

∆tcr
= 2

√
12(1− 2 · 0.2)

π
(2/5)π

= 3.39,

showing significant overestimation by the p-wave algorithm.
Non-cohesive dry friction model is the basic model proposed by Cundall explained in Stress evalu-

ation (example). Supposing almost-constant sphere radius R and rather dense packing, each sphere
will have N = 6 interactions on average (that corresponds to maximally dense packing of spheres
with a constant radius). If we use the Ip2_FrictMat_FrictMat_FrictPhys class, we have π ′ = 2,
as KN = E2R; we again use ξ = 0.2 (for lack of a more significant value). In this case, we obtain
the result

∆t
(p)
cr

∆tcr
= 2

√
6(1− 2 · 0.2)

π/2
= 3.02

which again overestimates the numerical critical timestep.
To conclude, p-wave timestep gives estimate proportional to the real ∆tcr, but in the cases shown, the
value of about ∆t = 0.3∆t

(p)
cr should be used to guarantee stable simulation.

6.5. Motion integration 141

Yade Documentation, Release 1.07.0

Non-elastic ∆t constraints

Let us note at this place that not only ∆tcr assuring numerical stability of motion integration is a
constraint. In systems where particles move at relatively high velocities, position change during one
timestep can lead to non-elastic irreversible effects such as damage. The ∆t needed for reasonable result
can be lower ∆tcr. We have no rigorously derived rules for such cases.

6.6 Periodic boundary conditions

While most DEM simulations happen in R3 space, it is frequently useful to avoid boundary effects by
using periodic space instead. In order to satisfy periodicity conditions, periodic space is created by
repetition of parallelepiped-shaped cell. In Yade, periodic space is implemented in the Cell class. The
geometry of the cell in the reference coordinates system is defined by three edges of the parallepiped.
The corresponding base vectors are stored in the columns of matrix H (Cell.hSize).
The initial H can be explicitly defined as a 3x3 matrix at the beginning of the simulation. There are no
restricitions on the possible shapes: any parallelepiped is accepted as the initial cell. If the base vectors
are axis-aligned, defining only their sizes can be more convenient than defining the full H matrix; in that
case it is enough to define the norms of columns in H (see Cell.size).
After the definition of the initial cell’s geometry, H should generally not be modified by direct assignment.
Instead, its deformation rate will be defined via the velocity gradient Cell.velGrad described below. It
is the only variable that let the period deformation be correctly accounted for in constitutive laws and
Newton integrator (NewtonIntegrator).

6.6.1 Deformations handling

The deformation of the cell over time is defined via a matrix representing the gradient of an homoge-
neous velocity field ∇v (Cell.velGrad). This gradient represents arbitrary combinations of rotations and
stretches. It can be imposed externaly or updated by boundary controllers (see PeriTriaxController or
Peri3dController) in order to reach target strain values or to maintain some prescribed stress.
The velocity gradient is integrated automatically over time, and the cumulated transformation is reflected
in the transformation matrix F (Cell.trsf) and the current shape of the cellH. The per-step transformation
update reads (it is similar for H), with I the identity matrix:

F+ = (I+∇v∆t)F◦.

F can be set back to identity at any point in simulations, in order to define the current state as reference
for strains definition in boundary controllers. It will have no effect on H.
Along with the automatic integration of cell transformation, there is an option to homothetically displace
all particles so that ∇v is applied over the whole simulation (enabled via Cell.homoDeform). This avoids
all boundary effects coming from change of the velocity gradient.

6.6.2 Collision detection in periodic cell

In usual implementations, particle positions are forced to be inside the cell by wrapping their positions
if they get over the boundary (so that they appear on the other side). As we wanted to avoid abrupt
changes of position (it would make particle’s velocity inconsistent with step displacement change), a
different method was chosen.

Approximate collision detection

Pass 1 collision detection (based on sweep and prune algorithm, sect. Sweep and prune) operates on
axis-aligned bounding boxes (Aabb) of particles. During the collision detection phase, bounds of all

142 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

Aabb’s are wrapped inside the cell in the first step. At subsequent runs, every bound remembers by how
many cells it was initially shifted from coordinate given by the Aabb and uses this offset repeatedly as
it is being updated from Aabb during particle’s motion. Bounds are sorted using the periodic insertion
sort algorithm (sect. Periodic insertion sort algorithm), which tracks periodic cell boundary ||.
Upon inversion of two Aabb‘s, their collision along all three axes is checked, wrapping real coordinates
inside the cell for that purpose.
This algorithm detects collisions as if all particles were inside the cell but without the need of constructing
“ghost particles” (to represent periodic image of a particle which enters the cell from the other side) or
changing the particle’s positions.
It is required by the implementation (and partly by the algorithm itself) that particles do not span more
than half of the current cell size along any axis; the reason is that otherwise two (or more) contacts
between both particles could appear, on each side. Since Yade identifies contacts by Body.id of both
bodies, they would not be distinguishable.
In presence of shear, the sweep-and-prune collider could not sort bounds independently along three axes:
collision along x axis depends on the mutual position of particles on the y axis. Therefore, bounding boxes
are expressed in transformed coordinates which are perpendicular in the sense of collision detection. This
requires some extra computation: Aabb of sphere in transformed coordinates will no longer be cube,
but cuboid, as the sphere itself will appear as ellipsoid after transformation. Inversely, the sphere in
simulation space will have a parallelepiped bounding “box”, which is cuboid around the ellipsoid in
transformed axes (the Aabb has axes aligned with transformed cell basis). This is shown in fig. fig-cell-
shear-aabb.
The restriction of a single particle not spanning more than half of the transformed axis becomes stringent
as Aabb is enlarged due to shear. Considering Aabb of a sphere with radius r in the cell where x ′ ≡ x,
z ′ ≡ z, but ̸ (y, y ′) = φ, the x-span of the Aabb will be multiplied by 1/ cosφ. For the infinite shear
φ → π/2, which can be desirable to simulate, we have 1/ cosφ → ∞. Fortunately, this limitation can be
easily circumvented by realizing the quasi-identity of all periodic cells which, if repeated in space, create
the same grid with their corners: the periodic cell can be flipped, keeping all particle interactions intact,
as shown in fig. fig-cell-flip. It only necessitates adjusting the Interaction.cellDist of interactions and
re-initialization of the collider (Collider::invalidatePersistentData). Cell flipping is implemented
in the utils.flipCell function.

y ′
1

y ′
2

x ′
1 x ′

2 ≡ x ′
1

ϕ1

y y
ϕ2

Figure 6.6: Flipping cell (utils.flipCell) to avoid infinite stretch of the bounding boxes’ spans with
growing φ. Cell flip does not affect interactions from the point of view of the simulation. The periodic
arrangement on the left is the same as the one on the right, only the cell is situated differently between
identical grid points of repetition; at the same time |φ2| < |φ1| and sphere bounding box’s x-span
stretched by 1/ cosφ becomes smaller. Flipping can be repeated, making effective infinite shear possible.

This algorithm is implemented in InsertionSortCollider and is used whenever simulation is periodic
(Omega.isPeriodic); individual BoundFunctor’s are responsible for computing sheared Aabb’s; currently
it is implemented for spheres and facets (in Bo1_Sphere_Aabb and Bo1_Facet_Aabb respectively).

6.6. Periodic boundary conditions 143

Yade Documentation, Release 1.07.0

y ≡ y ′ y y ′

x ≡ x ′ x

x ′

Figure 6.7: Constructing axis-aligned bounding box (Aabb) of a sphere in simulation space coordinates
(without periodic cell – left) and transformed cell coordinates (right), where collision detection axes x ′,
y ′ are not identical with simulation space axes x, y. Bounds’ projection to axes is shown by orange lines.

Exact collision detection

When the collider detects approximate contact (on the Aabb level) and the contact does not yet exist,
it creates potential contact, which is subsequently checked by exact collision algorithms (depending
on the combination of Shapes). Since particles can interact over many periodic cells (recall we never
change their positions in simulation space), the collider embeds the relative cell coordinate of particles
in the interaction itself (Interaction.cellDist) as an integer vector c. Multiplying current cell size Ts by c

component-wise, we obtain particle offset ∆x in aperiodic R3; this value is passed (from InteractionLoop)
to the functor computing exact collision (IGeomFunctor), which adds it to the position of the particle
Interaction.id2.
By storing the integral offset c, ∆x automatically updates as cell parameters change.

Periodic insertion sort algorithm

The extension of sweep and prune algorithm (described in Sweep and prune) to periodic boundary
conditions is non-trivial. Its cornerstone is a periodic variant of the insertion sort algorithm, which
involves keeping track of the “period” of each boundary; e.g. taking period ⟨0, 10), then 81 ≡ −22 < 22
(subscript indicating period). Doing so efficiently (without shuffling data in memory around as bound
wraps from one period to another) requires moving period boundary rather than bounds themselves and
making the comparison work transparently at the edge of the container.
This algorithm was also extended to handle non-orthogonal periodic Cell boundaries by working in trans-
formed rather than Cartesian coordinates; this modifies computation of Aabb from Cartesian coordinates
in which bodies are positioned (treated in detail in Approximate collision detection).
The sort algorithm is tracking Aabb extrema along all axes. At the collider’s initialization, each value is
assigned an integral period, i.e. its distance from the cell’s interior expressed in the cell’s dimension along
its respective axis, and is wrapped to a value inside the cell. We put the period number in subscript.
Let us give an example of coordinate sequence along x axis (in a real case, the number of elements would
be even, as there is maximum and minimum value couple for each particle; this demonstration only
shows the sorting algorithm, however.)

41 122 || −12 −24 50

with cell x-size sx = 10. The 41 value then means that the real coordinate xi of this extremum is
xi + 1 · 10 = 4, i.e. xi = −4. The || symbol denotes the periodic cell boundary.
Sorting starts from the first element in the cell, i.e. right of ||, and inverts elements as in the aperiodic
variant. The rules are, however, more complicated due to the presence of the boundary ||:

144 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

(≤) stop inverting if neighbors are ordered;
(||•) current element left of || is below 0 (lower period boundary); in this case, decrement element’s

period, decrease its coordinate by sx and move || right;
(•||) current element right of || is above sx (upper period boundary); increment element’s period,

increase its coordinate by sx and move || left;
(||<) inversion across || must subtract sx from the left coordinate during comparison. If the elements

are not in order, they are swapped, but they must have their periods changed as they traverse
||. Apply (||◦) if necessary;

(||◦) if after (||<) the element that is now right of || has xi < sx, decrease its coordinate by sx and
decrement its period. Do not move ||.

In the first step, (||•) is applied, and inversion with 122 happens; then we stop because of (≤):

41 122 || −12 −24 50,

41 122 91
̸≤

jj || −24 50,

41 91
≤

ii 122 || −24 50.

We move to next element −24 ; first, we apply (||•), then invert until (≤):

41 91 122 || −24 50,

41 91 122 83
̸≤

jj || 50,

41 91 83
̸≤

ii 122 || 50,

41 83
≤

ii 91 122 || 50.

The next element is 50 ; we satisfy (||<), therefore instead of comparing 122 > 50, we must do (122−sx) =

23 ≤ 5; we adjust periods when swapping over || and apply (||◦), turning 122 into 23; then we keep
inverting, until (≤):

41 83 91 122 || 50 ,
̸≤

jj

41 83 91 5−1

̸≤
jj || 23,

41 83 5−1

̸≤
jj 91 || 23,

41 5−1

≤
ii 83 91 || 23.

We move (wrapping around) to 41 , which is ordered:

41

≥

885−1 83 91 || 23

and so is the last element

41 5−1

≤
ii 83 91 || 23.

6.6. Periodic boundary conditions 145

Yade Documentation, Release 1.07.0

6.7 Computational aspects

6.7.1 Cost

The DEM computation using an explicit integration scheme demands a relatively high number of steps
during simulation, compared to implicit scehemes. The total computation time Z of simulation spanning
T seconds (of simulated time), containing N particles in volume V depends on:

• linearly, the number of steps i = T/(st∆tcr), where st is timestep safety factor; ∆tcr can be estimated
by p-wave velocity using E and ρ (sect. Estimation of by wave propagation speed) as ∆t(p)cr = r

√
ρ
E
.

Therefore

i =
T

str

√
E

ρ
.

• the number of particles N; for fixed value of simulated domain volume V and particle radius r

N = p
V

4
3
πr3

,

where p is packing porosity, roughly 1
2
for dense irregular packings of spheres of similar radius.

The dependency is not strictly linear (which would be the best case), as some algorithms do not
scale linearly; a case in point is the sweep and prune collision detection algorithm introduced in
sect. Sweep and prune, with scaling roughly O(N logN).
The number of interactions scales with N, as long as packing characteristics are the same.

• the number of computational cores ncpu; in the ideal case, the dependency would be inverse-linear
were all algorithms parallelized (in Yade, collision detection is not).

Let us suppose linear scaling. Additionally, let us suppose that the material to be simulated (E, ρ) and
the simulation setup (V, T) are given in advance. Finally, dimensionless constants st, p and ncpu will
have a fixed value. This leaves us with one last degree of freedom, r. We may write

Z ∝ iN
1

ncpu
=

T

str

√
E

ρ
p

V
4
3
πr3

1

ncpu
∝ 1

r

1

r3
=

1

r4
.

This (rather trivial) result is essential to realize DEM scaling; if we want to have finer results, refining
the “mesh” by halving r, the computation time will grow 24 = 16 times.
For very crude estimates, one can use a known simulation to obtain a machine “constant”

µ =
Z

Ni

with the meaning of time per particle and per timestep (in the order of 10−6 s for current machines).
µ will be only useful if simulation characteristics are similar and non-linearities in scaling do not have
major influence, i.e. N should be in the same order of magnitude as in the reference case.

6.7.2 Result indeterminism

It is naturally expected that running the same simulation several times will give exactly the same results:
although the computation is done with finite precision, round-off errors would be deterministically the
same at every run. While this is true for single-threaded computation where exact order of all operations

146 Chapter 6. DEM Background

Yade Documentation, Release 1.07.0

is given by the simulation itself, it is not true anymore in multi-threaded computation which is described
in detail in later sections.
The straight-forward manner of parallel processing in explicit DEM is given by the possibility of treating
interactions in arbitrary order. Strain and stress is evaluated for each interaction independently, but
forces from interactions have to be summed up. If summation order is also arbitrary (in Yade, forces are
accumulated for each thread in the order interactions are processed, then summed together), then the
results can be slightly different. For instance

(1/10.)+(1/13.)+(1/17.)=0.23574660633484162
(1/17.)+(1/13.)+(1/10.)=0.23574660633484165

As forces generated by interactions are assigned to bodies in quasi-random order, summary force Fi on
the body can be different between single-threaded and multi-threaded computations, but also between
different runs of multi-threaded computation with exactly the same parameters. Exact thread scheduling
by the kernel is not predictable since it depends on asynchronous events (hardware interrupts) and other
unrelated tasks running on the system; and it is thread scheduling that ultimately determines summation
order of force contributions from interactions.

Numerical damping influence

The effect of summation order can be significantly amplified by the usage of a discontinuous damping
function in NewtonIntegrator given in (6.9) as

(∆F)dw
Fw

= −λd sgn Fw
(
u̇⊖
w +

ü
◦
w∆t

2

)
.

If the sgn argument is close to zero then the least significant finite precision artifact can determine whether
the equation (relative increment of Fw) is +λd or −λd. Given commonly used values of λd = 0.4, it
means that such artifact propagates from least significant place to the most significant one at once.

6.7. Computational aspects 147

Yade Documentation, Release 1.07.0

148 Chapter 6. DEM Background

Chapter 7

Class reference (yade.wrapper
module)

7.1 Bodies

7.1.1 Body

class yade.wrapper.Body((object)arg1)
A particle, basic element of simulation; interacts with other bodies.
aspherical(=false)

Whether this body has different inertia along principal axes; NewtonIntegrator makes use of
this flag to call rotation integration routine for aspherical bodies, which is more expensive.

bound(=uninitalized)
Bound, approximating volume for the purposes of collision detection.

bounded(=true)
Whether this body should have Body.bound created. Note that bodies without a bound do
not participate in collision detection. (In c++, use Body::isBounded/Body::setBounded)

chain
Returns Id of chain to which the body belongs.

clumpId
Id of clump this body makes part of; invalid number if not part of clump; see
Body::isStandalone, Body::isClump, Body::isClumpMember properties.
Not meant to be modified directly from Python, use O.bodies.appendClumped instead.

dict() → dict
Return dictionary of attributes.

dynamic(=true)
Whether this body will be moved by forces. (In c++, use
Body::isDynamic/Body::setDynamic)

flags(=FLAG_BOUNDED)
Bits of various body-related flags. Do not access directly. In c++, use isDy-
namic/setDynamic, isBounded/setBounded, isAspherical/setAspherical. In python, use
Body.dynamic, Body.bounded, Body.aspherical.

groupMask(=1)
Bitmask for determining interactions.

149

Yade Documentation, Release 1.07.0

id(=Body::ID_NONE)
Unique id of this body.

intrs() → list
Return all interactions in which this body participates.

isClump
True if this body is clump itself, false otherwise.

isClumpMember
True if this body is clump member, false otherwise.

isStandalone
True if this body is neither clump, nor clump member; false otherwise.

iterBorn
Returns step number at which the body was added to simulation.

mask
Shorthand for Body::groupMask

mat
Shorthand for Body::material

material(=uninitalized)
Material instance associated with this body.

shape(=uninitalized)
Geometrical Shape.

state(=new State)
Physical state.

timeBorn
Returns time at which the body was added to simulation.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.1.2 Shape

Shape

Box Cylinder

Sphere

ChainedCylinder

GridConnection

Wall

Tetra

Polyhedra

GridNode

Facet

Clump

150 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

class yade.wrapper.Shape((object)arg1)
Geometry of a body
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Box((object)arg1)
Box (cuboid) particle geometry. (Avoid using in new code, prefer Facet instead.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

extents(=uninitalized)
Half-size of the cuboid

highlight(=false)
Whether this Shape will be highlighted when rendered.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.ChainedCylinder((object)arg1)
Geometry of a deformable chained cylinder, using geometry Cylinder.
chainedOrientation(=Quaternionr::Identity())

Deviation of node1 orientation from node-to-node vector
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

7.1. Bodies 151

Yade Documentation, Release 1.07.0

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

initLength(=0)
tensile-free length, used as reference for tensile strain

length(=NaN)
Length [m]

radius(=NaN)
Radius [m]

segment(=Vector3r::Zero())
Length vector

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Clump((object)arg1)
Rigid aggregate of bodies
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

members
Return clump members as {‘id1’:(relPos,relOri),...}

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Cylinder((object)arg1)
Geometry of a cylinder, as Minkowski sum of line and sphere.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

152 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

length(=NaN)
Length [m]

radius(=NaN)
Radius [m]

segment(=Vector3r::Zero())
Length vector

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Facet((object)arg1)
Facet (triangular particle) geometry.
area(=NaN)

Facet’s area
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

normal(=Vector3r(NaN, NaN, NaN))
Facet’s normal (in local coordinate system)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vertices(=vector<Vector3r>(3, Vector3r(NaN, NaN, NaN)))
Vertex positions in local coordinates.

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridConnection((object)arg1)
GridConnection shape. Component of a grid designed to link two GridNodes. It’s highly recom-
mended to use utils.gridConnection(...) to generate correct GridConnections.
cellDist(=Vector3i(0, 0, 0))

missing doc :(

7.1. Bodies 153

Yade Documentation, Release 1.07.0

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

node1(=uninitalized)
First Body the GridConnection is connected to.

node2(=uninitalized)
Second Body the GridConnection is connected to.

periodic(=false)
true if two nodes from different periods are connected.

radius(=NaN)
Radius [m]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridNode((object)arg1)
GridNode shape, component of a grid. To create a Grid, place the nodes first, they will define the
spacial discretisation of it. It’s highly recommended to use utils.gridNode(...) to generate correct
GridNodes. Note that the GridNodes should only be in an Interaction with other GridNodes. The
Sphere-Grid contact is only handled by the GridConnections.
ConnList(=uninitalized)

List of GridConnections the GridNode is connected to.
addConnection((Body)Body) → None

Add a GridConnection to the GridNode.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

radius(=NaN)
Radius [m]

154 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Polyhedra((object)arg1)
Polyhedral (convex) geometry.
GetCentroid() → Vector3

return polyhedra’s centroid
GetInertia() → Vector3

return polyhedra’s inertia tensor
GetOri() → Quaternion

return polyhedra’s orientation
GetVolume() → float

return polyhedra’s volume
Initialize() → None

Initialization
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

seed(=time(__null))
Seed for random generator.

size(=Vector3r(1., 1., 1.))
Size of the grain in meters - x,y,z - before random rotation

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

v(=uninitalized)
Tetrahedron vertices in global coordinate system.

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Sphere((object)arg1)
Geometry of spherical particle.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,

7.1. Bodies 155

Yade Documentation, Release 1.07.0

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

radius(=NaN)
Radius [m]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Tetra((object)arg1)
Tetrahedron geometry.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

v(=std::vector<Vector3r>(4))
Tetrahedron vertices (in local coordinate system).

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Wall((object)arg1)
Object representing infinite plane aligned with the coordinate system (axis-aligned wall).
axis(=0)

Axis of the normal; can be 0,1,2 for +x, +y, +z respectively (Body’s orientation is disregarded
for walls)

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

156 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

highlight(=false)
Whether this Shape will be highlighted when rendered.

sense(=0)
Which side of the wall interacts: -1 for negative only, 0 for both, +1 for positive only

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

7.1.3 State

State

JCFpmState

ChainedState

WireState

CpmState

class yade.wrapper.State((object)arg1)
State of a body (spatial configuration, internal variables).
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

7.1. Bodies 157

Yade Documentation, Release 1.07.0

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass(=0)
Mass of this body

ori
Current orientation.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.ChainedState((object)arg1)
State of a chained bodies, containing information on connectivity in order to track contacts jumping
over contiguous elements. Chains are 1D lists from which id of chained bodies are retrieved via
rank and chainNumber.
addToChain((int)bodyId) → None

Add body to current active chain
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
bId(=-1)

id of the body containing - for postLoad operations only.
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

chainNumber(=0)
chain id.

currentChain = 0
densityScaling(=1)

(auto-updated) see GlobalStiffnessTimeStepper::targetDt.
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

158 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass(=0)
Mass of this body

ori
Current orientation.

pos
Current position.

rank(=0)
rank in the chain.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.CpmState((object)arg1)
State information about body use by cpm-model.
None of that is used for computation (at least not now), only for post-processing.
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

damageTensor(=Matrix3r::Zero())
Damage tensor computed with microplane theory averaging. state.damageTensor.trace() =
state.normDmg

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() → dict
Return dictionary of attributes.

7.1. Bodies 159

Yade Documentation, Release 1.07.0

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

epsVolumetric(=0)
Volumetric strain around this body (unused for now)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass(=0)
Mass of this body

normDmg(=0)
Average damage including already deleted contacts (it is really not damage, but 1-
relResidualStrength now)

numBrokenCohesive(=0)
Number of (cohesive) contacts that damaged completely

numContacts(=0)
Number of contacts with this body

ori
Current orientation.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

stress(=Matrix3r::Zero())
Stress tensor of the spherical particle (under assumption that particle volume = pi*r*r*r*4/3.)
for packing fraction 0.62

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.JCFpmState((object)arg1)
JCFpm state information about each body.
angMom(=Vector3r::Zero())

Current angular momentum

160 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

angVel(=Vector3r::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

joint(=0)
Indicates the number of joint surfaces to which the particle belongs (0-> no joint, 1->1 joint,
etc..). [-]

jointNormal1(=Vector3r::Zero())
Specifies the normal direction to the joint plane 1. Rk: the ideal here would be to create a
vector of vector wich size is defined by the joint integer (as much joint normals as joints).
However, it needs to make the pushback function works with python since joint detection is
done through a python script. lines 272 to 312 of cpp file should therefore be adapted. [-]

jointNormal2(=Vector3r::Zero())
Specifies the normal direction to the joint plane 2. [-]

jointNormal3(=Vector3r::Zero())
Specifies the normal direction to the joint plane 3. [-]

mass(=0)
Mass of this body

noIniLinks(=0)
Number of initial cohesive interactions. [-]

onJoint(=false)
Identifies if the particle is on a joint surface.

ori
Current orientation.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

7.1. Bodies 161

Yade Documentation, Release 1.07.0

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

shearBreak(=0)
Number of shear breakages. [-]

shearBreakRel(=0)
Relative number (in [0;1], compared with :yref:noIniLinks) of shear breakages. [-]

tensBreak(=0)
Number of tensile breakages. [-]

tensBreakRel(=0)
Relative number (in [0;1], compared with :yref:noIniLinks) of tensile breakages. [-]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.WireState((object)arg1)
Wire state information of each body.
None of that is used for computation (at least not now), only for post-processing.
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass(=0)
Mass of this body

numBrokenLinks(=0)
Number of broken links (e.g. number of wires connected to the body which are broken). [-]

162 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

ori
Current orientation.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

7.1.4 Material

Material

InelastCohFrictMat

FrictMatElastMat

LudingMat

BubbleMat

CpmMat

WireMat

CohFrictMat

NormalInelasticMat

PolyhedraMat

JCFpmMat

ViscElMat

class yade.wrapper.Material((object)arg1)
Material properties of a body.
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

7.1. Bodies 163

Yade Documentation, Release 1.07.0

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.BubbleMat((object)arg1)
material for bubble interactions, for use with other Bubble classes
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

surfaceTension(=0.07197)
The surface tension in the fluid surrounding the bubbles. The default value is that of water
at 25 degrees Celcius.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CohFrictMat((object)arg1)

alphaKr(=2.0)
Dimensionless coefficient used for the rolling stiffness.

164 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

alphaKtw(=2.0)
Dimensionless coefficient used for the twist stiffness.

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

etaRoll(=-1.)
Dimensionless coefficient used to calculate the plastic rolling moment (if negative, plasticity
will not be applied).

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

isCohesive(=true)
label(=uninitalized)

Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

momentRotationLaw(=false)
Use bending/twisting moment at contact. The contact will have moments only if both bodies
have this flag true. See CohFrictPhys::cohesionDisablesFriction for details.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

normalCohesion(=0)
poisson(=.25)

Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

shearCohesion(=0)
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
young(=1e9)

elastic modulus [Pa]. It has different meanings depending on the Ip functor.
class yade.wrapper.CpmMat((object)arg1)

Concrete material, for use with other Cpm classes.

Note: Density is initialized to 4800 kgm−³automatically, which gives approximate 2800 kgm−³
on 0.5 density packing.

Concrete Particle Model (CPM)

7.1. Bodies 165

Yade Documentation, Release 1.07.0

CpmMat is particle material, Ip2_CpmMat_CpmMat_CpmPhys averages two particles’ materials,
creating CpmPhys, which is then used in interaction resultion by Law2_ScGeom_CpmPhys_Cpm.
CpmState is associated to CpmMat and keeps state defined on particles rather than interactions
(such as number of completely damaged interactions).
The model is contained in externally defined macro CPM_MATERIAL_MODEL, which features
damage in tension, plasticity in shear and compression and rate-dependence. For commercial rea-
sons, rate-dependence and compression-plasticity is not present in reduced version of the model,
used when CPM_MATERIAL_MODEL is not defined. The full model will be described in de-
tail in my (Václav Šmilauer) thesis along with calibration procedures (rigidity, poisson’s ratio,
compressive/tensile strength ratio, fracture energy, behavior under confinement, rate-dependent
behavior).
Even the public model is useful enough to run simulation on concrete samples, such as uniaxial
tension-compression test.
damLaw(=1)

Law for damage evolution in uniaxial tension. 0 for linear stress-strain softening branch, 1
(default) for exponential damage evolution law

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

dmgRateExp(=0)
Exponent for normal viscosity function. [-]

dmgTau(=-1, deactivated if negative)
Characteristic time for normal viscosity. [s]

epsCrackOnset(=NaN)
Limit elastic strain [-]

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

isoPrestress(=0)
Isotropic prestress of the whole specimen. [Pa]

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

neverDamage(=false)
If true, no damage will occur (for testing only).

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

166 Chapter 7. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py
https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 1.07.0

plRateExp(=0)
Exponent for visco-plasticity function. [-]

plTau(=-1, deactivated if negative)
Characteristic time for visco-plasticity. [s]

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

relDuctility(=NaN)
relative ductility of bonds in normal direction

sigmaT(=NaN)
Initial cohesion [Pa]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.ElastMat((object)arg1)
Purely elastic material. The material parameters may have different meanings depending on the
IPhysFunctor used : true Young and Poisson in Ip2_FrictMat_FrictMat_MindlinPhys, or contact
stiffnesses in Ip2_FrictMat_FrictMat_FrictPhys.
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

7.1. Bodies 167

Yade Documentation, Release 1.07.0

class yade.wrapper.FrictMat((object)arg1)
Elastic material with contact friction. See also ElastMat.
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.InelastCohFrictMat((object)arg1)

alphaKr(=2.0)
Dimensionless coefficient used for the rolling stiffness.

alphaKtw(=2.0)
Dimensionless coefficient used for the twist stiffness.

compressionModulus(=0.0)
Compresion elasticity modulus

creepBending(=0.0)
Bending creeping coefficient. Usual values between 0 and 1.

creepTension(=0.0)
Tension/compression creeping coefficient. Usual values between 0 and 1.

creepTwist(=0.0)
Twist creeping coefficient. Usual values between 0 and 1.

density(=1000)
Density of the material [kg/m³]

168 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

epsilonMaxCompression(=0.0)
Maximal plastic strain compression

epsilonMaxTension(=0.0)
Maximal plastic strain tension

etaMaxBending(=0.0)
Maximal plastic bending strain

etaMaxTwist(=0.0)
Maximal plastic twist strain

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

nuBending(=0.0)
Bending elastic stress limit

nuTwist(=0.0)
Twist elastic stress limit

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

shearCohesion(=0.0)
Shear elastic stress limit

shearModulus(=0.0)
shear elasticity modulus

sigmaCompression(=0.0)
Compression elastic stress limit

sigmaTension(=0.0)
Tension elastic stress limit

tensionModulus(=0.0)
Tension elasticity modulus

unloadBending(=0.0)
Bending plastic unload coefficient. Usual values between 0 and +infinity.

7.1. Bodies 169

Yade Documentation, Release 1.07.0

unloadTension(=0.0)
Tension/compression plastic unload coefficient. Usual values between 0 and +infinity.

unloadTwist(=0.0)
Twist plastic unload coefficient. Usual values between 0 and +infinity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.JCFpmMat((object)arg1)
Possibly jointed, cohesive frictional material, for use with other JCFpm classes
cohesion(=0.)

Defines the maximum admissible tangential force in shear, for Fn=0, in the matrix (FsMax =
cohesion * crossSection). [Pa]

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

jointCohesion(=0.)
Defines the maximum admissible tangential force in shear, for Fn=0, on the joint surface. [Pa]

jointDilationAngle(=0)
Defines the dilatancy of the joint surface (only valid for smooth contact logic). [rad]

jointFrictionAngle(=-1)
Defines Coulomb friction on the joint surface. [rad]

jointNormalStiffness(=0.)
Defines the normal stiffness on the joint surface. [Pa/m]

jointShearStiffness(=0.)
Defines the shear stiffness on the joint surface. [Pa/m]

jointTensileStrength(=0.)
Defines the maximum admissible normal force in traction on the joint surface. [Pa]

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

170 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

tensileStrength(=0.)
Defines the maximum admissible normal force in traction in the matrix (FnMax = ten-
sileStrength * crossSection). [Pa]

type(=0)
If particles of two different types interact, it will be with friction only (no cohesion).[-]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.LudingMat((object)arg1)
Material for simple Ludning‘s model of contact.
G0(=NaN)

Viscous damping
PhiF(=NaN)

Dimensionless plasticity depth
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=NaN)
Friction angle [rad]

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

k1(=NaN)
Slope of loading plastic branch

kc(=NaN)
Slope of irreversible, tensile adhesive branch

kp(=NaN)
Slope of unloading and reloading limit elastic branch

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

7.1. Bodies 171

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.NormalInelasticMat((object)arg1)
Material class for particles whose contact obey to a normal inelasticity (governed by this coeff_-
dech).
coeff_dech(=1.0)

=kn(unload) / kn(load)
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.PolyhedraMat((object)arg1)
Elastic material with Coulomb friction.
IsSplitable(=0)

To be splitted ... or not
Kn(=1e8)

Normal volumetric ‘stiffness’ (N/m3).
Ks(=1e5)

Shear stiffness (N/m).
density(=1000)

Density of the material [kg/m³]

172 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians).

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

strength(=100)
Stress at whis polyhedra of volume 4/3*pi [mm] breaks.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ViscElMat((object)arg1)
Material for simple viscoelastic model of contact.

Note: Shop::getViscoelasticFromSpheresInteraction (and
utils.getViscoelasticFromSpheresInteraction in python) compute kn, cn, ks, cs from analyti-
cal solution of a pair spheres interaction problem.

Capillar(=false)
True, if capillar forces need to be added.

CapillarType(=”“)
Different types of capillar interaction: Willett_numeric, Willett_analytic [Willett2000] ,
Weigert [Weigert1999] , Rabinovich [Rabinov2005]

Vb(=NaN)
Liquid bridge volume [m^3]

cn(=NaN)
Normal viscous constant

cs(=NaN)
Shear viscous constant

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,

7.1. Bodies 173

Yade Documentation, Release 1.07.0

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

gamma(=NaN)
Surface tension [N/m]

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

kn(=NaN)
Normal elastic stiffness

ks(=NaN)
Shear elastic stiffness

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

mR(=0.0)
Rolling resistance, see [Zhou1999536].

mRtype(=1)
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536].

massMultiply(=true)
Stiffness and viscosity are multiplied by the reduced mass. If massMultiply=false, these
parameter are set explicitly without mass multiplication

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

theta(=NaN)
Contact angle [°]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.WireMat((object)arg1)
Material for use with the Wire classes
as(=0.)

Cross-section area of a single wire used to transform stress into force. [m²]
density(=1000)

Density of the material [kg/m³]

174 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

diameter(=0.0027)
Diameter of the single wire in [m] (the diameter is used to compute the cross-section area of
the wire).

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

isDoubleTwist(=false)
Type of the mesh. If true two particles of the same material which body ids differ by one will
be considered as double-twisted interaction.

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

lambdaEps(=0.47)
Parameter between 0 and 1 to reduce strain at failure of a double-twisted wire (as used by
[Bertrand2008]). [-]

lambdaF(=1.0)
Parameter between 0 and 1 introduced by [Thoeni2013] which defines where the shifted force-
displacement curve intersects with the new initial stiffness: F∗ = λFFelastic. [-]

lambdak(=0.73)
Parameter between 0 and 1 to compute the elastic stiffness of a double-twisted wire (as used
by [Bertrand2008]): kD = 2(λkkh + (1− λk)k

S). [-]
lambdau(=0.2)

Parameter between 0 and 1 introduced by [Thoeni2013] which defines the maximum shift
of the force-displacement curve in order to take an additional initial elongation (e.g. wire
distortion/imperfections, slipping, system flexibility) into account: ∆l∗ = λul0rnd(seed). [-]

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

seed(=12345)
Integer used to initialize the random number generator for the calculation of the distortion.
If the integer is equal to 0 a internal seed number based on the time is computed. [-]

strainStressValues(=uninitalized)
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for one single wire. Tension only is considered and the point (0,0) is not needed! NOTE:
Vector needs to be initialized!

7.1. Bodies 175

Yade Documentation, Release 1.07.0

strainStressValuesDT(=uninitalized)
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for the double twist. Tension only is considered and the point (0,0) is not needed! If this value
is given the calculation will be based on two different stress-strain curves without considering
the parameter introduced by [Bertrand2008] (see [Thoeni2013]).

type
Three different types are considered:
0 Corresponds to Bertrand’s approach (see [Bertrand2008]): only one stress-strain

curve is used
1 New approach: two separate stress-strain curves can be used (see [Thoeni2013])
2 New approach with stochastically distorted contact model: two separate stress-strain

curves with changed initial stiffness and horizontal shift (shift is random if seed ≥ 0,
for more details see [Thoeni2013])

By default the type is 0.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
young(=1e9)

elastic modulus [Pa]. It has different meanings depending on the Ip functor.

7.1.5 Bound

Bound Aabb

class yade.wrapper.Bound((object)arg1)
Object bounding part of space taken by associated body; might be larger, used to optimalize
collision detection
color(=Vector3r(1, 1, 1))

Color for rendering this object
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

lastUpdateIter(=0)
record iteration of last reference position update (auto-updated)

max(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

min(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

refPos(=Vector3r(NaN, NaN, NaN))
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

sweepLength(=0)
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

176 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Aabb((object)arg1)
Axis-aligned bounding box, for use with InsertionSortCollider. (This class is quasi-redundant since
min,max are already contained in Bound itself. That might change at some point, though.)
color(=Vector3r(1, 1, 1))

Color for rendering this object
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

lastUpdateIter(=0)
record iteration of last reference position update (auto-updated)

max(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

min(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

refPos(=Vector3r(NaN, NaN, NaN))
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

sweepLength(=0)
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.2 Interactions

7.2.1 Interaction

class yade.wrapper.Interaction((object)arg1)
Interaction between pair of bodies.
cellDist

Distance of bodies in cell size units, if using periodic boundary conditions; id2 is shifted by
this number of cells from its State::pos coordinates for this interaction to exist. Assigned by
the collider.

Warning: (internal) cellDist must survive Interaction::reset(), it is only initialized in
ctor. Interaction that was cancelled by the constitutive law, was reset() and became only
potential must have thepriod information if the geometric functor again makes it real.
Good to know after few days of debugging that :-)

dict() → dict
Return dictionary of attributes.

geom(=uninitalized)
Geometry part of the interaction.

7.2. Interactions 177

Yade Documentation, Release 1.07.0

id1(=0)
Id of the first body in this interaction.

id2(=0)
Id of the second body in this interaction.

isActive
True if this interaction is active. Otherwise the forces from this interaction will not be taken
into account. True by default.

isReal
True if this interaction has both geom and phys; False otherwise.

iterBorn(=-1)
Step number at which the interaction was added to simulation.

iterMadeReal(=-1)
Step number at which the interaction was fully (in the sense of geom and phys) created.
(Should be touched only by IPhysDispatcher and InteractionLoop, therefore they are made
friends of Interaction

phys(=uninitalized)
Physical (material) part of the interaction.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.2.2 IGeom

IGeom

ScGeom

GenericSpheresContact

L6Geom
L3Geom

ScGridCoGeom

ScGeom6D

TTetraGeom

CylScGeom6D

GridNodeGeom6D

TTetraSimpleGeom

PolyhedraGeom

CylScGeom

GridCoGridCoGeom

ChCylGeom6D

class yade.wrapper.IGeom((object)arg1)
Geometrical configuration of interaction
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

178 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

class yade.wrapper.ChCylGeom6D((object)arg1)
Test
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

twist(=0)
Elastic twist angle of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CylScGeom((object)arg1)
Geometry of a cylinder-sphere contact.
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,

7.2. Interactions 179

Yade Documentation, Release 1.07.0

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

end(=Vector3r::Zero())
position of 2nd node (auto-updated)

id3(=0)
id of next chained cylinder (auto-updated)

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

onNode(=false)
contact on node?

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

start(=Vector3r::Zero())
position of 1st node (auto-updated)

trueInt(=-1)
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CylScGeom6D((object)arg1)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

180 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

end(=Vector3r::Zero())
position of 2nd node (auto-updated)

id3(=0)
id of next chained cylinder (auto-updated)

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

onNode(=false)
contact on node?

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

start(=Vector3r::Zero())
position of 1st node (auto-updated)

trueInt(=-1)
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

twist(=0)
Elastic twist angle of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

7.2. Interactions 181

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GenericSpheresContact((object)arg1)
Class uniting ScGeom and L3Geom, for the purposes of GlobalStiffnessTimeStepper. (It might be
removed inthe future). Do not use this class directly.
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GridCoGridCoGeom((object)arg1)
Geometry of a GridConnection-GridConnection contact.
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

182 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

relPos1(=0)
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

relPos2(=0)
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GridNodeGeom6D((object)arg1)
Geometry of a GridNode-GridNode contact. Inherits almost everything from ScGeom6D.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
connectionBody(=uninitalized)

Reference to the GridNode Body who is linking the two GridNodes.
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

twist(=0)
Elastic twist angle of the contact.

7.2. Interactions 183

Yade Documentation, Release 1.07.0

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.L3Geom((object)arg1)
Geometry of contact given in local coordinates with 3 degress of freedom: normal and two in shear
plane. [experimental]
F(=Vector3r::Zero())

Applied force in local coordinates [debugging only, will be removed]
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

trsf(=Matrix3r::Identity())
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

u(=Vector3r::Zero())
Displacement components, in local coordinates. (auto-updated)

u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1.by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2.by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3.by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.L6Geom((object)arg1)
Geometric of contact in local coordinates with 6 degrees of freedom. [experimental]

184 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

F(=Vector3r::Zero())
Applied force in local coordinates [debugging only, will be removed]

contactPoint(=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

phi(=Vector3r::Zero())
Rotation components, in local coordinates. (auto-updated)

phi0(=Vector3r::Zero())
Zero rotation, should be always subtracted from phi to get the value. See L3Geom.u0.

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

trsf(=Matrix3r::Identity())
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

u(=Vector3r::Zero())
Displacement components, in local coordinates. (auto-updated)

u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1.by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2.by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3.by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.PolyhedraGeom((object)arg1)
Geometry of interaction between 2 vector, including volumetric characteristics
contactPoint(=Vector3r::Zero())

Contact point (global coords), centriod of the overlapping polyhedron

7.2. Interactions 185

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

equivalentCrossSection(=NaN)
Cross-section area of the overlap (perpendicular to the normal) - not used

equivalentPenetrationDepth(=NaN)
volume / equivalentCrossSection - not used

normal(=Vector3r::Zero())
Normal direction of the interaction

orthonormal_axis(=Vector3r::Zero())
penetrationVolume(=NaN)

Volume of overlap [m³]
shearInc(=Vector3r::Zero())

Shear displacement increment in the last step
twist_axis(=Vector3r::Zero())
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.ScGeom((object)arg1)

Class representing geometry of a contact point between two bodies. It is more general than sphere-
sphere contact even though it is primarily focused on spheres interactions (reason for the ‘Sc’
namming); it is also used for representing contacts of a Sphere with non-spherical bodies (Facet,
Plane, Box, ChainedCylinder), or between two non-spherical bodies (ChainedCylinder). The con-
tact has 3 DOFs (normal and 2×shear) and uses incremental algorithm for updating shear.
We use symbols x, v, ω respectively for position, linear and angular velocities (all in global
coordinates) and r for particles radii; subscripted with 1 or 2 to distinguish 2 spheres in contact.
Then we define branch length and unit contact normal

l = ||x2 − x1||,n =
x2 − x1

||x2 − x1||

The relative velocity of the spheres is then

v12 =
r1 + r2

l
(v2 − v1) − (r2ω2 + r1ω1)× n

where the fraction multplying translational velocities is to make the definition objective and avoid
ratcheting effects (see Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting). The shear com-
ponent is

vs12 = v12 − (n · v12)n.

Tangential displacement increment over last step then reads

∆xs12 = ∆tvs12.

contactPoint(=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict() → dict
Return dictionary of attributes.

186 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ScGeom6D((object)arg1)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

7.2. Interactions 187

Yade Documentation, Release 1.07.0

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

twist(=0)
Elastic twist angle of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ScGridCoGeom((object)arg1)
Geometry of a GridConnection-Sphere contact.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id3(=0)
id of the first GridNode. (auto-updated)

id4(=0)
id of the second GridNode. (auto-updated)

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two Connections. A
duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

188 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the connection (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

trueInt(=-1)
Defines the body id of the GridConnection where the contact is real, when ScGridCo-
Geom::isDuplicate>0.

twist(=0)
Elastic twist angle of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TTetraGeom((object)arg1)
Geometry of interaction between 2 tetrahedra, including volumetric characteristics
contactPoint(=uninitalized)

Contact point (global coords)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

equivalentCrossSection(=NaN)
Cross-section of the overlap (perpendicular to the axis of least inertia

equivalentPenetrationDepth(=NaN)
??

maxPenetrationDepthA(=NaN)
??

maxPenetrationDepthB(=NaN)
??

normal(=uninitalized)
Normal of the interaction, directed in the sense of least inertia of the overlap volume

penetrationVolume(=NaN)
Volume of overlap [m³]

7.2. Interactions 189

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TTetraSimpleGeom((object)arg1)
EXPERIMENTAL. Geometry of interaction between 2 tetrahedra
contactPoint(=uninitalized)

Contact point (global coords)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

flag(=0)
TODO

normal(=uninitalized)
Normal of the interaction TODO

penetrationVolume(=NaN)
Volume of overlap [m³]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.2.3 IPhys

IPhys

MindlinCapillaryPhysMindlinPhys

FrictPhys

InelastCohFrictPhys

NormShearPhysNormPhys

PolyhedraPhys

ViscElPhys

LudingPhys

NormalInelasticityPhys

CapillaryPhys

WirePhys

CohFrictPhys

CpmPhys

ViscoFrictPhys

BubblePhys JCFpmPhys

class yade.wrapper.IPhys((object)arg1)
Physical (material) properties of interaction.
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

190 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dispIndex
Return class index of this instance.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.BubblePhys((object)arg1)
Physics of bubble-bubble interactions, for use with BubbleMat
computeForce((float)arg1, (float)arg2, (float)arg3, (int)arg4, (float)arg5) → float :

Computes the normal force acting between the two interacting bubbles using the Newton-
Rhapson method

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fN(=NaN)
Contact normal force

newtonIter(=50)
Maximum number of force iterations allowed

newtonTol(=1e-6)
Convergence criteria for force iterations

normalForce(=Vector3r::Zero())
Normal force

rAvg(=NaN)
Average radius of the two interacting bubbles

surfaceTension(=NaN)
Surface tension of the surrounding liquid

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CapillaryPhys((object)arg1)
Physics (of interaction) for Law2_ScGeom_CapillaryPhys_Capillarity.
Delta1(=0.)

Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)
Delta2(=0.)

Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)
capillaryPressure(=0.)

Value of the capillary pressure Uc defines as Ugas-Uliquid
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fCap(=Vector3r::Zero())
Capillary Force produces by the presence of the meniscus

7.2. Interactions 191

Yade Documentation, Release 1.07.0

fusionNumber(=0.)
Indicates the number of meniscii that overlap with this one

isBroken(=false)
If true, capillary force is zero and liquid bridge is inactive.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

meniscus(=false)
Presence of a meniscus if true

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vMeniscus(=0.)
Volume of the menicus

class yade.wrapper.CohFrictPhys((object)arg1)

cohesionBroken(=true)
is cohesion active? will be set false when a fragile contact is broken

cohesionDisablesFriction(=false)
is shear strength the sum of friction and adhesion or only adhesion?

creep_viscosity(=-1)
creep viscosity [Pa.s/m].

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fragile(=true)
do cohesion disapear when contact strength is exceeded?

initCohesion(=false)
Initialize the cohesive behaviour with current state as equilibrium state (same as Ip2_Co-
hFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow but acting on only one interaction)

kn(=0)
Normal stiffness

kr(=0)
rotational stiffness [N.m/rad]

ks(=0)
Shear stiffness

ktw(=0)
twist stiffness [N.m/rad]

192 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

maxRollPl(=0.0)
Coefficient to determine the maximum plastic rolling moment.

maxTwistMoment(=Vector3r::Zero())
Maximum elastic value for the twisting moment (if zero, plasticity will not be applied). In
CohFrictMat a parameter should be added to decide what value should be attributed to this
threshold value.

momentRotationLaw(=false)
use bending/twisting moment at contacts. See CohFrictPhys::cohesionDisablesFriction for
details.

moment_bending(=Vector3r(0, 0, 0))
Bending moment

moment_twist(=Vector3r(0, 0, 0))
Twist moment

normalAdhesion(=0)
tensile strength

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearAdhesion(=0)
cohesive part of the shear strength (a frictional term might be added depending on Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment::always_use_moment_law)

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

unp(=0)
plastic normal displacement, only used for tensile behaviour and if CohFrict-
Phys::fragile‘=false. :ydefault:‘0

unpMax(=0)
maximum value of plastic normal displacement, after that the interaction breaks even if Co-
hFrictPhys::fragile‘=false. The default value (0) means no maximum. :ydefault:‘0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CpmPhys((object)arg1)
Representation of a single interaction of the Cpm type: storage for relevant parameters.
Evolution of the contact is governed by Law2_ScGeom_CpmPhys_Cpm, that includes damage
effects and chages of parameters inside CpmPhys. See cpm-model for details.
E(=NaN)

normal modulus (stiffness / crossSection) [Pa]
Fn

Magnitude of normal force.
Fs

Magnitude of shear force
G(=NaN)

shear modulus [Pa]
crossSection(=NaN)

equivalent cross-section associated with this contact [m²]
cummBetaCount = 0
cummBetaIter = 0

7.2. Interactions 193

Yade Documentation, Release 1.07.0

damLaw(=1)
Law for softening part of uniaxial tension. 0 for linear, 1 for exponential (default)

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

dmgOverstress(=0)
damage viscous overstress (at previous step or at current step)

dmgRateExp(=0)
exponent in the rate-dependent damage evolution

dmgStrain(=0)
damage strain (at previous or current step)

dmgTau(=-1)
characteristic time for damage (if non-positive, the law without rate-dependence is used)

epsCrackOnset(=NaN)
strain at which the material starts to behave non-linearly

epsFracture(=NaN)
strain at which the bond is fully broken [-]

epsN
Current normal strain

epsNPl(=0)
normal plastic strain (initially zero)

epsT(=Vector3r::Zero())
Total shear strain (either computed from increments with ScGeom) (auto-updated)

epsTPl(=Vector3r::Zero())
shear plastic strain (initially zero)

epsTrans(=0)
Transversal strain (perpendicular to the contact axis)

funcG((float)kappaD, (float)epsCrackOnset, (float)epsFracture[, (bool)neverDamage=False[,
(int)damLaw=1]]) → float :

Damage evolution law, evaluating the ω parameter. κD is historically maximum strain, ep-
sCrackOnset (ε0) = CpmPhys.epsCrackOnset, epsFracture = CpmPhys.epsFracture; if never-
Damage is True, the value returned will always be 0 (no damage). TODO

funcGInv((float)omega, (float)epsCrackOnset, (float)epsFracture[,
(bool)neverDamage=False[, (int)damLaw=1]]) → float :

Inversion of damage evolution law, evaluating the κD parameter. ω is damage, for other
parameters see funcG function

isCohesive(=false)
if not cohesive, interaction is deleted when distance is greater than zero.

isoPrestress(=0)
“prestress” of this link (used to simulate isotropic stress)

kappaD(=0)
Up to now maximum normal strain (semi-norm), non-decreasing in time.

kn(=0)
Normal stiffness

194 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

ks(=0)
Shear stiffness

neverDamage(=false)
the damage evolution function will always return virgin state

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

omega
Damage internal variable

plRateExp(=0)
exponent in the rate-dependent viscoplasticity

plTau(=-1)
characteristic time for viscoplasticity (if non-positive, no rate-dependence for shear)

refLength(=NaN)
initial length of interaction [m]

refPD(=NaN)
initial penetration depth of interaction [m] (used with ScGeom)

relDuctility(=NaN)
Relative ductility of bonds in normal direction

relResidualStrength
Relative residual strength

setDamage((float)arg2) → None
TODO

setRelResidualStrength((float)arg2) → None
TODO

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

sigmaN
Current normal stress

sigmaT
Current shear stress

tanFrictionAngle(=NaN)
tangens of internal friction angle [-]

undamagedCohesion(=NaN)
virgin material cohesion [Pa]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FrictPhys((object)arg1)
The simple linear elastic-plastic interaction with friction angle, like in the traditional [Cundall-
Strack1979]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

7.2. Interactions 195

Yade Documentation, Release 1.07.0

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.InelastCohFrictPhys((object)arg1)

cohesionBroken(=false)
is cohesion active? will be set false when a fragile contact is broken

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

isBroken(=false)
true if compression plastic fracture achieved

kDam(=0)
Damage coefficient on bending, computed from maximum bending moment reached and pure
creep behaviour. Its values will vary between InelastCohFrictPhys::kr and InelastCohFrict-
Phys::kRCrp .

kRCrp(=0.0)
Bending creep stiffness

kRUnld(=0.0)
Bending plastic unload stiffness

kTCrp(=0.0)
Tension/compression creep stiffness

kTUnld(=0.0)
Tension/compression plastic unload stiffness

kTwCrp(=0.0)
Twist creep stiffness

kTwUnld(=0.0)
Twist plastic unload stiffness

kn(=0)
Normal stiffness

knC(=0)
compression stiffness

knT(=0)
tension stiffness

kr(=0)
bending stiffness

196 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

ks(=0)
shear stiffness

ktw(=0)
twist shear stiffness

maxBendMom(=0.0)
Plastic failure bending moment.

maxContract(=0.0)
Plastic failure contraction (shrinkage).

maxCrpRchdB(=Vector3r(0, 0, 0))
maximal bending moment reached on plastic deformation.

maxCrpRchdC(=Vector2r(0, 0))
maximal compression reached on plastic deformation. maxCrpRchdC[0] stores un and max-
CrpRchdC[1] stores Fn.

maxCrpRchdT(=Vector2r(0, 0))
maximal extension reached on plastic deformation. maxCrpRchdT[0] stores un and maxCr-
pRchdT[1] stores Fn.

maxCrpRchdTw(=Vector2r(0, 0))
maximal twist reached on plastic deformation. maxCrpRchdTw[0] stores twist angle and
maxCrpRchdTw[1] stores twist moment.

maxElB(=0.0)
Maximum bending elastic moment.

maxElC(=0.0)
Maximum compression elastic force.

maxElT(=0.0)
Maximum tension elastic force.

maxElTw(=0.0)
Maximum twist elastic moment.

maxExten(=0.0)
Plastic failure extension (stretching).

maxTwist(=0.0)
Plastic failure twist angle

moment_bending(=Vector3r(0, 0, 0))
Bending moment

moment_twist(=Vector3r(0, 0, 0))
Twist moment

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

onPlastB(=false)
true if plasticity achieved on bending

onPlastC(=false)
true if plasticity achieved on compression

onPlastT(=false)
true if plasticity achieved on traction

onPlastTw(=false)
true if plasticity achieved on twisting

pureCreep(=Vector3r(0, 0, 0))
Pure creep curve, used for comparison in calculation.

shearAdhesion(=0)
Maximum elastic shear force (cohesion).

7.2. Interactions 197

Yade Documentation, Release 1.07.0

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

twp(=0)
plastic twist penetration depth describing the equilibrium state.

unp(=0)
plastic normal penetration depth describing the equilibrium state.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.JCFpmPhys((object)arg1)
Representation of a single interaction of the JCFpm type, storage for relevant parameters
FnMax(=0)

computed from tensile strength (or joint variant) to define the maximum admissible normal
force in traction. [N]

FsMax(=0)
computed from cohesion (or jointCohesion) to define the maximum admissible tangential force
in shear, for Fn=0. [N]

crossSection(=0)
crossSection=pi*Rmin^2. [m2]

dict() → dict
Return dictionary of attributes.

dilation(=0)
defines the normal displacement in the joint after sliding treshold. [m]

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

initD(=0)
equilibrium distance for interacting particles. Computed as the interparticular distance at
first contact detection.

isCohesive(=false)
If false, particles interact in a frictional way. If true, particles are bonded regarding the given
cohesion and tensile strength (or their jointed variants).

isOnJoint(=false)
defined as true when both interacting particles are on joint and are in opposite sides of the
joint surface. In this case, mechanical parameters of the interaction are derived from the
‘’joint...” material properties of the particles, and normal of the interaction is re-oriented (see
also Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM).

jointCumulativeSliding(=0)
sliding distance for particles interacting on a joint. Used, when is true, to take into account
dilatancy due to shearing. [-]

jointNormal(=Vector3r::Zero())
normal direction to the joint, deduced from e.g. .

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

198 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

more(=false)
specifies if the interaction is crossed by more than 3 joints. If true, interaction is deleted
(temporary solution).

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tanDilationAngle(=0)
tangent of the angle defining the dilatancy of the joint surface (auto. computed from JCFp-
mMat.jointDilationAngle). [-]

tanFrictionAngle(=0)
tangent of Coulomb friction angle for this interaction (auto. computed). [-]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.LudingPhys((object)arg1)
IPhys created from LudingMat, for use with Law2_ScGeom_LudingPhys_Basic.
DeltMax(=NaN)

Maximum overlap between particles for a collision
DeltMin(=NaN)

MinimalDelta value of delta
DeltNull(=NaN)

Force free overlap, plastic contact deformation
DeltPMax(=NaN)

Maximum overlap between particles for the limit case
DeltPNull(=NaN)

Max force free overlap, plastic contact deformation
DeltPrev(=NaN)

Previous value of delta
G0(=NaN)

Viscous damping
PhiF(=NaN)

Dimensionless plasticity depth
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

k1(=NaN)
Slope of loading plastic branch

k2(=NaN)
Slope of unloading and reloading elastic branch

kc(=NaN)
Slope of irreversible, tensile adhesive branch

kn(=0)
Normal stiffness

7.2. Interactions 199

Yade Documentation, Release 1.07.0

kp(=NaN)
Slope of unloading and reloading limit elastic branch

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.MindlinCapillaryPhys((object)arg1)
Adds capillary physics to Mindlin’s interaction physics.
Delta1(=0.)

Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)
Delta2(=0.)

Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)
Fs(=Vector2r::Zero())

Shear force in local axes (computed incrementally)
adhesionForce(=0.0)

Force of adhesion as predicted by DMT
alpha(=0.0)

Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

betan(=0.0)
Fraction of the viscous damping coefficient (normal direction) equal to cn

Cn,crit
.

betas(=0.0)
Fraction of the viscous damping coefficient (shear direction) equal to cs

Cs,crit
.

capillaryPressure(=0.)
Value of the capillary pressure Uc defines as Ugas-Uliquid

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fCap(=Vector3r::Zero())
Capillary Force produces by the presence of the meniscus

fusionNumber(=0.)
Indicates the number of meniscii that overlap with this one

isAdhesive(=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

isBroken(=false)
If true, capillary force is zero and liquid bridge is inactive.

isSliding(=false)
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

200 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

kn(=0)
Normal stiffness

kno(=0.0)
Constant value in the formulation of the normal stiffness

kr(=0.0)
Rotational stiffness

ks(=0)
Shear stiffness

kso(=0.0)
Constant value in the formulation of the tangential stiffness

ktw(=0.0)
Rotational stiffness

maxBendPl(=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

meniscus(=false)
Presence of a meniscus if true

momentBend(=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

momentTwist(=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

normalViscous(=Vector3r::Zero())
Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

radius(=NaN)
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

shearElastic(=Vector3r::Zero())
Total elastic shear force

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

shearViscous(=Vector3r::Zero())
Shear viscous component

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

usTotal(=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

vMeniscus(=0.)
Volume of the menicus

class yade.wrapper.MindlinPhys((object)arg1)
Representation of an interaction of the Hertz-Mindlin type.

7.2. Interactions 201

Yade Documentation, Release 1.07.0

Fs(=Vector2r::Zero())
Shear force in local axes (computed incrementally)

adhesionForce(=0.0)
Force of adhesion as predicted by DMT

alpha(=0.0)
Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

betan(=0.0)
Fraction of the viscous damping coefficient (normal direction) equal to cn

Cn,crit
.

betas(=0.0)
Fraction of the viscous damping coefficient (shear direction) equal to cs

Cs,crit
.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

isAdhesive(=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

isSliding(=false)
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

kn(=0)
Normal stiffness

kno(=0.0)
Constant value in the formulation of the normal stiffness

kr(=0.0)
Rotational stiffness

ks(=0)
Shear stiffness

kso(=0.0)
Constant value in the formulation of the tangential stiffness

ktw(=0.0)
Rotational stiffness

maxBendPl(=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

momentBend(=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

momentTwist(=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

normalViscous(=Vector3r::Zero())
Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

202 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

radius(=NaN)
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

shearElastic(=Vector3r::Zero())
Total elastic shear force

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

shearViscous(=Vector3r::Zero())
Shear viscous component

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

usTotal(=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

class yade.wrapper.NormPhys((object)arg1)
Abstract class for interactions that have normal stiffness.
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.NormShearPhys((object)arg1)
Abstract class for interactions that have shear stiffnesses, in addition to normal stiffness. This class
is used in the PFC3d-style stiffness timestepper.
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

7.2. Interactions 203

Yade Documentation, Release 1.07.0

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.NormalInelasticityPhys((object)arg1)
Physics (of interaction) for using Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity :
with inelastic unloadings
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

forMaxMoment(=1.0)
parameter stored for each interaction, and allowing to compute the maximum value of the
exchanged torque : TorqueMax= forMaxMoment * NormalForce

kn(=0)
Normal stiffness

knLower(=0.0)
the stifness corresponding to a virgin load for example

kr(=0.0)
the rolling stiffness of the interaction

ks(=0)
Shear stiffness

moment_bending(=Vector3r(0, 0, 0))
Bending moment. Defined here, being initialized as it should be, to be used in Law2_-
ScGeom6D_NormalInelasticityPhys_NormalInelasticity

moment_twist(=Vector3r(0, 0, 0))
Twist moment. Defined here, being initialized as it should be, to be used in Law2_Sc-
Geom6D_NormalInelasticityPhys_NormalInelasticity

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

previousFn(=0.0)
the value of the normal force at the last time step

previousun(=0.0)
the value of this un at the last time step

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

unMax(=0.0)
the maximum value of penetration depth of the history of this interaction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.PolyhedraPhys((object)arg1)
Simple elastic material with friction for volumetric constitutive laws

204 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tangens of angle of internal friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ViscElPhys((object)arg1)
IPhys created from ViscElMat, for use with Law2_ScGeom_ViscElPhys_Basic.
Capillar(=false)

True, if capillar forces need to be added.
CapillarType(=”“)

Different types of capillar interaction: Willett_numeric, Willett_analytic, Weigert, Rabi-
novich

Vb(=NaN)
Liquid bridge volume [m^3]

cn(=NaN)
Normal viscous constant

cs(=NaN)
Shear viscous constant

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

gamma(=NaN)
Surface tension [N/m]

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

liqBridgeCreated(=false)
Whether liquid bridge was created, only after a normal contact of spheres

7.2. Interactions 205

Yade Documentation, Release 1.07.0

mR(=0.0)
Rolling resistance, see [Zhou1999536].

mRtype(=1)
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

sCrit(=false)
Critical bridge length [m]

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

theta(=NaN)
Contact angle [rad]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ViscoFrictPhys((object)arg1)
Temporary version of FrictPhys for compatibility with e.g. Law2_ScGeom6D_NormalInelastici-
tyPhys_NormalInelasticity
creepedShear(=Vector3r(0, 0, 0))

Creeped force (parallel)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.WirePhys((object)arg1)
Representation of a single interaction of the WirePM type, storage for relevant parameters
dL(=0.)

Additional wire length for considering the distortion for WireMat type=2 (see [Thoeni2013]).
dict() → dict

Return dictionary of attributes.

206 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displForceValues(=uninitalized)
Defines the values for force-displacement curve.

initD(=0.)
Equilibrium distance for particles. Computed as the initial inter-particular distance when
particle are linked.

isDoubleTwist(=false)
If true the properties of the interaction will be defined as a double-twisted wire.

isLinked(=false)
If true particles are linked and will interact. Interactions are linked automatically by the
definition of the corresponding interaction radius. The value is false if the wire breaks (no
more interaction).

isShifted(=false)
If true WireMat type=2 and the force-displacement curve will be shifted.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

limitFactor(=0.)
This value indicates on how far from failing the wire is, e.g. actual normal displacement
divided by admissible normal displacement.

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

plastD
Plastic part of the inter-particular distance of the previous step.

Note: Only elastic displacements are reversible (the elastic stiffness is used for unloading)
and compressive forces are inadmissible. The compressive stiffness is assumed to be equal to
zero.

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

stiffnessValues(=uninitalized)
Defines the values for the various stiffnesses (the elastic stiffness is stored as kn).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.2. Interactions 207

Yade Documentation, Release 1.07.0

7.3 Global engines

7.3.1 GlobalEngine

GlobalEngine

Collider

PeriodicEngine

BoundaryController

CapillaryStressRecorder

Recorder

ForceRecorder

DomainLimiter

GlobalStiffnessTimeStepper

TimeStepper

FacetTopologyAnalyzer

CpmStateUpdater

ResetRandomPos ition

FieldApplier

BoxFactorySpheresFactory

Cohes iveFrictionalContactLaw

NewtonIntegrator

TriaxialStateRecorder

Law2_ScGeom_CapillaryPhys_Capillarity

TorqueRecorder

TesselationWrapper

ForceResetter

TetraVolumetricLaw

PolyhedraSplitter

PyRunner

MicroMacroAnalyser

CircularFactory

VTKRecorder

ElasticContactLaw

SnapshotEngine

InteractionLoop

class yade.wrapper.GlobalEngine((object)arg1)
Engine that will generally affect the whole simulation (contrary to PartialEngine).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount

208 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

Cummulative count this engine was run (only used if O.timingEnabled==True).
execTime

Cummulative time this Engine took to run (only used if O.timingEnabled==True).
label(=uninitalized)

Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.BoxFactory((object)arg1)
Box geometry of the SpheresFactory region, given by extents and center
PSDcalculateMass(=true)

PSD-Input is in mass (true), otherwise the number of particles will be considered.
PSDcum(=uninitalized)

PSD-dispersion, cumulative procent meanings [-]
PSDsizes(=uninitalized)

PSD-dispersion, sizes of cells, Diameter [m]
blockedDOFs(=”“)

Blocked degress of freedom
center(=Vector3r(NaN, NaN, NaN))

Center of the region
color(=Vector3r(-1, -1, -1))

Use the color for newly created particles, if specified
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

extents(=Vector3r(NaN, NaN, NaN))
Extents of the region

goalMass(=0)
Total mass that should be attained at the end of the current step. (auto-updated)

7.3. Global engines 209

Yade Documentation, Release 1.07.0

ids(=uninitalized)
ids of created bodies

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate(=NaN)
Mass flow rate [kg/s]

materialId(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt(=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass(=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal(=Vector3r(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel(=Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rMax(=NaN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaN)
Minimum radius of generated spheres (uniform distribution)

silent(=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalMass(=0)
Mass of spheres that was produced so far. (auto-updated)

totalVolume(=0)
Volume of spheres that was produced so far. (auto-updated)

210 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vAngle(=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

vMax(=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.CapillaryStressRecorder((object)arg1)
Records information from capillary meniscii on samples submitted to triaxial compressions. ->
New formalism needs to be tested!!!
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

7.3. Global engines 211

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.CircularFactory((object)arg1)
Circular geometry of the SpheresFactory region. It can be disk (given by radius and center), or
cylinder (given by radius, length and center).
PSDcalculateMass(=true)

PSD-Input is in mass (true), otherwise the number of particles will be considered.
PSDcum(=uninitalized)

PSD-dispersion, cumulative procent meanings [-]
PSDsizes(=uninitalized)

PSD-dispersion, sizes of cells, Diameter [m]
blockedDOFs(=”“)

Blocked degress of freedom
center(=Vector3r(NaN, NaN, NaN))

Center of the region
color(=Vector3r(-1, -1, -1))

Use the color for newly created particles, if specified
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

goalMass(=0)
Total mass that should be attained at the end of the current step. (auto-updated)

ids(=uninitalized)
ids of created bodies

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

length(=0)
Length of the cylindrical region (0 by default)

212 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate(=NaN)
Mass flow rate [kg/s]

materialId(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt(=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass(=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal(=Vector3r(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel(=Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rMax(=NaN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaN)
Minimum radius of generated spheres (uniform distribution)

radius(=NaN)
Radius of the region

silent(=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalMass(=0)
Mass of spheres that was produced so far. (auto-updated)

totalVolume(=0)
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vAngle(=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

7.3. Global engines 213

Yade Documentation, Release 1.07.0

vMax(=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.CohesiveFrictionalContactLaw((object)arg1)
[DEPRECATED] Loop over interactions applying Law2_ScGeom6D_CohFrictPhys_CohesionMo-
ment on all interactions.

Note: Use InteractionLoop and Law2_ScGeom6D_CohFrictPhys_CohesionMoment instead of
this class for performance reasons.

always_use_moment_law(=false)
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

creep_viscosity(=false)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys...

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CpmStateUpdater((object)arg1)
Update CpmState of bodies based on state variables in CpmPhys of interactions with this bod. In
particular, bodies’ colors and CpmState::normDmg depending on average damage of their interac-
tions and number of interactions that were already fully broken and have disappeared is updated.

214 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

This engine contains its own loop (2 loops, more precisely) over all bodies and should be run
periodically to update colors during the simulation, if desired.
avgRelResidual(=NaN)

Average residual strength at last run.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxOmega(=NaN)
Globally maximum damage parameter at last run.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.DomainLimiter((object)arg1)
Delete particles that are out of axis-aligned box given by lo and hi.

7.3. Global engines 215

Yade Documentation, Release 1.07.0

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

hi(=Vector3r(0, 0, 0))
Upper corner of the domain.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lo(=Vector3r(0, 0, 0))
Lower corner of the domain.

mDeleted(=0)
Mass of deleted particles.

mask(=-1)
If mask is defined, only particles with corresponding groupMask will be deleted.

nDeleted(=0)
Cummulative number of particles deleted.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vDeleted(=0)
Volume of deleted particles.

216 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ElasticContactLaw((object)arg1)
[DEPRECATED] Loop over interactions applying Law2_ScGeom_FrictPhys_CundallStrack on
all interactions.

Note: Use InteractionLoop and Law2_ScGeom_FrictPhys_CundallStrack instead of this class
for performance reasons.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FacetTopologyAnalyzer((object)arg1)
Initializer for filling adjacency geometry data for facets.
Common vertices and common edges are identified and mutual angle between facet faces is written
to Facet instances. If facets don’t move with respect to each other, this must be done only at the
beginng.
commonEdgesFound(=0)

how many common edges were identified during last run. (auto-updated)
commonVerticesFound(=0)

how many common vertices were identified during last run. (auto-updated)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

7.3. Global engines 217

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

projectionAxis(=Vector3r::UnitX())
Axis along which to do the initial vertex sort

relTolerance(=1e-4)
maximum distance of ‘identical’ vertices, relative to minimum facet size

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ForceRecorder((object)arg1)
Engine saves the resultant force affecting to bodies, listed in ids. For instance, can be useful for
defining the forces, which affects to _buldozer_ during its work.
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

ids(=uninitalized)
List of bodies whose state will be measured

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

218 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalForce(=Vector3r::Zero())
Resultant force, returning by the function.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ForceResetter((object)arg1)
Reset all forces stored in Scene::forces (O.forces in python). Typically, this is the first engine to
be run at every step. In addition, reset those energies that should be reset, if energy tracing is
enabled.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

7.3. Global engines 219

Yade Documentation, Release 1.07.0

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlobalStiffnessTimeStepper((object)arg1)
An engine assigning the time-step as a fraction of the minimum eigen-period in the problem. The
derivation is detailed in the chapter on DEM formulation. The viscEl option enables to evaluate
the timestep in a similar way for the visco-elastic contact law Law2_ScGeom_ViscElPhys_Basic,
more detail in GlobalStiffnessTimestepper::viscEl.
active(=true)

is the engine active?
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defaultDt(=-1)
used as the initial value of the timestep (especially useful in the first steps when no contact
exist). If negative, it will be defined by utils.PWaveTimeStep * GlobalStiffnessTimeStep-
per::timestepSafetyCoefficient

densityScaling(=false)
(auto-updated) don’t modify this value if you don’t plan to modify the scaling factor manually
for some bodies. In most cases, it is enough to set NewtonIntegrator::densityScaling and let
this one be adjusted automatically.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxDt(=Mathr::MAX_REAL)
if positive, used as max value of the timestep whatever the computed value

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

previousDt(=1)
last computed dt (auto-updated)

targetDt(=1)
if NewtonIntegrator::densityScaling is active, this value will be used as the simulation timestep
and the scaling will use this value of dt as the target value. The value of targetDt is arbitrary
and should have no effect in the result in general. However if some bodies have imposed
velocities, for instance, they will move more or less per each step depending on this value.

220 Chapter 7. Class reference (yade.wrapper module)

https://www.yade-dem.org/doc/formulation.html#dem-simulations

Yade Documentation, Release 1.07.0

timeStepUpdateInterval(=1)
dt update interval

timestepSafetyCoefficient(=0.8)
safety factor between the minimum eigen-period and the final assigned dt (less than 1))

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

viscEl(=false)
To use with ViscElPhys. if True, evaluate separetly the minimum eigen-period in the problem
considering only the elastic contribution on one hand (spring only), and only the viscous
contribution on the other hand (dashpot only). Take then the minimum of the two and
use the safety coefficient GlobalStiffnessTimestepper::timestepSafetyCoefficient to take into
account the possible coupling between the two contribution.

class yade.wrapper.InteractionLoop((object)arg1)
Unified dispatcher for handling interaction loop at every step, for parallel performance reasons.

Special constructor
Constructs from 3 lists of Ig2, Ip2, Law functors respectively; they will be passed to interal dis-
patchers, which you might retrieve.

callbacks(=uninitalized)
Callbacks which will be called for every Interaction, if activated.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

eraseIntsInLoop(=false)
Defines if the interaction loop should erase pending interactions, else the collider takes care
of that alone (depends on what collider is used).

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

geomDispatcher(=new IGeomDispatcher)
IGeomDispatcher object that is used for dispatch.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lawDispatcher(=new LawDispatcher)
LawDispatcher object used for dispatch.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

7.3. Global engines 221

Yade Documentation, Release 1.07.0

physDispatcher(=new IPhysDispatcher)
IPhysDispatcher object used for dispatch.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_CapillaryPhys_Capillarity((object)arg1)
This law allows one to take into account capillary forces/effects between spheres coming from the
presence of interparticular liquid bridges (menisci).
The control parameter is the capillary pressure (or suction) Uc = ugas - Uliquid. Liquid bridges
properties (volume V, extent over interacting grains delta1 and delta2) are computed as a result
of the defined capillary pressure and of the interacting geometry (spheres radii and interparticular
distance).
References: in english [Scholtes2009b]; more detailed, but in french [Scholtes2009d].
The law needs ascii files M(r=i) with i=R1/R2 to work (see https://yade-
dem.org/index.php/CapillaryTriaxialTest). These ASCII files contain a set of results from
the resolution of the Laplace-Young equation for different configurations of the interacting
geometry.
In order to allow capillary forces between distant spheres, it is necessary to enlarge the bounding
boxes using Bo1_Sphere_Aabb::aabbEnlargeFactor and make the Ig2 define define distant inter-
actions via interactionDetectionFactor. It is also necessary to disable interactions removal by the
constitutive law (Law2). The only combinations of laws supported are currently capillary law
+ Law2_ScGeom_FrictPhys_CundallStrack and capillary law + Law2_ScGeom_MindlinPhys_-
Mindlin (and the other variants of Hertz-Mindlin).
See CapillaryPhys-example.py for an example script.
binaryFusion(=true)

If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected
capillaryPressure(=0.)

Value of the capillary pressure Uc defines as Uc=Ugas-Uliquid
createDistantMeniscii(=false)

Generate meniscii between distant spheres? Else only maintain the existing ones. For modeling
a wetting path this flag should always be false. For a drying path it should be true for one
step (initialization) then false, as in the logic of [Scholtes2009c]

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fusionDetection(=false)
If true potential menisci overlaps are checked

hertzOn(=false)
(auto-updated) true if hertz model is used

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

222 Chapter 7. Class reference (yade.wrapper module)

https://yade-dem.org/index.php/CapillaryTriaxialTest
https://yade-dem.org/index.php/CapillaryTriaxialTest

Yade Documentation, Release 1.07.0

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.MicroMacroAnalyser((object)arg1)
Compute fabric tensor, local porosity, local deformation, and other micromechanicaly defined quan-
tities based on triangulation/tesselation of the packing.
compDeformation(=false)

Is the engine just saving states or also computing and outputing deformations for each incre-
ment?

compIncrt(=false)
Should increments of force and displacements be defined on [n,n+1]? If not, states will be
saved with only positions and forces (no displacements).

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

incrtNumber(=1)
interval(=100)

Number of timesteps between analyzed states.
label(=uninitalized)

Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nonSphereAsFictious(=true)
bodies that are not spheres will be used to defines bounds (else just skipped).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

outputFile(=”MicroMacroAnalysis”)
Base name for increment analysis output file.

stateFileName(=”state”)
Base name of state files.

stateNumber(=0)
A number incremented and appended at the end of output files to reflect increment number.

7.3. Global engines 223

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.NewtonIntegrator((object)arg1)
Engine integrating newtonian motion equations.
damping(=0.2)

damping coefficient for Cundall’s non viscous damping (see [Chareyre2005]) [-]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

densityScaling
if True, then density scaling [Pfc3dManual30] will be applied in order to have a critical timestep
equal to GlobalStiffnessTimeStepper::targetDt for all bodies. This option makes the simula-
tion unrealistic from a dynamic point of view, but may speedup quasistatic simulations. In
rare situations, it could be useful to not set the scalling factor automatically for each body
(which the time-stepper does). In such case revert GlobalStiffnessTimeStepper.densityScaling
to False.

dict() → dict
Return dictionary of attributes.

exactAsphericalRot(=true)
Enable more exact body rotation integrator for aspherical bodies only, using formulation from
[Allen1989], pg. 89.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

gravity(=Vector3r::Zero())
Gravitational acceleration (effectively replaces GravityEngine).

kinSplit(=false)
Whether to separately track translational and rotational kinetic energy.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxVelocitySq(=NaN)
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

prevVelGrad(=Matrix3r::Zero())
Store previous velocity gradient (Cell::velGrad) to track acceleration. (auto-updated)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

224 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

warnNoForceReset(=true)
Warn when forces were not resetted in this step by ForceResetter; this mostly points to
ForceResetter being forgotten incidentally and should be disabled only with a good reason.

class yade.wrapper.PeriodicEngine((object)arg1)
Run Engine::action with given fixed periodicity real time (=wall clock time, computation time),
virtual time (simulation time), iteration number), by setting any of those criteria (virtPeriod,
realPeriod, iterPeriod) to a positive value. They are all negative (inactive) by default.
The number of times this engine is activated can be limited by setting nDo>0. If the number of
activations will have been already reached, no action will be called even if an active period has
elapsed.
If initRun is set (false by default), the engine will run when called for the first time; otherwise it
will only start counting period (realLast etc interal variables) from that point, but without actually
running, and will run only once a period has elapsed since the initial run.
This class should not be used directly; rather, derive your own engine which you want to be run
periodically.
Derived engines should override Engine::action(), which will be called periodically. If the derived
Engine overrides also Engine::isActivated, it should also take in account return value from Periodi-
cEngine::isActivated, since otherwise the periodicity will not be functional.
Example with PyRunner, which derives from PeriodicEngine; likely to be encountered in python
scripts:

PyRunner(realPeriod=5,iterPeriod=10000,command='print O.iter')

will print iteration number every 10000 iterations or every 5 seconds of wall clock time, whiever
comes first since it was last run.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be

7.3. Global engines 225

Yade Documentation, Release 1.07.0

typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PolyhedraSplitter((object)arg1)
Engine that splits polyhedras.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

226 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PyRunner((object)arg1)
Execute a python command periodically, with defined (and adjustable) periodicity. See Periodi-
cEngine documentation for details.
command(=”“)

Command to be run by python interpreter. Not run if empty.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

7.3. Global engines 227

Yade Documentation, Release 1.07.0

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.Recorder((object)arg1)
Engine periodically storing some data to (one) external file. In addition PeriodicEngine, it handles
opening the file as needed. See PeriodicEngine for controlling periodicity.
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

228 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ResetRandomPosition((object)arg1)
Creates spheres during simulation, placing them at random positions. Every time called, one new
sphere will be created and inserted in the simulation.
angularVelocity(=Vector3r::Zero())

Mean angularVelocity of spheres.
angularVelocityRange(=Vector3r::Zero())

Half size of a angularVelocity distribution interval. New sphere will have random angularVe-
locity within the range angularVelocity±angularVelocityRange.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

factoryFacets(=uninitalized)
The geometry of the section where spheres will be placed; they will be placed on facets or in
volume between them depending on volumeSection flag.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxAttempts(=20)
Max attempts to place sphere. If placing the sphere in certain random position would cause
an overlap with any other physical body in the model, SpheresFactory will try to find another
position.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

7.3. Global engines 229

Yade Documentation, Release 1.07.0

normal(=Vector3r(0, 1, 0))
??

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

point(=Vector3r::Zero())
??

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

subscribedBodies(=uninitalized)
Affected bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velocity(=Vector3r::Zero())
Mean velocity of spheres.

velocityRange(=Vector3r::Zero())
Half size of a velocities distribution interval. New sphere will have random velocity within the
range velocity±velocityRange.

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

volumeSection(=false, define factory by facets.)
Create new spheres inside factory volume rather than on its surface.

class yade.wrapper.SnapshotEngine((object)arg1)
Periodically save snapshots of GLView(s) as .png files. Files are named fileBase + counter + ‘.png’
(counter is left-padded by 0s, i.e. snap00004.png).
counter(=0)

Number that will be appended to fileBase when the next snapshot is saved (incremented at
every save). (auto-updated)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

deadTimeout(=3)
Timeout for 3d operations (opening new view, saving snapshot); after timing out, throw
exception (or only report error if ignoreErrors) and make myself dead. [s]

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

230 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fileBase(=”“)
Basename for snapshots

format(=”PNG”)
Format of snapshots (one of JPEG, PNG, EPS, PS, PPM, BMP) QGLViewer documentation.
File extension will be lowercased format. Validity of format is not checked.

ignoreErrors(=true)
Only report errors instead of throwing exceptions, in case of timeouts.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

msecSleep(=0)
number of msec to sleep after snapshot (to prevent 3d hw problems) [ms]

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

plot(=uninitalized)
Name of field in plot.imgData to which taken snapshots will be appended automatically.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

snapshots(=uninitalized)
Files that have been created so far

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

7.3. Global engines 231

http://www.libqglviewer.com/refManual/classQGLViewer.html#abbb1add55632dced395e2f1b78ef491c

Yade Documentation, Release 1.07.0

class yade.wrapper.SpheresFactory((object)arg1)
Engine for spitting spheres based on mass flow rate, particle size distribution etc. Initial velocity
of particles is given by vMin, vMax, the massFlowRate determines how many particles to generate
at each step. When goalMass is attained or positive maxParticles is reached, the engine does
not produce particles anymore. Geometry of the region should be defined in a derived engine by
overridden SpheresFactory::pickRandomPosition().
A sample script for this engine is in scripts/spheresFactory.py.
PSDcalculateMass(=true)

PSD-Input is in mass (true), otherwise the number of particles will be considered.
PSDcum(=uninitalized)

PSD-dispersion, cumulative procent meanings [-]
PSDsizes(=uninitalized)

PSD-dispersion, sizes of cells, Diameter [m]
blockedDOFs(=”“)

Blocked degress of freedom
color(=Vector3r(-1, -1, -1))

Use the color for newly created particles, if specified
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

goalMass(=0)
Total mass that should be attained at the end of the current step. (auto-updated)

ids(=uninitalized)
ids of created bodies

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate(=NaN)
Mass flow rate [kg/s]

materialId(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt(=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass(=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

232 Chapter 7. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/scripts/spheresFactory.py

Yade Documentation, Release 1.07.0

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal(=Vector3r(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel(=Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rMax(=NaN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaN)
Minimum radius of generated spheres (uniform distribution)

silent(=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalMass(=0)
Mass of spheres that was produced so far. (auto-updated)

totalVolume(=0)
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vAngle(=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

vMax(=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.TesselationWrapper((object)arg1)
Handle the triangulation of spheres in a scene, build tesselation on request, and give access to
computed quantities (see also the dedicated section in user manual). The calculation of microstrain
is explained in [Catalano2013a]
See example usage in script example/tesselationWrapper/tesselationWrapper.py.
Below is an output of the defToVtk function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble
University, 3SR lab.)

7.3. Global engines 233

https://yade-dem.org/doc/user.html#micro-stress-and-micro-strain

Yade Documentation, Release 1.07.0

ComputeDeformations() → None
Compute per-particle deformation. Get it with TesselationWrapper::deformation (id,i,j).

computeVolumes() → None
Compute volumes of all Voronoi’s cells.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defToVtk([(str)outputFile=’def.vtk’]) → None
Write local deformations in vtk format from states 0 and 1.

defToVtkFromPositions([(str)input1=’pos1’[, (str)input2=’pos2’[,
(str)outputFile=’def.vtk’[, (bool)bz2=False]]]]) → None

Write local deformations in vtk format from positions files (one sphere per line, with x,y,z,rad
separated by spaces).

defToVtkFromStates([(str)input1=’state1’[, (str)input2=’state2’[,
(str)outputFile=’def.vtk’[, (bool)bz2=True]]]]) → None

Write local deformations in vtk format from state files (since the file format is very special,
consider using defToVtkFromPositions if the input files were not generated by Tesselation-
Wrapper).

deformation((int)id, (int)i, (int)j) → float
Get particle deformation

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

234 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

getVolPoroDef([(bool)deformation=False]) → dict
Return a table with per-sphere computed quantities. Include deformations on the increment
defined by states 0 and 1 if deformation=True (make sure to define states 0 and 1 consistently).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

loadState([(str)inputFile=’state’[, (bool)state=0[, (bool)bz2=True]]]) → None
Load a file with positions to define state 0 or 1.

n_spheres(=0)
(auto-computed)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

saveState([(str)outputFile=’state’[, (bool)state=0[, (bool)bz2=True]]]) → None
Save a file with positions, can be later reloaded in order to define state 0 or 1.

setState([(bool)state=0]) → None
Make the current state of the simulation the initial (0) or final (1) configuration for the
definition of displacement increments, use only state=0 if you just want to get volmumes and
porosity.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

triangulate([(bool)reset=True]) → None
triangulate spheres of the packing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

volume([(int)id=0]) → float
Returns the volume of Voronoi’s cell of a sphere.

class yade.wrapper.TetraVolumetricLaw((object)arg1)
Calculate physical response of 2 tetrahedra in interaction, based on penetration configuration given
by TTetraGeom.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

7.3. Global engines 235

Yade Documentation, Release 1.07.0

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TimeStepper((object)arg1)
Engine defining time-step (fundamental class)
active(=true)

is the engine active?
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timeStepUpdateInterval(=1)
dt update interval

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TorqueRecorder((object)arg1)
Engine saves the total torque according to the given axis and ZeroPoint, the force is taken from
bodies, listed in ids For instance, can be useful for defining the torque, which affects on ball mill
during its work.
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

236 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

ids(=uninitalized)
List of bodies whose state will be measured

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

rotationAxis(=Vector3r::UnitX())
Rotation axis

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalTorque(=0)
Resultant torque, returning by the function.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

7.3. Global engines 237

Yade Documentation, Release 1.07.0

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

zeroPoint(=Vector3r::Zero())
Point of rotation center

class yade.wrapper.TriaxialStateRecorder((object)arg1)
Engine recording triaxial variables (see the variables list in the first line of the output file). This
recorder needs TriaxialCompressionEngine or ThreeDTriaxialEngine present in the simulation).
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

porosity(=1)
porosity of the packing [-]

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

238 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.VTKRecorder((object)arg1)
Engine recording snapshots of simulation into series of *.vtu files, readable by VTK-based post-
processing programs such as Paraview. Both bodies (spheres and facets) and interactions can be
recorded, with various vector/scalar quantities that are defined on them.
PeriodicEngine.initRun is initialized to True automatically.
Key(=”“)

Necessary if recorders contains ‘cracks’. A string specifying the name of file ‘cracks___.txt’
that is considered in this case (see corresponding attribute).

ascii(=false)
Store data as readable text in the XML file (sets vtkXMLWriter data mode to
vtkXMLWriter::Ascii, while the default is Appended

compress(=false)
Compress output XML files [experimental].

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fileName(=”“)
Base file name; it will be appended with {spheres,intrs,facets}-243100.vtu (unless multiblock
is True) depending on active recorders and step number (243100 in this case). It can contain
slashes, but the directory must exist already.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be exported. If 0, all bodies
will be exported.

multiblock(=false)
Use multi-block (.vtm) files to store data, rather than separate .vtu files.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

7.3. Global engines 239

http://www.vtk.org/doc/nightly/html/classvtkXMLWriter.html

Yade Documentation, Release 1.07.0

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

recorders
List of active recorders (as strings). all (the default value) enables all base and generic
recorders.

Base recorders
Base recorders save the geometry (unstructured grids) on which other data is defined. They
are implicitly activated by many of the other recorders. Each of them creates a new file (or a
block, if multiblock is set).
spheres Saves positions and radii (radii) of spherical particles.
facets Save facets positions (vertices).
boxes Save boxes positions (edges).
intr Store interactions as lines between nodes at respective particles positions. Additionally

stores magnitude of normal (forceN) and shear (absForceT) forces on interactions (the
geom).

Generic recorders
Generic recorders do not depend on specific model being used and save commonly useful data.
id Saves id’s (field id) of spheres; active only if spheres is active.
mass Saves masses (field mass) of spheres; active only if spheres is active.
clumpId Saves id’s of clumps to which each sphere belongs (field clumpId); active only if

spheres is active.
colors Saves colors of spheres and of facets (field color); only active if spheres or facets

are activated.
mask Saves groupMasks of spheres and of facets (field mask); only active if spheres or facets

are activated.
materialId Saves materialID of spheres and of facets; only active if spheres or facets are

activated.
velocity Saves linear and angular velocities of spherical particles as Vector3 and length(fields

linVelVec, linVelLen and angVelVec, angVelLen respectively‘‘); only effective with
spheres.

stress Saves stresses of spheres and of facets as Vector3 and length; only active if spheres
or facets are activated.

Specific recorders
The following should only be activated in appropriate cases, otherwise crashes can
occur due to violation of type presuppositions.

240 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

cpm Saves data pertaining to the concrete model: cpmDamage (normalized residual
strength averaged on particle), cpmStress (stress on particle); intr is activated
automatically by cpm

wpm Saves data pertaining to the wire particle model: wpmForceNFactor shows the
loading factor for the wire, e.g. normal force divided by threshold normal force.

jcfpm Saves data pertaining to the rock (smooth)-jointed model: damage is defined
by JCFpmState.tensBreak + JCFpmState.shearBreak; intr is activated auto-
matically by jcfpm, and on joint or cohesive interactions can be vizualized.

cracks Saves other data pertaining to the rock model: cracks shows locations where
cohesive bonds failed during the simulation, with their types (0/1 for tensile/shear
breakages), their sizes (0.5*(R1+R2)), and their normal directions. The corre-
sponding attribute has to be activated, and Key attributes have to be consistent.

skipFacetIntr(=true)
Skip interactions with facets, when saving interactions

skipNondynamic(=false)
Skip non-dynamic spheres (but not facets).

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

7.3.2 BoundaryController

BoundaryController

Disp2DPropLoadEngine

Peri3dController

PeriIsoCompressor

KinemCTDEngine

KinemSimpleShearBox

KinemCNSEngine

TriaxialCompress ionEngine

TriaxialStressController

KinemCNLEngine

UniaxialStrainer

ThreeDTriaxialEngine

PeriTriaxController

KinemCNDEngine

class yade.wrapper.BoundaryController((object)arg1)
Base for engines controlling boundary conditions of simulations. Not to be used directly.

7.3. Global engines 241

Yade Documentation, Release 1.07.0

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Disp2DPropLoadEngine((object)arg1)
Disturbs a simple shear sample in a given displacement direction
This engine allows one to apply, on a simple shear sample, a loading controlled by du/dgamma =
cste, which is equivalent to du + cste’ * dgamma = 0 (proportionnal path loadings). To do so,
the upper plate of the simple shear box is moved in a given direction (corresponding to a given
du/dgamma), whereas lateral plates are moved so that the box remains closed. This engine can
easily be used to perform directionnal probes, with a python script launching successivly the same
.xml which contains this engine, after having modified the direction of loading (see theta attribute).
That’s why this Engine contains a saveData procedure which can save data on the state of the
sample at the end of the loading (in case of successive loadings - for successive directions - through
a python script, each line would correspond to one direction of loading).
Key(=”“)

string to add at the names of the saved files, and of the output file filled by saveData
LOG(=false)

boolean controling the output of messages on the screen
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

id_boxback(=4)
the id of the wall at the back of the sample

242 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nbre_iter(=0)
the number of iterations of loading to perform

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

theta(=0.0)
the angle, in a (gamma,h=-u) plane from the gamma - axis to the perturbation vector (trigo
wise) [degrees]

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

v(=0.0)
the speed at which the perturbation is imposed. In case of samples which are more sensitive
to normal loadings than tangential ones, one possibility is to take v = V_shear - | (V_shear-
V_comp)*sin(theta) | => v=V_shear in shear; V_comp in compression [m/s]

class yade.wrapper.KinemCNDEngine((object)arg1)
To apply a Constant Normal Displacement (CND) shear for a parallelogram box
This engine, designed for simulations implying a simple shear box (SimpleShear Preprocessor or
scripts/simpleShear.py), allows one to perform a constant normal displacement shear, by translat-
ing horizontally the upper plate, while the lateral ones rotate so that they always keep contact
with the lower and upper walls.
Key(=”“)

string to add at the names of the saved files
LOG(=false)

boolean controling the output of messages on the screen
alpha(=Mathr::PI/2.0)

the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

7.3. Global engines 243

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma(=0.0)
the current value of the tangential displacement

gamma_save(=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m]

gammalim(=0.0)
the value of the tangential displacement at wich the displacement is stopped [m]

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shearSpeed(=0.0)
the speed at which the shear is performed : speed of the upper plate [m/s]

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

244 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCNLEngine((object)arg1)
To apply a constant normal stress shear (i.e. Constant Normal Load : CNL) for a parallelogram
box (simple shear box : SimpleShear Preprocessor or scripts/simpleShear.py)
This engine allows one to translate horizontally the upper plate while the lateral ones rotate so
that they always keep contact with the lower and upper walls.
In fact the upper plate can move not only horizontally but also vertically, so that the normal stress
acting on it remains constant (this constant value is not chosen by the user but is the one that
exists at the beginning of the simulation)
The right vertical displacements which will be allowed are computed from the rigidity Kn of the
sample over the wall (so to cancel a deltaSigma, a normal dplt deltaSigma*S/(Kn) is set)
The movement is moreover controlled by the user via a shearSpeed which will be the speed of the
upper wall, and by a maximum value of horizontal displacement gammalim, after which the shear
stops.

Note: Not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: Because of this last point, if you want to use later saves of simulations executed
with this Engine, but without that stopMovement was executed, your boxes will keep their
speeds => you will have to cancel them ‘by hand’ in the .xml.

Key(=”“)
string to add at the names of the saved files

LOG(=false)
boolean controling the output of messages on the screen

alpha(=Mathr::PI/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the

7.3. Global engines 245

Yade Documentation, Release 1.07.0

Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma(=0.0)
current value of tangential displacement [m]

gamma_save(=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shearSpeed(=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

246 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCNSEngine((object)arg1)
To apply a Constant Normal Stifness (CNS) shear for a parallelogram box (simple shear)
This engine, useable in simulations implying one deformable parallelepipedic box, allows one to
translate horizontally the upper plate while the lateral ones rotate so that they always keep contact
with the lower and upper walls. The upper plate can move not only horizontally but also vertically,
so that the normal rigidity defined by DeltaF(upper plate)/DeltaU(upper plate) = constant (= KnC
defined by the user).
The movement is moreover controlled by the user via a shearSpeed which is the horizontal speed
of the upper wall, and by a maximum value of horizontal displacement gammalim (of the upper
plate), after which the shear stops.

Note: not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: But, because of this last point, if you want to use later saves of simulations
executed with this Engine, but without that stopMovement was executed, your boxes will keep
their speeds => you will have to cancel them by hand in the .xml

Key(=”“)
string to add at the names of the saved files

KnC(=10.0e6)
the normal rigidity chosen by the user [MPa/mm] - the conversion in Pa/m will be made

LOG(=false)
boolean controling the output of messages on the screen

alpha(=Mathr::PI/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma(=0.0)
current value of tangential displacement [m]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

7.3. Global engines 247

Yade Documentation, Release 1.07.0

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shearSpeed(=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCTDEngine((object)arg1)
To compress a simple shear sample by moving the upper box in a vertical way only, so that the
tangential displacement (defined by the horizontal gap between the upper and lower boxes) remains
constant (thus, the CTD = Constant Tangential Displacement). The lateral boxes move also to
keep always contact. All that until this box is submitted to a given stress (=*targetSigma*).
Moreover saves are executed at each value of stresses stored in the vector sigma_save, and at
targetSigma
Key(=”“)

string to add at the names of the saved files

248 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

LOG(=false)
boolean controling the output of messages on the screen

alpha(=Mathr::PI/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

compSpeed(=0.0)
(vertical) speed of the upper box : >0 for real compression, <0 for unloading [m/s]

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

sigma_save(=uninitalized)
vector with the values of sigma at which a save of the simulation should be performed [kPa]

7.3. Global engines 249

Yade Documentation, Release 1.07.0

targetSigma(=0.0)
the value of sigma at which the compression should stop [kPa]

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemSimpleShearBox((object)arg1)
This class is supposed to be a mother class for all Engines performing loadings on the simple shear
box of SimpleShear. It is not intended to be used by itself, but its declaration and implentation
will thus contain all what is useful for all these Engines. The script simpleShear.py illustrates the
use of the various corresponding Engines.
Key(=”“)

string to add at the names of the saved files
LOG(=false)

boolean controling the output of messages on the screen
alpha(=Mathr::PI/2.0)

the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

250 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.Peri3dController((object)arg1)
Class for controlling independently all 6 components of “engineering” stress and strain of periodic
Cell. goal are the goal values, while stressMask determines which components prescribe stress and
which prescribe strain.
If the strain is prescribed, appropriate strain rate is directly applied. If the stress is prescribed,
the strain predictor is used: from stress values in two previous steps the value of strain rate is
prescribed so as the value of stress in the next step is as close as possible to the ideal one. Current
algorithm is extremly simple and probably will be changed in future, but is roboust enough and
mostly works fine.
Stress error (difference between actual and ideal stress) is evaluated in current and previous steps
(dσi, dσi−1). Linear extrapolation is used to estimate error in the next step

dσi+1 = 2dσi − dσi−1

7.3. Global engines 251

Yade Documentation, Release 1.07.0

According to this error, the strain rate is modified by mod parameter

dσi+1

{
> 0 → ε̇i+1 = ε̇i −max(abs(ε̇i)) ·mod
< 0 → ε̇i+1 = ε̇i +max(abs(ε̇i)) ·mod

According to this fact, the prescribed stress will (almost) never have exact prescribed value, but the
difference would be very small (and decreasing for increasing nSteps. This approach works good if
one of the dominant strain rates is prescribed. If all stresses are prescribed or if all goal strains is
prescribed as zero, a good estimation is needed for the first step, therefore the compliance matrix
is estimated (from user defined estimations of macroscopic material parameters youngEstimation
and poissonEstimation) and respective strain rates is computed form prescribed stress rates and
compliance matrix (the estimation of compliance matrix could be computed autamatically avoiding
user inputs of this kind).
The simulation on rotated periodic cell is also supported. Firstly, the polar decomposition is
performed on cell’s transformation matrix trsf T = UP, where U is orthogonal (unitary) matrix
representing rotation and P is a positive semi-definite Hermitian matrix representing strain. A
logarithm of P should be used to obtain realistic values at higher strain values (not implemented
yet). A prescribed strain increment in global coordinates dt · ε̇ is properly rotated to cell’s local
coordinates and added to P

Pi+1 = P+UTdt · ε̇U

The new value of trsf is computed at T i+1 = UPi+1. From current and next trsf the cell’s velocity
gradient velGrad is computed (according to its definition) as

V = (T i+1T
−1 − I)/dt

Current implementation allow user to define independent loading “path” for each prescribed com-
ponent. i.e. define the prescribed value as a function of time (or progress or steps). See Paths.
Examples examples/test/peri3dController_example1.py and examples/test/peri3dController_-
triaxialCompression.py explain usage and inputs of Peri3dController, exam-
ples/test/peri3dController_shear.py is an example of using shear components and also simulation
on rotated cell.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

doneHook(=uninitalized)
Python command (as string) to run when nSteps is achieved. If empty, the engine will be set
dead.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

goal(=Vector6r::Zero())
Goal state; only the upper triangular matrix is considered; each component is either prescribed
stress or strain, depending on stressMask.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

252 Chapter 7. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_example1.py
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_shear.py
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_shear.py

Yade Documentation, Release 1.07.0

lenPe(=NaN)
Peri3dController internal variable

lenPs(=NaN)
Peri3dController internal variable

maxStrain(=1e6)
Maximal asolute value of strain allowed in the simulation. If reached, the simulation is con-
sidered as finished

maxStrainRate(=1e3)
Maximal absolute value of strain rate (both normal and shear components of strain)

mod(=.1)
Predictor modificator, by trail-and-error analysis the value 0.1 was found as the best.

nSteps(=1000)
Number of steps of the simulation.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

pathSizes(=Vector6i::Zero())
Peri3dController internal variable

pathsCounter(=Vector6i::Zero())
Peri3dController internal variable

pe(=Vector6i::Zero())
Peri3dController internal variable

poissonEstimation(=.25)
Estimation of macroscopic Poisson’s ratio, used used for the first simulation step

progress(=0.)
Actual progress of the simulation with Controller.

ps(=Vector6i::Zero())
Peri3dController internal variable

strain(=Vector6r::Zero())
Current strain (deformation) vector (εx,εy,εz,γyz,γzx,γxy) (auto-updated).

strainGoal(=Vector6r::Zero())
Peri3dController internal variable

strainRate(=Vector6r::Zero())
Current strain rate vector.

stress(=Vector6r::Zero())
Current stress vector (σx,σy,σz,τyz,τzx,τxy)|yupdate|.

stressGoal(=Vector6r::Zero())
Peri3dController internal variable

stressIdeal(=Vector6r::Zero())
Ideal stress vector at current time step.

stressMask(=0, all strains)
mask determining whether components of goal are strain (0) or stress (1). The order is
00,11,22,12,02,01 from the least significant bit. (e.g. 0b000011 is stress 00 and stress 11).

stressRate(=Vector6r::Zero())
Current stress rate vector (that is prescribed, the actual one slightly differ).

7.3. Global engines 253

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

xxPath
“Time function” (piecewise linear) for xx direction. Sequence of couples of numbers. First
number is time, second number desired value of respective quantity (stress or strain). The
last couple is considered as final state (equal to (nSteps, goal)), other values are relative to
this state.
Example: nSteps=1000, goal[0]=300, xxPath=((2,3),(4,1),(5,2))
at step 400 (=5*1000/2) the value is 450 (=3*300/2),
at step 800 (=4*1000/5) the value is 150 (=1*300/2),
at step 1000 (=5*1000/5=nSteps) the value is 300 (=2*300/2=goal[0]).
See example scripts/test/peri3dController_example1 for illusration.

xyPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for xy direction, see xxPath

youngEstimation(=1e20)
Estimation of macroscopic Young’s modulus, used for the first simulation step

yyPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for yy direction, see xxPath

yzPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for yz direction, see xxPath

zxPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zx direction, see xxPath

zzPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zz direction, see xxPath

class yade.wrapper.PeriIsoCompressor((object)arg1)
Compress/decompress cloud of spheres by controlling periodic cell size until it reaches prescribed
average stress, then moving to next stress value in given stress series.
charLen(=-1.)

Characteristic length, should be something like mean particle diameter (default -1=invalid
value))

currUnbalanced
Current value of unbalanced force

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

doneHook(=”“)
Python command to be run when reaching the last specified stress

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

globalUpdateInt(=20)
how often to recompute average stress, stiffness and unbalanced force

254 Chapter 7. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/scripts/test/peri3dController_example1

Yade Documentation, Release 1.07.0

keepProportions(=true)
Exactly keep proportions of the cell (stress is controlled based on average, not its components

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxSpan(=-1.)
Maximum body span in terms of bbox, to prevent periodic cell getting too small. (auto-
computed)

maxUnbalanced(=1e-4)
if actual unbalanced force is smaller than this number, the packing is considered stable,

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

sigma
Current stress value

state(=0)
Where are we at in the stress series

stresses(=uninitalized)
Stresses that should be reached, one after another

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.PeriTriaxController((object)arg1)
Engine for independently controlling stress or strain in periodic simulations.
strainStress contains absolute values for the controlled quantity, and stressMask determines
meaning of those values (0 for strain, 1 for stress): e.g. (1<<0 | 1<<2) = 1 | 4 = 5 means
that strainStress[0] and strainStress[2] are stress values, and strainStress[1] is strain.
See scripts/test/periodic-triax.py for a simple example.
absStressTol(=1e3)

Absolute stress tolerance
currUnbalanced(=NaN)

current unbalanced force (updated every globUpdate) (auto-updated)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

doneHook(=uninitalized)
python command to be run when the desired state is reached

dynCell(=false)
Imposed stress can be controlled using the packing stiffness or by applying the laws of dynamic
(dynCell=true). Don’t forget to assign a mass to the cell.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

7.3. Global engines 255

Yade Documentation, Release 1.07.0

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

externalWork(=0)
Work input from boundary controller.

globUpdate(=5)
How often to recompute average stress, stiffness and unbalaced force.

goal
Desired stress or strain values (depending on stressMask), strains defined as
strain(i)=log(Fii).

Warning: Strains are relative to the O.cell.refSize (reference cell size), not the current
one (e.g. at the moment when the new strain value is set).

growDamping(=.25)
Damping of cell resizing (0=perfect control, 1=no control at all); see also wallDamping in
TriaxialStressController.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mass(=NaN)
mass of the cell (user set); if not set and dynCell is used, it will be computed as sum of masses
of all particles.

maxBodySpan(=Vector3r::Zero())
maximum body dimension (auto-computed)

maxStrainRate(=Vector3r(1, 1, 1))
Maximum strain rate of the periodic cell.

maxUnbalanced(=1e-4)
maximum unbalanced force.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

prevGrow(=Vector3r::Zero())
previous cell grow

relStressTol(=3e-5)
Relative stress tolerance

stiff(=Vector3r::Zero())
average stiffness (only every globUpdate steps recomputed from interactions) (auto-updated)

strain(=Vector3r::Zero())
cell strain (auto-updated)

strainRate(=Vector3r::Zero())
cell strain rate (auto-updated)

stress(=Vector3r::Zero())
diagonal terms of the stress tensor

stressMask(=0, all strains)
mask determining strain/stress (0/1) meaning for goal components

256 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

stressTensor(=Matrix3r::Zero())
average stresses, updated at every step (only every globUpdate steps recomputed from inter-
actions if !dynCell)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useDem3Dof(=false)
For some constitutive laws (practicaly all laws based on Dem3Dof), normalForce and shear-
Force on interactions are in the reverse sense and this flag must be true. See this message.

class yade.wrapper.ThreeDTriaxialEngine((object)arg1)
The engine perform a triaxial compression with a control in direction ‘i’ in stress (if stressControl_i)
else in strain.
For a stress control the imposed stress is specified by ‘sigma_i’ with a ‘max_veli’ depending on
‘strainRatei’. To obtain the same strain rate in stress control than in strain control you need to
set ‘wallDamping = 0.8’. For a strain control the imposed strain is specified by ‘strainRatei’. With
this engine you can also perform internal compaction by growing the size of particles by using
TriaxialStressController::controlInternalStress. For that, just switch on ‘internalCom-
paction=1’ and fix sigma_iso=value of mean pressure that you want at the end of the internal
compaction.
Key(=”“)

A string appended at the end of all files, use it to name simulations.
UnbalancedForce(=1)

mean resultant forces divided by mean contact force
boxVolume

Total packing volume.
computeStressStrainInterval(=10)
currentStrainRate1(=0)

current strain rate in direction 1 - converging to ThreeDTriaxialEngine::strainRate1 (./s)
currentStrainRate2(=0)

current strain rate in direction 2 - converging to ThreeDTriaxialEngine::strainRate2 (./s)
currentStrainRate3(=0)

current strain rate in direction 3 - converging to ThreeDTriaxialEngine::strainRate3 (./s)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

externalWork(=0)
Energy provided by boundaries.|yupdate|

7.3. Global engines 257

https://lists.launchpad.net/yade-dev/msg07455.html

Yade Documentation, Release 1.07.0

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

frictionAngleDegree(=-1)
Value of friction used in the simulation if (updateFrictionAngle)

goal1(=0)
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

height(=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

internalCompaction(=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

max_vel1
see TriaxialStressController::max_vel (auto-computed)

max_vel2
see TriaxialStressController::max_vel (auto-computed)

max_vel3
see TriaxialStressController::max_vel (auto-computed)

meanStress(=0)
Mean stress in the packing. (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

porosity
Porosity of the packing.

previousMultiplier(=1)
(auto-updated)

258 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

previousStress(=0)
(auto-updated)

radiusControlInterval(=10)
setContactProperties((float)arg2) → None

Assign a new friction angle (degrees) to dynamic bodies and relative interactions
spheresVolume

Total volume pf spheres.
stiffnessUpdateInterval(=10)

target strain rate (./s)
strain

Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.
strainDamping(=0.9997)

factor used for smoothing changes in effective strain rate. If target rate is TR, then (1-
damping)*(TR-currentRate) will be added at each iteration. With damping=0, rate=target
all the time. With damping=1, it doesn’t change.

strainRate
Current strain rate in a vector d/dt(exx,eyy,ezz).

strainRate1(=0)
target strain rate in direction 1 (./s)

strainRate2(=0)
target strain rate in direction 2 (./s)

strainRate3(=0)
target strain rate in direction 3 (./s)

stress((int)id) → Vector3
Return the mean stress vector acting on boundary ‘id’, with ‘id’ between 0 and 5.

stressControl_1(=true)
Switch to choose a stress or a strain control in directions 1

stressControl_2(=true)
Switch to choose a stress or a strain control in directions 2

stressControl_3(=true)
Switch to choose a stress or a strain control in directions 3

stressDamping(=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

stressMask(=7)
Bitmask determining if the components of TriaxialStressController::goal are stress (1) or strain
(0). 0 for none, 7 for all, 1 for sigma1, etc.

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateFrictionAngle(=false)
Switch to activate the update of the intergranular frictionto the value ThreeDTriaxi-
alEngine::frictionAngleDegree.

volumetricStrain(=0)
Volumetric strain (see TriaxialStressController::strain).|yupdate|

7.3. Global engines 259

Yade Documentation, Release 1.07.0

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_back_id(=4)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

width(=0)
size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.TriaxialCompressionEngine((object)arg1)
The engine is a state machine with the following states; transitions my be automatic, see below.

1.STATE_ISO_COMPACTION: isotropic compaction (compression) until the prescribed mean
pressue sigmaIsoCompaction is reached and the packing is stable. The compaction happens
either by straining the walls (!internalCompaction) or by growing size of grains (internalCom-
paction).

2.STATE_ISO_UNLOADING: isotropic unloading from the previously reached state, until the
mean pressure sigmaLateralConfinement is reached (and stabilizes).

Note: this state will be skipped if sigmaLateralConfinement == sigmaIsoCom-
paction.

3.STATE_TRIAX_LOADING: confined uniaxial compression: constant sigmaLateralConfine-
ment is kept at lateral walls (left, right, front, back), while top and bottom walls load the
packing in their axis (by straining), until the value of epsilonMax (deformation along the
loading axis) is reached. At this point, the simulation is stopped.

260 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

4.STATE_FIXED_POROSITY_COMPACTION: isotropic compaction (compression) until a
chosen porosity value (parameter:fixedPorosity). The six walls move with a chosen translation
speed (parameter StrainRate).

5.STATE_TRIAX_LIMBO: currently unused, since simulation is hard-stopped in the previous
state.

Transition from COMPACTION to UNLOADING is done automatically if autoUnload==true;
Transition from (UNLOADING to LOADING) or from (COMPACTION to LOADING:
if UNLOADING is skipped) is done automatically if autoCompressionActivation=true;
Both autoUnload and autoCompressionActivation are true by default.

Note: Most of the algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

Key(=”“)
A string appended at the end of all files, use it to name simulations.

StabilityCriterion(=0.001)
tolerance in terms of TriaxialCompressionEngine::UnbalancedForce to consider the packing is
stable

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

autoCompressionActivation(=true)
Auto-switch from isotropic compaction (or unloading state if sigmaLateralConfine-
ment<sigmaIsoCompaction) to deviatoric loading

autoStopSimulation(=false)
Stop the simulation when the sample reach STATE_LIMBO, or keep running

autoUnload(=true)
Auto-switch from isotropic compaction to unloading

boxVolume
Total packing volume.

computeStressStrainInterval(=10)
currentState(=1)

There are 5 possible states in which TriaxialCompressionEngine can be. See above wrap-
per.TriaxialCompressionEngine

currentStrainRate(=0)
current strain rate - converging to TriaxialCompressionEngine::strainRate (./s)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

dict() → dict
Return dictionary of attributes.

epsilonMax(=0.5)
Value of axial deformation for which the loading must stop

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

7.3. Global engines 261

Yade Documentation, Release 1.07.0

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

externalWork(=0)
Energy provided by boundaries.|yupdate|

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

fixedPoroCompaction(=false)
A special type of compaction with imposed final porosity TriaxialCompressio-
nEngine::fixedPorosity (WARNING : can give unrealistic results!)

fixedPorosity(=0)
Value of porosity chosen by the user

frictionAngleDegree(=-1)
Value of friction assigned just before the deviatoric loading

goal1(=0)
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

height(=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

internalCompaction(=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

isAxisymetric(=false)
if true, sigma_iso is assigned to sigma1, 2 and 3 (applies at each iteration and overrides
user-set values of s1,2,3)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

maxStress(=0)
Max value of stress during the simulation (for post-processing)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

max_vel1
see TriaxialStressController::max_vel (auto-computed)

max_vel2
see TriaxialStressController::max_vel (auto-computed)

262 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

max_vel3
see TriaxialStressController::max_vel (auto-computed)

meanStress(=0)
Mean stress in the packing. (auto-updated)

noFiles(=false)
If true, no files will be generated (*.xml, *.spheres,...)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

porosity
Porosity of the packing.

previousMultiplier(=1)
(auto-updated)

previousSigmaIso(=1)
Previous value of inherited sigma_iso (used to detect manual changes of the confining pressure)

previousState(=1)
Previous state (used to detect manual changes of the state in .xml)

previousStress(=0)
(auto-updated)

radiusControlInterval(=10)
setContactProperties((float)arg2) → None

Assign a new friction angle (degrees) to dynamic bodies and relative interactions
sigmaIsoCompaction(=1)

Prescribed isotropic pressure during the compaction phase
sigmaLateralConfinement(=1)

Prescribed confining pressure in the deviatoric loading; might be different from TriaxialCom-
pressionEngine::sigmaIsoCompaction

sigma_iso(=0)
prescribed confining stress (see :yref:TriaxialCompressionEngine::isAxisymetric‘)

spheresVolume
Total volume pf spheres.

stiffnessUpdateInterval(=10)
target strain rate (./s)

strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

strainDamping(=0.99)
coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like dn reaches 0, where d is the damping coefficient and n is the number of steps

strainRate(=0)
target strain rate (./s)

stress((int)id) → Vector3
Return the mean stress vector acting on boundary ‘id’, with ‘id’ between 0 and 5.

stressDamping(=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

7.3. Global engines 263

Yade Documentation, Release 1.07.0

stressMask(=7)
Bitmask determining if the components of TriaxialStressController::goal are stress (1) or strain
(0). 0 for none, 7 for all, 1 for sigma1, etc.

testEquilibriumInterval(=20)
interval of checks for transition between phases, higher than 1 saves computation time.

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

translationAxis(=TriaxialStressController::normal[wall_bottom])
compression axis

uniaxialEpsilonCurr(=1)
Current value of axial deformation during confined loading (is reference to strain[1])

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

volumetricStrain(=0)
Volumetric strain (see TriaxialStressController::strain).|yupdate|

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_back_id(=4)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

warn(=0)
counter used for sending a deprecation warning once

264 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

width(=0)
size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.TriaxialStressController((object)arg1)
An engine maintaining constant stresses or constant strain rates on some boundaries of a par-
allepipedic packing. The stress/strain control is defined for each axis using TriaxialStressCon-
troller::stressMask (a bitMask) and target values are defined by goal1,goal2, and goal3. sigmaIso
has to be defined during growing phases.

Note: The algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

boxVolume
Total packing volume.

computeStressStrainInterval(=10)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

externalWork(=0)
Energy provided by boundaries.|yupdate|

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

goal1(=0)
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask (see
also TriaxialStressController::isAxisymetric)

height(=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

internalCompaction(=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

7.3. Global engines 265

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

max_vel1
see TriaxialStressController::max_vel (auto-computed)

max_vel2
see TriaxialStressController::max_vel (auto-computed)

max_vel3
see TriaxialStressController::max_vel (auto-computed)

meanStress(=0)
Mean stress in the packing. (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

porosity
Porosity of the packing.

previousMultiplier(=1)
(auto-updated)

previousStress(=0)
(auto-updated)

radiusControlInterval(=10)
spheresVolume

Total volume pf spheres.
stiffnessUpdateInterval(=10)

target strain rate (./s)
strain

Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.
strainDamping(=0.99)

coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like dn reaches 0, where d is the damping coefficient and n is the number of steps

strainRate
Current strain rate in a vector d/dt(exx,eyy,ezz).

stress((int)id) → Vector3
Return the mean stress vector acting on boundary ‘id’, with ‘id’ between 0 and 5.

stressDamping(=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

266 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

stressMask(=7)
Bitmask determining if the components of TriaxialStressController::goal are stress (1) or strain
(0). 0 for none, 7 for all, 1 for sigma1, etc.

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

volumetricStrain(=0)
Volumetric strain (see TriaxialStressController::strain).|yupdate|

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_back_id(=4)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

width(=0)
size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.UniaxialStrainer((object)arg1)
Axial displacing two groups of bodies in the opposite direction with given strain rate.
absSpeed(=NaN)

alternatively, absolute speed of boundary motion can be specified; this is effective only at the

7.3. Global engines 267

Yade Documentation, Release 1.07.0

beginning and if strainRate is not set; changing absSpeed directly during simulation wil have
no effect. [ms−¹]

active(=true)
Whether this engine is activated

asymmetry(=0, symmetric)
If 0, straining is symmetric for negIds and posIds; for 1 (or -1), only posIds are strained and
negIds don’t move (or vice versa)

avgStress(=0)
Current average stress (auto-updated) [Pa]

axis(=2)
The axis which is strained (0,1,2 for x,y,z)

blockDisplacements(=false)
Whether displacement of boundary bodies perpendicular to the strained axis are blocked of
are free

blockRotations(=false)
Whether rotations of boundary bodies are blocked.

crossSectionArea(=NaN)
crossSection perpendicular to he strained axis; must be given explicitly [m²]

currentStrainRate(=NaN)
Current strain rate (update automatically). (auto-updated)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

idleIterations(=0)
Number of iterations that will pass without straining activity after stopStrain has been reached

initAccelTime(=-200)
Time for strain reaching the requested value (linear interpolation). If negative, the time is
dt*(-initAccelTime), where dt is the timestep at the first iteration. [s]

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

limitStrain(=0, disabled)
Invert the sense of straining (sharply, without transition) one this value of strain is reached.
Not effective if 0.

negIds(=uninitalized)
Bodies on which strain will be applied (on the negative end along the axis)

notYetReversed(=true)
Flag whether the sense of straining has already been reversed (only used internally).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

268 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

originalLength(=NaN)
Distance of reference bodies in the direction of axis before straining started (computed auto-
matically) [m]

posIds(=uninitalized)
Bodies on which strain will be applied (on the positive end along the axis)

setSpeeds(=false)
should we set speeds at the beginning directly, instead of increasing strain rate progressively?

stopStrain(=NaN)
Strain at which we will pause simulation; inactive (nan) by default; must be reached from
below (in absolute value)

strain(=0)
Current strain value, elongation/originalLength (auto-updated) [-]

strainRate(=NaN)
Rate of strain, starting at 0, linearly raising to strainRate. [-]

stressUpdateInterval(=10)
How often to recompute stress on supports.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.3.3 Collider

Collider

SpatialQuickSortCollider

Pers is tentTriangulationCollider

FlatGridCollider

InsertionSortCollider

ZECollider

class yade.wrapper.Collider((object)arg1)
Abstract class for finding spatial collisions between bodies.

Special constructor
Derived colliders (unless they override pyHandleCustomCtorArgs) can be given list of BoundFunc-
tors which is used to initialize the internal boundDispatcher instance.

7.3. Global engines 269

Yade Documentation, Release 1.07.0

avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FlatGridCollider((object)arg1)
Non-optimized grid collider, storing grid as dense flat array. Each body is assigned to (possibly
multiple) cells, which are arranged in regular grid between aabbMin and aabbMax, with cell size
step (same in all directions). Bodies outsize (aabbMin, aabbMax) are handled gracefully, assigned
to closest cells (this will create spurious potential interactions). verletDist determines how much is
each body enlarged to avoid collision detection at every step.

Note: This collider keeps all cells in linear memory array, therefore will be memory-inefficient for
sparse simulations.

Warning: objects Body::bound are not used, BoundFunctors are not used either: assigning
cells to bodies is hard-coded internally. Currently handles Shapes are: Sphere.

Note: Periodic boundary is not handled (yet).

aabbMax(=Vector3r::Zero())
Upper corner of grid (approximate, might be rouded up to minStep.

aabbMin(=Vector3r::Zero())
Lower corner of grid.

avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

270 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

step(=0)
Step in the grid (cell size)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

verletDist(=0)
Length by which enlarge space occupied by each particle; avoids running collision detection
at every step.

class yade.wrapper.InsertionSortCollider((object)arg1)
Collider with O(n log(n)) complexity, using Aabb for bounds.
At the initial step, Bodies’ bounds (along sortAxis) are first std::sort’ed along one axis (sortAxis),
then collided. The initial sort has O(n2) complexity, see Colliders’ performance for some informa-
tion (There are scripts in examples/collider-perf for measurements).
Insertion sort is used for sorting the bound list that is already pre-sorted from last iteration, where
each inversion calls checkOverlap which then handles either overlap (by creating interaction if
necessary) or its absence (by deleting interaction if it is only potential).
Bodies without bounding volume (such as clumps) are handled gracefully and never collide. Deleted
bodies are handled gracefully as well.
This collider handles periodic boundary conditions. There are some limitations, notably:

1.No body can have Aabb larger than cell’s half size in that respective dimension. You get
exception if it does and gets in interaction. One way to explicitly by-pass this restriction is
offered by allowBiggerThanPeriod, which can be turned on to insert a floor in the form of a
very large box for instance (see examples/periodicSandPile.py).

2.No body can travel more than cell’s distance in one step; this would mean that the simulation
is numerically exploding, and it is only detected in some cases.

Stride can be used to avoid running collider at every step by enlarging the particle’s bounds,
tracking their displacements and only re-run if they might have gone out of that bounds (see Verlet
list for brief description and background) . This requires cooperation from NewtonIntegrator as

7.3. Global engines 271

https://yade-dem.org/index.php/Colliders_performace
http://en.wikipedia.org/wiki/Verlet_list
http://en.wikipedia.org/wiki/Verlet_list

Yade Documentation, Release 1.07.0

well as BoundDispatcher, which will be found among engines automatically (exception is thrown
if they are not found).
If you wish to use strides, set verletDist (length by which bounds will be enlarged in all direc-
tions) to some value, e.g. 0.05 × typical particle radius. This parameter expresses the tradeoff
between many potential interactions (running collider rarely, but with longer exact interaction res-
olution phase) and few potential interactions (running collider more frequently, but with less exact
resolutions of interactions); it depends mainly on packing density and particle radius distribution.
If targetInterv is >1, not all particles will have their bound enlarged by verletDist; instead,
they will have bounds increased by a length in order to trigger a new colliding after targetInterv
iteration, assuming they move at almost constant velocity. Ideally in this method, all particles
would reach their bounds at the sime iteration. This is of course not the case as soon as velocities
fluctuate in time. Bound::sweepLength is tuned on the basis of the displacement recorded between
the last two runs of the collider. In this situation, verletDist defines the maximum sweep length.

allowBiggerThanPeriod
If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

doSort(=false)
Do forced resorting of interactions.

dumpBounds() → tuple
Return representation of the internal sort data. The format is ([...],[...],[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

•coordinate (float)
•body id (int), but negated for negative bounds
•period numer (int), if the collider is in the periodic regime.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fastestBodyMaxDist(=-1)
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

minSweepDistFactor(=0.1)
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

272 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

numReinit(=0)
Cummulative number of bound array re-initialization.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide(=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

targetInterv(=50)
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatingDispFactor(=-1)
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

useless(=uninitalized)
for compatibility of scripts defining the old collider’s attributes - see deprecated attributes

verletDist(=-.5, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

class yade.wrapper.PersistentTriangulationCollider((object)arg1)
Collision detection engine based on regular triangulation. Handles spheres and flat boundaries
(considered as infinite-sized bounding spheres).
avoidSelfInteractionMask

This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

7.3. Global engines 273

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

haveDistantTransient(=false)
Keep distant interactions? If True, don’t delete interactions once bodies don’t overlap any-
more; constitutive laws will be responsible for requesting deletion. If False, delete as soon as
there is no object penetration.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.SpatialQuickSortCollider((object)arg1)
Collider using quicksort along axes at each step, using Aabb bounds.
Its performance is lower than that of InsertionSortCollider (see Colliders’ performance), but the
algorithm is simple enought to make it good for checking other collider’s correctness.
avoidSelfInteractionMask

This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

274 Chapter 7. Class reference (yade.wrapper module)

https://yade-dem.org/index.php/Colliders_performace

Yade Documentation, Release 1.07.0

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ZECollider((object)arg1)
Collider with O(n log(n)) complexity, using a CGAL algorithm from Zomorodian and Edels-
brunner [Kettner2011] (http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Box_inter-
section_d/Chapter_main.html)
avoidSelfInteractionMask

This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fastestBodyMaxDist(=-1)
Maximum displacement of the fastest body since last run; if >= verletDist, we could get out of
bboxes and will trigger full run. DEPRECATED, was only used without bins. (auto-updated)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

numReinit(=0)
Cummulative number of bound array re-initialization.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide(=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

7.3. Global engines 275

http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html

Yade Documentation, Release 1.07.0

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

targetInterv(=30)
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatingDispFactor(=-1)
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

verletDist(=-.15, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled.

7.3.4 FieldApplier

FieldApplier

CentralGravityEngine

AxialGravityEngine

HdapsGravityEngineGravityEngine

class yade.wrapper.FieldApplier((object)arg1)
Base for engines applying force files on particles. Not to be used directly.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

276 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.AxialGravityEngine((object)arg1)
Apply acceleration (independent of distance) directed towards an axis.
acceleration(=0)

Acceleration magnitude [kgms−²]
axisDirection(=Vector3r::UnitX())

direction of the gravity axis (will be normalized automatically)
axisPoint(=Vector3r::Zero())

Point through which the axis is passing.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CentralGravityEngine((object)arg1)
Engine applying acceleration to all bodies, towards a central body.
accel(=0)

Acceleration magnitude [kgms−²]
centralBody(=Body::ID_NONE)

The body towards which all other bodies are attracted.

7.3. Global engines 277

Yade Documentation, Release 1.07.0

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reciprocal(=false)
If true, acceleration will be applied on the central body as well.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GravityEngine((object)arg1)
Engine applying constant acceleration to all bodies. DEPRECATED, use Newton::gravity unless
you need energy tracking or selective gravity application using groupMask).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

gravity(=Vector3r::Zero())
Acceleration [kgms−²]

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be

278 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

warnOnce(=true)
For deprecation warning once.

class yade.wrapper.HdapsGravityEngine((object)arg1)
Read accelerometer in Thinkpad laptops (HDAPS and accordingly set gravity within the simula-
tion. This code draws from hdaps-gl . See scripts/test/hdaps.py for an example.
accel(=Vector2i::Zero())

reading from the sysfs file
calibrate(=Vector2i::Zero())

Zero position; if NaN, will be read from the hdapsDir / calibrate.
calibrated(=false)

Whether calibrate was already updated. Do not set to True by hand unless you also give a
meaningful value for calibrate.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

gravity(=Vector3r::Zero())
Acceleration [kgms−²]

hdapsDir(=”/sys/devices/platform/hdaps”)
Hdaps directory; contains position (with accelerometer readings) and calibration (zero
acceleration).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

msecUpdate(=50)
How often to update the reading.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

7.3. Global engines 279

http://en.wikipedia.org/wiki/Active_hard_drive_protection
https://sourceforge.net/project/showfiles.php?group_id=138242
https://github.com/yade/trunk/blob/master/scripts/test/hdaps.py

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateThreshold(=4)
Minimum difference of reading from the file before updating gravity, to avoid jitter.

warnOnce(=true)
For deprecation warning once.

zeroGravity(=Vector3r(0, 0, -1))
Gravity if the accelerometer is in flat (zero) position.

7.4 Partial engines

PartialEngine

ServoPIDControllerTrans lationEngine

KinematicEngine

CombinedKinematicEngine

DragEngine

HarmonicRotationEngineRotationEngineRadialForceEngine

BicyclePedalEngine InterpolatingHelixEngineHelixEngine

PeriodicFlowEngine

FlowEngine HarmonicMotionEngine

LawTester

LinearDragEngine

ForceEngine

StepDisplacer

TorqueEngine

InterpolatingDirectedForceEngine

class yade.wrapper.PartialEngine((object)arg1)
Engine affecting only particular bodies in the simulation, defined by ids.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can

280 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.BicyclePedalEngine((object)arg1)
Engine applying the linear motion of bicycle pedal e.g. moving points around the axis without
rotation
angularVelocity(=0)

Angular velocity. [rad/s]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fi(=Mathr::PI/2.0)
Initial phase [radians]

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

radius(=-1.0)
Rotation radius. [m]

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CombinedKinematicEngine((object)arg1)
Engine for applying combined displacements on pre-defined bodies. Constructed using + operator
on regular KinematicEngines. The ids operated on are those of the first engine in the combination
(assigned automatically).

7.4. Partial engines 281

Yade Documentation, Release 1.07.0

comb(=uninitalized)
Kinematic engines that will be combined by this one, run in the order given.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.DragEngine((object)arg1)
Apply drag force on some particles at each step, decelerating them proportionally to their linear
velocities. The applied force reads

Fd = −
v

|v|

1

2
ρ|v|2CdA

where ρ is the medium density (density), v is particle’s velocity, A is particle projected area (disc),
Cd is the drag coefficient (0.47 for Sphere),

Note: Drag force is only applied to spherical particles, listed in ids.

Cd(=0.47)
Drag coefficient <http://en.wikipedia.org/wiki/Drag_coefficient>‘_.

Rho(=1.225)
Density of the medium (fluid or air), by default - the density of the air.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

282 Chapter 7. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Drag_equation
http://en.wikipedia.org/wiki/Drag_coefficient

Yade Documentation, Release 1.07.0

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FlowEngine((object)arg1)
An engine to solve flow problem in saturated granular media. Model description can be found in
[Chareyre2012a] and [Catalano2013a]. See the example script FluidCouplingPFV/oedometer.py.
More documentation to come.
Debug(=false)

Activate debug messages
P_zero(=0)

The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

Relax(=1.9)
Gauss-Seidel relaxation

Tolerance(=1e-06)
Gauss-Seidel Tolerance

WaveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

avFlVelOnSph((int)Id_sph) → object
Compute a sphere-centered average fluid velocity

averagePressure() → float
Measure averaged pore pressure in the entire volume

averageSlicePressure((float)posY) → float
Measure slice-averaged pore pressure at height posY

bndCondIsPressure(=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

bndCondValue(=vector<double>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((int)Id_sph) → Matrix3
Return the normal lubrication stress on sphere Id_sph.

bodyShearLubStress((int)Id_sph) → Matrix3
Return the shear lubrication stress on sphere Id_sph.

7.4. Partial engines 283

Yade Documentation, Release 1.07.0

boundaryUseMaxMin(=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

boundaryVelocity(=vector<Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

cholmodStats() → None
get statistics of cholmod solver activity

clampKValues(=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux() → None
Clear the list of points with flux imposed.

clearImposedPressure() → None
Clear the list of points with pressure imposed.

create_file(=false)
create file of velocities

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defTolerance(=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

dict() → dict
Return dictionary of attributes.

display_force(=false)
display the lubrication force applied on particles

dt(=0)
timestep [s]

emulateAction() → None
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps(=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

eps_vol_max(=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

exportMatrix([(str)filename=’matrix’]) → None
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets([(str)filename=’triplets’]) → None
Export system matrix to a file with only non-zero entries.

first(=true)
Controls the initialization/update phases

284 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

fluidBulkModulus(=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

fluidForce((int)Id_sph) → Vector3
Return the fluid force on sphere Id_sph.

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFlux((int)boundary) → float
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getCell((Vector3)pos) → int
get id of the cell containing (X,Y,Z).

getCellFlux((int)cond) → float
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getConstrictions([(bool)all=True]) → list
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull([(bool)all=True]) → list
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getPorePressure((Vector3)pos) → float
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((int)id) → list
get the vertices of a cell

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

ignoredBody(=-1)
Id of a sphere to exclude from the triangulation.)

imposeFlux((Vector3)pos, (float)p) → None
Impose incoming flux in boundary cell of location ‘pos’.

imposePressure((Vector3)pos, (float)p) → int
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

isActivated(=true)
Activates Flow Engine

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxKdivKmean(=100)
define the max K value (see FlowEngine::clampKValues)

7.4. Partial engines 285

Yade Documentation, Release 1.07.0

meanKStat(=false)
report the local permeabilities’ correction

meshUpdateInterval(=1000)
Maximum number of timesteps between re-triangulation events. See also
FlowEngine::defTolerance.

metisUsed() → bool
check wether metis lib is effectively used

minKdivKmean(=0.0001)
define the min K value (see FlowEngine::clampKValues)

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells() → int
get the total number of finite cells in the triangulation.

normalLubForce((int)Id_sph) → Vector3
Return the normal lubrication force on sphere Id_sph.

normalLubrication(=false)
Compute normal lubrication force as developped by Brule

normalVect((int)id_sph) → Vector3
Return the normal vector between particles.

normalVelocity((int)id_sph) → Vector3
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

numSolveThreads(=1)
number of openblas threads in the solve phase.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((int)interaction) → int
Return the id of the interaction only between spheres.

permeabilityFactor(=1.0)
permability multiplier

permeability_map(=false)
Enable/disable stocking of average permeability scalar in cell infos.

porosity(=0)
Porosity computed at each retriangulation (auto-updated)

pressureForce(=true)
Compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((float)wallUpY, (float)wallDownY) → None
Measure pore pressure in 6 equally-spaced points along the height of the sample

saveVtk() → None
Save pressure field in vtk format.

setImposedPressure((int)cond, (float)p) → None
Set pressure value at the point indexed ‘cond’.

286 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

shearLubForce((int)Id_sph) → Vector3
Return the shear lubrication force on sphere Id_sph.

shearLubTorque((int)Id_sph) → Vector3
Return the shear lubrication torque on sphere Id_sph.

shearLubrication(=false)
Compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((int)id_sph) → Vector3
Return the shear velocity of the interaction.

sineAverage(=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude(=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p)

slip_boundary(=true)
Controls friction condition on lateral walls

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((int)interaction) → float
Return the distance between particles.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateBCs() → None
tells the engine to update it’s boundary conditions before running (especially useful when
changing boundary pressure - should not be needed for point-wise imposed pressure)

updateTriangulation(=0)
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time.

useSolver(=0)
Solver to use 0=G-Seidel, 1=Taucs, 2-Pardiso, 3-CHOLMOD

viscosity(=1.0)
viscosity of the fluid

viscousNormalBodyStress(=false)
Compute normal viscous stress applied on each body

viscousShear(=false)
Compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

viscousShearBodyStress(=false)
Compute shear viscous stress applied on each body

wallIds(=vector<int>(6))
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wall_thickness(=0.001)
Walls thickness

xmax(=1)
See FlowEngine::xmin.

7.4. Partial engines 287

Yade Documentation, Release 1.07.0

xmin(=0)
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],...).

ymax(=3)
See FlowEngine::xmin.

ymin(=2)
See FlowEngine::xmin.

zmax(=5)
See FlowEngine::xmin.

zmin(=4)
See FlowEngine::xmin.

class yade.wrapper.ForceEngine((object)arg1)
Apply contact force on some particles at each step.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

force(=Vector3r::Zero())
Force to apply.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.HarmonicMotionEngine((object)arg1)
This engine implements the harmonic oscillation of bodies. http://en.wikipedia.org/wiki/Simple_-
harmonic_motion#Dynamics_of_simple_harmonic_motion
A(=Vector3r::Zero())

Amplitude [m]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

288 Chapter 7. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f(=Vector3r::Zero())
Frequency [hertz]

fi(=Vector3r(Mathr::PI/2.0, Mathr::PI/2.0, Mathr::PI/2.0))
Initial phase [radians]. By default, the body oscillates around initial position.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.HarmonicRotationEngine((object)arg1)
This engine implements the harmonic-rotation oscillation of bodies.
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_-
motion ; please, set dynamic=False for bodies, droven by this engine, otherwise amplitude will be
2x more, than awaited.
A(=0)

Amplitude [rad]
angularVelocity(=0)

Angular velocity. [rad/s]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f(=0)
Frequency [hertz]

fi(=Mathr::PI/2.0)
Initial phase [radians]. By default, the body oscillates around initial position.

7.4. Partial engines 289

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Documentation, Release 1.07.0

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rotateAroundZero(=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

zeroPoint(=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.HelixEngine((object)arg1)
Engine applying both rotation and translation, along the same axis, whence the name HelixEngine

angleTurned(=0)
How much have we turned so far. (auto-updated) [rad]

angularVelocity(=0)
Angular velocity. [rad/s]

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

linearVelocity(=0)
Linear velocity [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

290 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rotateAroundZero(=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

zeroPoint(=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.InterpolatingDirectedForceEngine((object)arg1)
Engine for applying force of varying magnitude but constant direction on subscribed bodies. times
and magnitudes must have the same length, direction (normalized automatically) gives the orien-
tation.
As usual with interpolating engines: the first magnitude is used before the first time point, last
magnitude is used after the last time point. Wrap specifies whether time wraps around the last
time point to the first time point.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

direction(=Vector3r::UnitX())
Contact force direction (normalized automatically)

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

force(=Vector3r::Zero())
Force to apply.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

magnitudes(=uninitalized)
Force magnitudes readings [N]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

times(=uninitalized)
Time readings [s]

7.4. Partial engines 291

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wrap(=false)
wrap to the beginning of the sequence if beyond the last time point

class yade.wrapper.InterpolatingHelixEngine((object)arg1)
Engine applying spiral motion, finding current angular velocity by linearly interpolating in times
and velocities and translation by using slope parameter.
The interpolation assumes the margin value before the first time point and last value after the last
time point. If wrap is specified, time will wrap around the last times value to the first one (note
that no interpolation between last and first values is done).
angleTurned(=0)

How much have we turned so far. (auto-updated) [rad]
angularVelocities(=uninitalized)

List of angular velocities; manadatorily of same length as times. [rad/s]
angularVelocity(=0)

Angular velocity. [rad/s]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

linearVelocity(=0)
Linear velocity [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rotateAroundZero(=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

slope(=0)
Axial translation per radian turn (can be negative) [m/rad]

times(=uninitalized)
List of time points at which velocities are given; must be increasing [s]

292 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wrap(=false)
Wrap t if t>times_n, i.e. t_wrapped=t-N*(times_n-times_0)

zeroPoint(=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.KinematicEngine((object)arg1)
Abstract engine for applying prescribed displacement.

Note: Derived classes should override the apply with given list of ids (not action with Par-
tialEngine.ids), so that they work when combined together; velocity and angular velocity of all
subscribed bodies is reset before the apply method is called, it should therefore only increment
those quantities.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.LawTester((object)arg1)
Prescribe and apply deformations of an interaction in terms of local mutual displacements and
rotations. The loading path is specified either using path (as sequence of 6-vectors containing
generalized displacements ux, uy, uz, φx, φy, φz) or disPath (ux, uy, uz) and rotPath (φx, φy,
φz). Time function with time values (step numbers) corresponding to points on loading path is
given by pathSteps. Loading values are linearly interpolated between given loading path points,
and starting zero-value (the initial configuration) is assumed for both path and pathSteps. hooks
can specify python code to run when respective point on the path is reached; when the path is
finished, doneHook will be run.

7.4. Partial engines 293

Yade Documentation, Release 1.07.0

LawTester should be placed between InteractionLoop and NewtonIntegrator in the simulation
loop, since it controls motion via setting linear/angular velocities on particles; those velocities are
integrated by NewtonIntegrator to yield an actual position change, which in turn causes IGeom
to be updated (and contact law applied) when InteractionLoop is executed. Constitutive law
generating forces on particles will not affect prescribed particle motion, since both particles have
all DoFs blocked when first used with LawTester.
LawTester uses, as much as possible, IGeom to provide useful data (such as local coordinate system),
but is able to compute those independently if absent in the respective IGeom:

IGeom #DoFs LawTester support level
L3Geom 3 full
L6Geom 6 full
ScGeom 3 emulate local coordinate system
ScGeom6D 6 emulate local coordinate system

Depending on IGeom, 3 (ux, uy, uz) or 6 (ux, uy, uz, φx, φy, φz) degrees of freedom (DoFs)
are controlled with LawTester, by prescribing linear and angular velocities of both particles in
contact. All DoFs controlled with LawTester are orthogonal (fully decoupled) and are controlled
independently.
When 3 DoFs are controlled, rotWeight controls whether local shear is applied by moving particle
on arc around the other one, or by rotating without changing position; although such rotation
induces mutual rotation on the interaction, it is ignored with IGeom with only 3 DoFs. When 6
DoFs are controlled, only arc-displacement is applied for shear, since otherwise mutual rotation
would occur.
idWeight distributes prescribed motion between both particles (resulting local deformation is the
same if id1 is moved towards id2 or id2 towards id1). This is true only for ux, uy, uz, φx

however ; bending rotations φy, φz are nevertheless always distributed regardless of idWeight to
both spheres in inverse proportion to their radii, so that there is no shear induced.
LawTester knows current contact deformation from 2 sources: from its own internal data (which
are used for prescribing the displacement at every step), which can be accessed in uTest, and from
IGeom itself (depending on which data it provides), which is stored in uGeom. These two values
should be identical (disregarding numerical percision), and it is a way to test whether IGeom and
related functors compute what they are supposed to compute.
LawTester-operated interactions can be rendered with GlExtra_LawTester renderer.
See scripts/test/law-test.py for an example.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

disPath(=uninitalized)
Loading path, where each Vector3 contains desired normal displacement and two components
of the shear displacement (in local coordinate system, which is being tracked automatically.
If shorter than rotPath, the last value is repeated.

displIsRel(=true)
Whether displacement values in disPath are normalized by reference contact length (r1+r2
for 2 spheres).

doneHook(=uninitalized)
Python command (as string) to run when end of the path is achieved. If empty, the engine
will be set dead.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

294 Chapter 7. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/scripts/test/law-test.py

Yade Documentation, Release 1.07.0

hooks(=uninitalized)
Python commands to be run when the corresponding point in path is reached, before doing
other things in that particular step. See also doneHook.

idWeight(=1)
Float, usually �〈0,1〉, determining on how are displacements distributed between particles
(0 for id1, 1 for id2); intermediate values will apply respective part to each of them. This
parameter is ignored with 6-DoFs IGeom.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

pathSteps(=vector<int>(1, 1), (constant step))
Step number for corresponding values in path; if shorter than path, distance between last 2
values is used for the rest.

refLength(=0)
Reference contact length, for rendering only.

renderLength(=0)
Characteristic length for the purposes of rendering, set equal to the smaller radius.

rotPath(=uninitalized)
Rotational components of the loading path, where each item contains torsion and two bending
rotations in local coordinates. If shorter than path, the last value is repeated.

rotWeight(=1)
Float �〈0,1〉 determining whether shear displacement is applied as rotation or displacement on
arc (0 is displacement-only, 1 is rotation-only). Not effective when mutual rotation is specified.

step(=1)
Step number in which this engine is active; determines position in path, using pathSteps.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

trsf(=uninitalized)
Transformation matrix for the local coordinate system. (auto-updated)

uGeom(=Vector6r::Zero())
Current generalized displacements (3 displacements, 3 rotations), as stored in the interation
itself. They should corredpond to uTest, otherwise a bug is indicated.

uTest(=Vector6r::Zero())
Current generalized displacements (3 displacements, 3 rotations), as they should be according
to this LawTester. Should correspond to uGeom.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

uuPrev(=Vector6r::Zero())
Generalized displacement values reached in the previous step, for knowing which increment
to apply in the current step.

7.4. Partial engines 295

Yade Documentation, Release 1.07.0

class yade.wrapper.LinearDragEngine((object)arg1)
Apply viscous resistance or linear drag on some particles at each step, decelerating them propor-
tionally to their linear velocities. The applied force reads

Fd = −bv

where b is the linear drag, v is particle’s velocity.

b = 6πνr

where ν is the medium viscosity, r is the Stokes radius of the particle (but in this case we accept
it equal to sphere radius for simplification),

Note: linear drag is only applied to spherical particles, listed in ids.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nu(=0.001)
Viscosity of the medium.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.PeriodicFlowEngine((object)arg1)
A variant of FlowEngine implementing periodic boundary conditions. The API is very similar.
Debug(=false)

Activate debug messages
OSI() → float

Return the number of interactions only between spheres.
P_zero(=0)

The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

296 Chapter 7. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Drag_%28physics%29#Very_low_Reynolds_numbers_.E2.80.94_Stokes.27_drag
http://en.wikipedia.org/wiki/Stokes_radius

Yade Documentation, Release 1.07.0

Relax(=1.9)
Gauss-Seidel relaxation

Tolerance(=1e-06)
Gauss-Seidel Tolerance

WaveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

avFlVelOnSph((int)Id_sph) → object
Compute a sphere-centered average fluid velocity

averagePressure() → float
Measure averaged pore pressure in the entire volume

averageSlicePressure((float)posY) → float
Measure slice-averaged pore pressure at height posY

bndCondIsPressure(=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

bndCondValue(=vector<double>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((int)Id_sph) → Matrix3
Return the normal lubrication stress on sphere Id_sph.

bodyShearLubStress((int)Id_sph) → Matrix3
Return the shear lubrication stress on sphere Id_sph.

boundaryUseMaxMin(=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

boundaryVelocity(=vector<Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

cholmodStats() → None
get statistics of cholmod solver activity

clampKValues(=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux() → None
Clear the list of points with flux imposed.

clearImposedPressure() → None
Clear the list of points with pressure imposed.

compTessVolumes() → None
Like TesselationWrapper::computeVolumes()

create_file(=false)
create file of velocities

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defTolerance(=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

7.4. Partial engines 297

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

display_force(=false)
display the lubrication force applied on particles

dt(=0)
timestep [s]

duplicateThreshold(=0.06)
distance from cell borders that will triger periodic duplication in the triangulation (auto-
updated)

edgeSize() → float
Return the number of interactions.

emulateAction() → None
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps(=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

eps_vol_max(=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

exportMatrix([(str)filename=’matrix’]) → None
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets([(str)filename=’triplets’]) → None
Export system matrix to a file with only non-zero entries.

first(=true)
Controls the initialization/update phases

fluidBulkModulus(=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

fluidForce((int)Id_sph) → Vector3
Return the fluid force on sphere Id_sph.

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFlux((int)boundary) → float
Get total flux through boundary defined by its body id.

getCell((Vector3)pos) → int
get id of the cell containing ‘pos’.

getCellFlux((int)cond) → float
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getConstrictions([(bool)all=True]) → list
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

298 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

getConstrictionsFull([(bool)all=True]) → list
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getPorePressure((Vector3)pos) → float
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((int)id) → list
get the vertices of a cell

gradP(=Vector3r::Zero())
Macroscopic pressure gradient

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

ignoredBody(=-1)
Id of a sphere to exclude from the triangulation.)

imposeFlux((Vector3)pos, (float)p) → None
Impose incoming flux in boundary cell of location ‘pos’.

imposePressure((Vector3)pos, (float)p) → int
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

isActivated(=true)
Activates Flow Engine

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxKdivKmean(=100)
define the max K value (see FlowEngine::clampKValues)

meanKStat(=false)
report the local permeabilities’ correction

meanVelocity() → Vector3
measure the mean velocity in the period

meshUpdateInterval(=1000)
Maximum number of timesteps between re-triangulation events. See also
FlowEngine::defTolerance.

metisUsed() → bool
check wether metis lib is effectively used

minKdivKmean(=0.0001)
define the min K value (see FlowEngine::clampKValues)

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells() → int
get the total number of finite cells in the triangulation.

normalLubForce((int)Id_sph) → Vector3
Return the normal lubrication force on sphere Id_sph.

normalLubrication(=false)
Compute normal lubrication force as developped by Brule

normalStressInteraction((int)id_sph) → Matrix3
Return the shear velocity of the interaction.

7.4. Partial engines 299

Yade Documentation, Release 1.07.0

normalVect((int)id_sph) → Vector3
Return the normal vector between particles.

normalVelocity((int)id_sph) → Vector3
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

numSolveThreads(=1)
number of openblas threads in the solve phase.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((int)interaction) → int
Return the id of the interaction only between spheres.

permeabilityFactor(=1.0)
permability multiplier

permeability_map(=false)
Enable/disable stocking of average permeability scalar in cell infos.

porosity(=0)
Porosity computed at each retriangulation (auto-updated)

pressureForce(=true)
Compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((float)wallUpY, (float)wallDownY) → None
Measure pore pressure in 6 equally-spaced points along the height of the sample

saveVtk() → None
Save pressure field in vtk format.

setImposedPressure((int)cond, (float)p) → None
Set pressure value at the point indexed ‘cond’.

shearLubForce((int)Id_sph) → Vector3
Return the shear lubrication force on sphere Id_sph.

shearLubTorque((int)Id_sph) → Vector3
Return the shear lubrication torque on sphere Id_sph.

shearLubrication(=false)
Compute shear lubrication force as developped by Brule (FIXME: ref.)

shearStressInteraction((int)id_sph) → Matrix3
Return the shear velocity of the interaction.

shearVelocity((int)id_sph) → Vector3
Return the shear velocity of the interaction.

sineAverage(=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude(=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p)

slip_boundary(=true)
Controls friction condition on lateral walls

300 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((int)interaction) → float
Return the distance between particles.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateBCs() → None
tells the engine to update it’s boundary conditions before running (especially useful when
changing boundary pressure - should not be needed for point-wise imposed pressure)

updateTriangulation(=0)
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time.

useSolver(=0)
Solver to use 0=G-Seidel, 1=Taucs, 2-Pardiso, 3-CHOLMOD

viscosity(=1.0)
viscosity of the fluid

viscousNormalBodyStress(=false)
Compute normal viscous stress applied on each body

viscousShear(=false)
Compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

viscousShearBodyStress(=false)
Compute shear viscous stress applied on each body

volume([(int)id=0]) → float
Returns the volume of Voronoi’s cell of a sphere.

wallIds(=vector<int>(6))
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wall_thickness(=0.001)
Walls thickness

xmax(=1)
See FlowEngine::xmin.

xmin(=0)
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],...).

ymax(=3)
See FlowEngine::xmin.

ymin(=2)
See FlowEngine::xmin.

zmax(=5)
See FlowEngine::xmin.

zmin(=4)
See FlowEngine::xmin.

class yade.wrapper.RadialForceEngine((object)arg1)
Apply force of given magnitude directed away from spatial axis.

7.4. Partial engines 301

Yade Documentation, Release 1.07.0

axisDir(=Vector3r::UnitX())
Axis direction (normalized automatically)

axisPt(=Vector3r::Zero())
Point on axis

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fNorm(=0)
Applied force magnitude

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.RotationEngine((object)arg1)
Engine applying rotation (by setting angular velocity) to subscribed bodies. If rotateAroundZero
is set, then each body is also displaced around zeroPoint.
angularVelocity(=0)

Angular velocity. [rad/s]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

302 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rotateAroundZero(=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

zeroPoint(=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.ServoPIDController((object)arg1)
PIDController servo-engine for applying prescribed force on bodies.
http://en.wikipedia.org/wiki/PID_controller
axis(=Vector3r::Zero())

Unit vector along which apply the velocity [-]
curVel(=0.0)

Current applied velocity [m/s]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

errorCur(=0.0)
Current error [N]

errorPrev(=0.0)
Previous error [N]

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

iTerm(=0.0)
Integral term [N]

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

iterPeriod(=100.0)
Periodicity criterion of velocity correlation [-]

iterPrevStart(=-1.0)
Previous iteration of velocity correlation [-]

7.4. Partial engines 303

http://en.wikipedia.org/wiki/PID_controller

Yade Documentation, Release 1.07.0

kD(=0.0)
Derivative gain/coefficient for the PID-controller [-]

kI(=0.0)
Integral gain/coefficient for the PID-controller [-]

kP(=0.0)
Proportional gain/coefficient for the PID-controller [-]

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxVelocity(=0.0)
Velocity [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

target(=0.0)
Target value for the controller [N]

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

translationAxis(=uninitalized)
Direction [Vector3]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velocity(=uninitalized)
Velocity [m/s]

class yade.wrapper.StepDisplacer((object)arg1)
Apply generalized displacement (displacement or rotation) stepwise on subscribed bodies. Could
be used for purposes of contact law tests (by moving one sphere compared to another), but in this
case, see rather LawTester
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mov(=Vector3r::Zero())
Linear displacement step to be applied per iteration, by addition to State.pos.

304 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rot(=Quaternionr::Identity())
Rotation step to be applied per iteration (via rotation composition with State.ori).

setVelocities(=false)
If false, positions and orientations are directly updated, without changing the speeds of con-
cerned bodies. If true, only velocity and angularVelocity are modified. In this second case
integrator is supposed to be used, so that, thanks to this Engine, the bodies will have the
prescribed jump over one iteration (dt).

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TorqueEngine((object)arg1)
Apply given torque (momentum) value at every subscribed particle, at every step.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

moment(=Vector3r::Zero())
Torque value to be applied.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TranslationEngine((object)arg1)
This engine is the base class for different engines, which require any kind of motion.

7.4. Partial engines 305

Yade Documentation, Release 1.07.0

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

translationAxis(=uninitalized)
Direction [Vector3]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velocity(=uninitalized)
Velocity [m/s]

306 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

7.5 Bounding volume creation

7.5.1 BoundFunctor

BoundFunctor

Bo1_ChainedCylinder_Aabb

Bo1_Sphere_Aabb

Bo1_Box_Aabb

Bo1_Facet_Aabb

Bo1_Polyhedra_Aabb

Bo1_GridConnection_Aabb

Bo1_Tetra_Aabb

Bo1_Wall_Aabb

Bo1_Cylinder_Aabb

class yade.wrapper.BoundFunctor((object)arg1)
Functor for creating/updating Body::bound.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Box_Aabb((object)arg1)
Create/update an Aabb of a Box.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.

7.5. Bounding volume creation 307

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_ChainedCylinder_Aabb((object)arg1)
Functor creating Aabb from ChainedCylinder.
aabbEnlargeFactor

Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Cylinder_Aabb((object)arg1)
Functor creating Aabb from Cylinder.
aabbEnlargeFactor

Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Facet_Aabb((object)arg1)
Creates/updates an Aabb of a Facet.

308 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_GridConnection_Aabb((object)arg1)
Functor creating Aabb from a GridConnection.
aabbEnlargeFactor(=-1, deactivated)

Relative enlargement of the bounding box; deactivated if negative.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Polyhedra_Aabb((object)arg1)
Create/update Aabb of a Polyhedra
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Sphere_Aabb((object)arg1)
Functor creating Aabb from Sphere.
aabbEnlargeFactor

Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

7.5. Bounding volume creation 309

Yade Documentation, Release 1.07.0

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Tetra_Aabb((object)arg1)
Create/update Aabb of a Tetra
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Wall_Aabb((object)arg1)
Creates/updates an Aabb of a Wall
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.5.2 BoundDispatcher

class yade.wrapper.BoundDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
activated(=true)

Whether the engine is activated (only should be changed by the collider)

310 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Shape)arg2) → BoundFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

minSweepDistFactor(=0.2)
Minimal distance by which enlarge all bounding boxes; superseeds computed value of sweep-
Dist when lower that (minSweepDistFactor x sweepDist). Updated by the collider. (auto-
updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

sweepDist(=0)
Distance by which enlarge all bounding boxes, to prevent collider from being run at every
step (only should be changed by the collider).

targetInterv(=-1)
see InsertionSortCollider::targetInterv (auto-updated)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatingDispFactor(=-1)
see InsertionSortCollider::updatingDispFactor (auto-updated)

7.5. Bounding volume creation 311

Yade Documentation, Release 1.07.0

7.6 Interaction Geometry creation

7.6.1 IGeomFunctor

IGeomFunctor

Ig2_Wall_Polyhedra_PolyhedraGeom

Ig2_Sphere_Sphere_L6Geom

Ig2_Sphere_Sphere_L3Geom

Ig2_Box_Sphere_ScGeom6DIg2_Box_Sphere_ScGeom

Ig2_Facet_Sphere_ScGeom

Ig2_Facet_Polyhedra_PolyhedraGeom

Ig2_Sphere_ChainedCylinder_CylScGeom

Ig2_Tetra_Tetra_TTetraGeom

Ig2_Polyhedra_Polyhedra_PolyhedraGeom

Ig2_GridConnection_GridConnection_GridCoGridCoGeom

Ig2_Sphere_ChainedCylinder_CylScGeom6D

Ig2_Sphere_Sphere_ScGeom

Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D

Ig2_Wall_Sphere_ScGeom

Ig2_Tetra_Tetra_TTetraSimpleGeom

Ig2_Facet_Sphere_ScGeom6D

Ig2_Sphere_GridConnection_ScGridCoGeom

Ig2_GridNode_GridNode_GridNodeGeom6D

Ig2_Wall_Sphere_L3Geom

Ig2_Facet_Sphere_L3Geom

Ig2_Sphere_Sphere_ScGeom6D

class yade.wrapper.IGeomFunctor((object)arg1)
Functor for creating/updating Interaction::geom objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Box_Sphere_ScGeom((object)arg1)
Create an interaction geometry ScGeom from Box and Sphere, representing the box with a projected
virtual sphere of same radius.

312 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Box_Sphere_ScGeom6D((object)arg1)
Create an interaction geometry ScGeom6D from Box and Sphere, representing the box with a
projected virtual sphere of same radius.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D((object)arg1)
Create/update a ScGeom instance representing connexion between chained cylinders.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
halfLengthContacts(=true)

If True, Cylinders nodes interact like spheres of radius 0.5*length, else one node has size length
while the other has size 0. The difference is mainly the locus of rotation definition.

interactionDetectionFactor(=1)
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Polyhedra_PolyhedraGeom((object)arg1)
Create/update geometry of collision between Facet and Polyhedra
bases

Ordered list of types (as strings) this functor accepts.

7.6. Interaction Geometry creation 313

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Sphere_L3Geom((object)arg1)
Incrementally compute L3Geom for contact between Facet and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.
approxMask

Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

distFactor(=1)
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero”
one).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Sphere_ScGeom((object)arg1)
Create/update a ScGeom instance representing intersection of Facet and Sphere.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.

314 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

shrinkFactor(=0, no shrinking)
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Sphere_ScGeom6D((object)arg1)
Create an interaction geometry ScGeom6D from Facet and Sphere, representing the Facet with a
projected virtual sphere of same radius.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

shrinkFactor(=0, no shrinking)
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_GridConnection_GridConnection_GridCoGridCoGeom((object)arg1)
Create/update a GridCoGridCoGeom instance representing the geometry of a contact point be-
tween two GridConnection , including relative rotations.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.6. Interaction Geometry creation 315

Yade Documentation, Release 1.07.0

class yade.wrapper.Ig2_GridNode_GridNode_GridNodeGeom6D((object)arg1)
Create/update a GridNodeGeom6D instance representing the geometry of a contact point between
two GridNode, including relative rotations.
avoidGranularRatcheting

Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom.
Short explanation of what we want to avoid :
Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1.translation dx in the normal direction
2.rotation a
3.translation -dx (back to the initial position)
4.rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.
It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.
The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

bases
Ordered list of types (as strings) this functor accepts.

creep(=false)
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict() → dict
Return dictionary of attributes.

interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

316 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateRotations(=true)
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Polyhedra_Polyhedra_PolyhedraGeom((object)arg1)
Create/update geometry of collision between 2 Polyhedras
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_ChainedCylinder_CylScGeom((object)arg1)
Create/update a ScGeom instance representing intersection of two Spheres.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
interactionDetectionFactor(=1)

Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_ChainedCylinder_CylScGeom6D((object)arg1)
Create/update a ScGeom6D instance representing the geometry of a contact point between two
Spheres, including relative rotations.
bases

Ordered list of types (as strings) this functor accepts.
creep(=false)

Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

7.6. Interaction Geometry creation 317

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

interactionDetectionFactor(=1)
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateRotations(=false)
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Sphere_GridConnection_ScGridCoGeom((object)arg1)
Create/update a ScGridCoGeom6D instance representing the geometry of a contact point between
a GricConnection and a Sphere including relative rotations.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
interactionDetectionFactor(=1)

Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_L3Geom((object)arg1)
Functor for computing incrementally configuration of 2 Spheres stored in L3Geom; the configuration
is positioned in global space by local origin c (contact point) and rotation matrix T (orthonormal
transformation matrix), and its degrees of freedom are local displacement u (in one normal and
two shear directions); with Ig2_Sphere_Sphere_L6Geom and L6Geom, there is additionally φ.
The first row of T , i.e. local x-axis, is the contact normal noted n for brevity. Additionally, quasi-
constant values of u0 (and φ0) are stored as shifted origins of u (and φ); therefore, current value
of displacement is always u◦ − u0.
Suppose two spheres with radii ri, positions xi, velocities vi, angular velocities ωi.
When there is not yet contact, it will be created if uN = |x◦2 − x◦1| − |fd|(r1 + r2) < 0, where fd is
distFactor (sometimes also called ‘‘interaction radius’‘). If fd > 0, then u0x will be initalized to
uN, otherwise to 0. In another words, contact will be created if spheres enlarged by |fd| touch, and
the ‘‘equilibrium distance” (where ux − u − 0x is zero) will be set to the current distance if fd is
positive, and to the geometrically-touching distance if negative.
Local axes (rows of T) are initially defined as follows:

•local x-axis is n = xl = ̂x2 − x1;

318 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

•local y-axis positioned arbitrarily, but in a deterministic manner: aligned with the xz plane
(if ny < nz) or xy plane (otherwise);

•local z-axis zl = xl × yl.
If there has already been contact between the two spheres, it is updated to keep track of rigid
motion of the contact (one that does not change mutual configuration of spheres) and mutual
configuration changes. Rigid motion transforms local coordinate system and can be decomposed
in rigid translation (affecting c), and rigid rotation (affecting T), which can be split in rotation or

perpendicular to the normal and rotation ot (‘‘twist’‘) parallel with the normal:

o⊖
r = n− × n◦.

Since velocities are known at previous midstep (t− ∆t/2), we consider mid-step normal

n⊖ =
n− + n◦

2
.

For the sake of numerical stability, n⊖ is re-normalized after being computed, unless prohibited by
approxMask. If approxMask has the appropriate bit set, the mid-normal is not compute, and we
simply use n⊖ ≈ n−.
Rigid rotation parallel with the normal is

o⊖
t = n⊖

(
n⊖ ·

ω⊖
1 +ω⊖

2

2

)
∆t.

Branch vectors b1, b2 (connecting x◦1, x◦2 with c◦ are computed depending on noRatch (see here).

b1 =

{
r1n

◦ with noRatch
c◦ − x◦1 otherwise

b2 =

{
−r2n

◦ with noRatch
c◦ − x◦2 otherwise

Relative velocity at c◦ can be computed as

v⊖r = (ṽ⊖2 +ω2 × b2) − (v1 +ω1 × b1)

where ṽ2 is v2 without mean-field velocity gradient in periodic boundary conditions (see
Cell.homoDeform). In the numerial implementation, the normal part of incident velocity is re-
moved (since it is computed directly) with v⊖r2 = v⊖r − (n⊖ · v⊖r)n⊖.
Any vector a expressed in global coordinates transforms during one timestep as

a◦ = a− + v⊖r ∆t− a− × o⊖
r − a− × t⊖r

where the increments have the meaning of relative shear, rigid rotation normal to n and rigid
rotation parallel with n. Local coordinate system orientation, rotation matrix T , is updated by
rows, i.e.

T ◦ =

n◦
x n◦

y n◦
z

T−
1,• − T−

1,• × o⊖
r − T−

1,• × o⊖
t

T−
2,• − T−

2,• × o⊖
r − T−

,• × o⊖
t



7.6. Interaction Geometry creation 319

Yade Documentation, Release 1.07.0

This matrix is re-normalized (unless prevented by approxMask) and mid-step transformation is
computed using quaternion spherical interpolation as

T⊖ = Slerp
(
T−; T◦; t = 1/2

)
.

Depending on approxMask, this computation can be avoided by approximating T⊖ = T−.
Finally, current displacement is evaluated as

u◦ = u− + T⊖v⊖r ∆t.

For the normal component, non-incremental evaluation is preferred, giving

u◦
x = |x◦2 − x◦1|− (r1 + r2)

If this functor is called for L6Geom, local rotation is updated as

φ◦ = φ− + T⊖∆t(ω2 −ω1)

approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

distFactor(=1)
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero”
one).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

320 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

class yade.wrapper.Ig2_Sphere_Sphere_L6Geom((object)arg1)
Incrementally compute L6Geom for contact of 2 spheres.
approxMask

Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

distFactor(=1)
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero”
one).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom((object)arg1)
Create/update a ScGeom instance representing the geometry of a contact point between two
Spheres s.
avoidGranularRatcheting

Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom.
Short explanation of what we want to avoid :
Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1.translation dx in the normal direction
2.rotation a
3.translation -dx (back to the initial position)
4.rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement

7.6. Interaction Geometry creation 321

Yade Documentation, Release 1.07.0

at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.
It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.
The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom6D((object)arg1)
Create/update a ScGeom6D instance representing the geometry of a contact point between two
Spheres, including relative rotations.
avoidGranularRatcheting

Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom.
Short explanation of what we want to avoid :
Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1.translation dx in the normal direction
2.rotation a
3.translation -dx (back to the initial position)
4.rotation -a (back to the initial orientation)

322 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.
It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.
The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

bases
Ordered list of types (as strings) this functor accepts.

creep(=false)
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict() → dict
Return dictionary of attributes.

interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateRotations(=true)
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Tetra_Tetra_TTetraGeom((object)arg1)
Create/update geometry of collision between 2 tetrahedra (TTetraGeom instance)
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.

7.6. Interaction Geometry creation 323

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Tetra_Tetra_TTetraSimpleGeom((object)arg1)
EXPERIMANTAL. Create/update geometry of collision between 2 tetrahedra (TTetraSimpleGeom
instance)
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_Polyhedra_PolyhedraGeom((object)arg1)
Create/update geometry of collision between Wall and Polyhedra
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_Sphere_L3Geom((object)arg1)
Incrementally compute L3Geom for contact between Wall and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.
approxMask

Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

324 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

distFactor(=1)
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero”
one).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_Sphere_ScGeom((object)arg1)
Create/update a ScGeom instance representing intersection of Wall and Sphere.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
Avoid granular ratcheting

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.6.2 IGeomDispatcher

class yade.wrapper.IGeomDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Shape)arg2, (Shape)arg3) → IGeomFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

7.6. Interaction Geometry creation 325

Yade Documentation, Release 1.07.0

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

326 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

7.7 Interaction Physics creation

7.7.1 IPhysFunctor

IPhysFunctor

Ip2_FrictMat_FrictMat_CapillaryPhys

Ip2_LudingMat_LudingMat_LudingPhys

Ip2_FrictMat_FrictMat_MindlinPhys

Ip2_FrictMat_CpmMat_FrictPhys

Ip2_ElastMat_ElastMat_NormShearPhys

Ip2_JCFpmMat_JCFpmMat_JCFpmPhys

Ip2_FrictMat_FrictMat_FrictPhys

Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys

Ip2_2xInelastCohFrictMat_InelastCohFrictPhys

Ip2_FrictMat_FrictMat_ViscoFrictPhys

Ip2_ElastMat_ElastMat_NormPhys

Ip2_FrictMat_FrictMat_MindlinCapillaryPhys

Ip2_WireMat_WireMat_WirePhys

Ip2_CpmMat_CpmMat_CpmPhys

Ip2_2xNormalInelasticMat_NormalInelasticityPhys

Ip2_CohFrictMat_CohFrictMat_CohFrictPhys

Ip2_BubbleMat_BubbleMat_BubblePhys

Ip2_ViscElMat_ViscElMat_ViscElPhys

class yade.wrapper.IPhysFunctor((object)arg1)
Functor for creating/updating Interaction::phys objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas

7.7. Interaction Physics creation 327

Yade Documentation, Release 1.07.0

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_2xInelastCohFrictMat_InelastCohFrictPhys((object)arg1)
Generates cohesive-frictional interactions with moments. Used in the contact law Law2_Sc-
Geom6D_InelastCohFrictPhys_CohesionMoment.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_2xNormalInelasticMat_NormalInelasticityPhys((object)arg1)
The RelationShips for using Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity

In these RelationShips all the attributes of the interactions (which are of NormalInelas-
ticityPhys type) are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

bases
Ordered list of types (as strings) this functor accepts.

betaR(=0.12)
Parameter for computing the torque-stifness : T-stifness = betaR * Rmoy^2

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_BubbleMat_BubbleMat_BubblePhys((object)arg1)
Generates bubble interactions.Used in the contact law Law2_ScGeom_BubblePhys_Bubble.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

328 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_CohFrictMat_CohFrictMat_CohFrictPhys((object)arg1)
Generates cohesive-frictional interactions with moments. Used in the contact law Law2_Sc-
Geom6D_CohFrictPhys_CohesionMoment. The normal/shear stiffness and friction definitions
are the same as in Ip2_FrictMat_FrictMat_FrictPhys, check the documentation there for details.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

setCohesionNow(=false)
If true, assign cohesion to all existing contacts in current time-step. The flag is turned false
automatically, so that assignment is done in the current timestep only.

setCohesionOnNewContacts(=false)
If true, assign cohesion at all new contacts. If false, only existing contacts can be cohesive (also
see Ip2_CohFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow), and new contacts are
only frictional.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_CpmMat_CpmMat_CpmPhys((object)arg1)
Convert 2 CpmMat instances to CpmPhys with corresponding parameters. Uses simple (arith-
metic) averages if material are different. Simple copy of parameters is performed if the material is
shared between both particles. See cpm-model for detals.
bases

Ordered list of types (as strings) this functor accepts.
cohesiveThresholdIter(=10)

Should new contacts be cohesive? They will before this iter#, they will not be afterwards. If
0, they will never be. If negative, they will always be created as cohesive (10 by default).

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_ElastMat_ElastMat_NormPhys((object)arg1)
Create a NormPhys from two ElastMats. TODO. EXPERIMENTAL

7.7. Interaction Physics creation 329

Yade Documentation, Release 1.07.0

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_ElastMat_ElastMat_NormShearPhys((object)arg1)
Create a NormShearPhys from two ElastMats. TODO. EXPERIMENTAL
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_CpmMat_FrictPhys((object)arg1)
Convert CpmMat instance and FrictMat instance to FrictPhys with corresponding parameters
(young, poisson, frictionAngle). Uses simple (arithmetic) averages if material parameters are dif-
ferent.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_CapillaryPhys((object)arg1)
RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity

In these RelationShips all the interaction attributes are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

bases
Ordered list of types (as strings) this functor accepts.

330 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_FrictPhys((object)arg1)
Create a FrictPhys from two FrictMats. The compliance of one sphere under point load is defined
here as 1/(E.D), with E the stiffness of the sphere and D its diameter. The compliance of the
contact itself will be the sum of compliances from each sphere, i.e. 1/(E1.D1) + 1/(E2.D2) in the
general case, or 2/(E.D) in the special case of equal sizes and equal stiffness. Note that summing
compliances corresponds to an harmonic average of stiffnesss (as in e.g. [Scholtes2009a]), which is
how kn is actually computed in the Ip2_FrictMat_FrictMat_FrictPhys functor:
kn = E1D1∗E2D2

E1D1+E2D2
= k1∗k2

k1+k2
, with ki = EiDi.

The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

frictAngle(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_MindlinCapillaryPhys((object)arg1)
RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity

In these RelationShips all the interaction attributes are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

bases
Ordered list of types (as strings) this functor accepts.

betan(=uninitalized)
Normal viscous damping coefficient βn.

betas(=uninitalized)
Shear viscous damping coefficient βs.

dict() → dict
Return dictionary of attributes.

7.7. Interaction Physics creation 331

Yade Documentation, Release 1.07.0

en(=uninitalized)
Normal coefficient of restitution en.

es(=uninitalized)
Shear coefficient of restitution es.

eta(=0.0)
Coefficient to determine the plastic bending moment

gamma(=0.0)
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

krot(=0.0)
Rotational stiffness for moment contact law

ktwist(=0.0)
Torsional stiffness for moment contact law

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_MindlinPhys((object)arg1)
Calculate some physical parameters needed to obtain the normal and shear stiffnesses according to
the Hertz-Mindlin’s formulation (as implemented in PFC).
Viscous parameters can be specified either using coefficients of restitution (en, es) or viscous
damping coefficient (βn, βs). The following rules apply: #. If the βn (βs) coefficient is given, it is
assigned to MindlinPhys.betan (MindlinPhys.betas) directly. #. If en is given, MindlinPhys.betan
is computed using βn = −(log en)/

√
π2 + (log en)2. The same applies to es, MindlinPhys.betas.

#. It is an error (exception) to specify both en and βn (es and βs). #. If neither en nor βn is
given, zero value for MindlinPhys.betan is used; there will be no viscous effects. #.If neither es
nor βs is given, the value of MindlinPhys.betan is used for MindlinPhys.betas as well.
The en, βn, es, βs are MatchMaker objects; they can be constructed from float values to always
return constant value.
See scripts/test/shots.py for an example of specifying en based on combination of parameters.
bases

Ordered list of types (as strings) this functor accepts.
betan(=uninitalized)

Normal viscous damping coefficient βn.
betas(=uninitalized)

Shear viscous damping coefficient βs.
dict() → dict

Return dictionary of attributes.
en(=uninitalized)

Normal coefficient of restitution en.
es(=uninitalized)

Shear coefficient of restitution es.
eta(=0.0)

Coefficient to determine the plastic bending moment

332 Chapter 7. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/scripts/test/shots.py

Yade Documentation, Release 1.07.0

frictAngle(=uninitalized)
Instance of MatchMaker determining how to compute the friction angle of an interaction. If
None, minimum value is used.

gamma(=0.0)
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

krot(=0.0)
Rotational stiffness for moment contact law

ktwist(=0.0)
Torsional stiffness for moment contact law

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_ViscoFrictPhys((object)arg1)
Create a FrictPhys from two FrictMats. The compliance of one sphere under symetric point loads
is defined here as 1/(E.r), with E the stiffness of the sphere and r its radius, and corresponds to
a compliance 1/(2.E.r)=1/(E.D) from each contact point. The compliance of the contact itself
will be the sum of compliances from each sphere, i.e. 1/(E.D1)+1/(E.D2) in the general case,
or 1/(E.r) in the special case of equal sizes. Note that summing compliances corresponds to
an harmonic average of stiffnesss, which is how kn is actually computed in the Ip2_FrictMat_-
FrictMat_FrictPhys functor.
The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

frictAngle(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_JCFpmMat_JCFpmMat_JCFpmPhys((object)arg1)
Converts 2 JCFpmMat instances to one JCFpmPhys instance, with corresponding parameters.
bases

Ordered list of types (as strings) this functor accepts.
cohesiveTresholdIteration(=1)

should new contacts be cohesive? They will before this iter, they won’t afterward.

7.7. Interaction Physics creation 333

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_LudingMat_LudingMat_LudingPhys((object)arg1)
Convert 2 instances of LudingMat to LudingPhys using the rule of consecutive connection.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys((object)arg1)

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_ViscElMat_ViscElMat_ViscElPhys((object)arg1)
Convert 2 instances of ViscElMat to ViscElPhys using the rule of consecutive connection.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

334 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_WireMat_WireMat_WirePhys((object)arg1)
Converts 2 WireMat instances to WirePhys with corresponding parameters.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

linkThresholdIteration(=1)
Iteration to create the link.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.7.2 IPhysDispatcher

class yade.wrapper.IPhysDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Material)arg2, (Material)arg3) → IPhysFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

7.7. Interaction Physics creation 335

Yade Documentation, Release 1.07.0

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.8 Constitutive laws

7.8.1 LawFunctor

LawFunctor

Law2_ScGeom_BubblePhys_Bubble

Law2_ScGeom_CpmPhys_Cpm

Law2_ChCylGeom6D_CohFrictPhys_Cohes ionMoment

PolyhedraVolumetricLaw

Law2_CylScGeom_FrictPhys_CundallStrack

Law2_ScGeom_MindlinPhys_HertzWithLinearShear

Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity

Law2_CylScGeom6D_CohFrictPhys_Cohes ionMoment

Law2_TTetraSimpleGeom_NormPhys_Simple

Law2_L6Geom_FrictPhys_LinearLaw2_L3Geom_FrictPhys_ElPerfPl

Law2_ScGeom_FrictPhys_CundallStrack

Law2_ScGeom_WirePhys_WirePM

Law2_ScGeom6D_InelastCohFrictPhys_Cohes ionMoment

Law2_ScGeom6D_CohFrictPhys_Cohes ionMoment

Law2_ScGeom_ViscElPhys_Bas ic

Law2_ScGridCoGeom_CohFrictPhys_CundallStrack

Law2_ScGeom_MindlinPhys_Mindlin

Law2_ScGeom_LudingPhys_Bas ic

Law2_ScGeom_MindlinPhys_MindlinDeres iewitz

Law2_ScGridCoGeom_FrictPhys_CundallStrack

Law2_ScGeom_ViscoFrictPhys_CundallStrack

Law2_ScGeom_JCFpmPhys_JointedCohes iveFrictionalPM

Law2_GridCoGridCoGeom_FrictPhys_CundallStrack

class yade.wrapper.LawFunctor((object)arg1)
Functor for applying constitutive laws on interactions.

336 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment((object)arg1)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.

always_use_moment_law(=false)
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

bases
Ordered list of types (as strings) this functor accepts.

creep_viscosity(=1)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys...

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

7.8. Constitutive laws 337

Yade Documentation, Release 1.07.0

class yade.wrapper.Law2_CylScGeom6D_CohFrictPhys_CohesionMoment((object)arg1)
This law generalises Law2_CylScGeom_FrictPhys_CundallStrack by adding cohesion and mo-
ments at contact.
always_use_moment_law(=false)

If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

bases
Ordered list of types (as strings) this functor accepts.

creep_viscosity(=1)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys...

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_CylScGeom_FrictPhys_CundallStrack((object)arg1)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

Note: This law uses ScGeom.

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

338 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_GridCoGridCoGeom_FrictPhys_CundallStrack((object)arg1)
Frictional elastic contact law between two gridConnection . See Law2_ScGeom_FrictPhys_Cun-
dallStrack for more details.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

sphericalBodies(=true)
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_L3Geom_FrictPhys_ElPerfPl((object)arg1)
Basic law for testing L3Geom; it bears no cohesion (unless noBreak is True), and plastic slip obeys
the Mohr-Coulomb criterion (unless noSlip is True).
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

7.8. Constitutive laws 339

Yade Documentation, Release 1.07.0

noBreak(=false)
Do not break contacts when particles separate.

noSlip(=false)
No plastic slipping.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_L6Geom_FrictPhys_Linear((object)arg1)
Basic law for testing L6Geom – linear in both normal and shear sense, without slip or breakage.
bases

Ordered list of types (as strings) this functor accepts.
charLen(=1)

Characteristic length with the meaning of the stiffness ratios bending/shear and tor-
sion/normal.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noBreak(=false)
Do not break contacts when particles separate.

noSlip(=false)
No plastic slipping.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom6D_CohFrictPhys_CohesionMoment((object)arg1)
Law for linear traction-compression-bending-twisting, with cohesion+friction and Mohr-Coulomb
plasticity surface. This law adds adhesion and moments to Law2_ScGeom_FrictPhys_Cundall-
Strack.
The normal force is (with the convention of positive tensile forces) Fn = min(kn ∗un, an), with an

the normal adhesion. The shear force is Fs = ks ∗us, the plasticity condition defines the maximum
value of the shear force, by default Fmax

s = Fn ∗ tan(φ) + as, with φ the friction angle and an

the shear adhesion. If CohFrictPhys::cohesionDisableFriction is True, friction is ignored as long as
adhesion is active, and the maximum shear force is only Fmax

s = as.
If the maximum tensile or maximum shear force is reached and CohFrictPhys::fragile =True (de-
fault), the cohesive link is broken, and an, as are set back to zero. If a tensile force is present,
the contact is lost, else the shear strength is Fmax

s = Fn ∗ tan(φ). If CohFrictPhys::fragile =False
(in course of implementation), the behaviour is perfectly plastic, and the shear strength is kept
constant.
If Law2_ScGeom6D_CohFrictPhys_CohesionMoment::momentRotationLaw =True, bending and
twisting moments are computed using a linear law with moduli respectively kt and kr (the two
values are the same currently), so that the moments are : Mb = kb ∗ Θb and Mt = kt ∗ Θt, with
Θb,t the relative rotations between interacting bodies. The maximum value of moments can be
defined and takes the form of rolling friction. Cohesive -type moment may also be included in the
future.

340 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

Creep at contact is implemented in this law, as defined in [Hassan2010]. If activated, there is a
viscous behaviour of the shear and twisting components, and the evolution of the elastic parts of
shear displacement and relative twist is given by dus,e/dt = −Fs/νs and dΘt,e/dt = −Mt/νt.
always_use_moment_law(=false)

If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

bases
Ordered list of types (as strings) this functor accepts.

creep_viscosity(=1)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normElastEnergy() → float
Compute normal elastic energy.

shearElastEnergy() → float
Compute shear elastic energy.

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment((object)arg1)
Law for linear traction-compression-bending-twisting, with cohesion+friction and Mohr-Coulomb
plasticity surface. This law adds adhesion and moments to Law2_ScGeom_FrictPhys_Cundall-
Strack.
The normal force is (with the convention of positive tensile forces) Fn = min(kn ∗un, an), with an

the normal adhesion. The shear force is Fs = ks ∗us, the plasticity condition defines the maximum
value of the shear force, by default Fmax

s = Fn ∗ tan(φ) + as, with φ the friction angle and an

the shear adhesion. If CohFrictPhys::cohesionDisableFriction is True, friction is ignored as long as
adhesion is active, and the maximum shear force is only Fmax

s = as.
If the maximum tensile or maximum shear force is reached and CohFrictPhys::fragile =True (de-
fault), the cohesive link is broken, and an, as are set back to zero. If a tensile force is present,
the contact is lost, else the shear strength is Fmax

s = Fn ∗ tan(φ). If CohFrictPhys::fragile =False
(in course of implementation), the behaviour is perfectly plastic, and the shear strength is kept
constant.
If Law2_ScGeom6D_CohFrictPhys_CohesionMoment::momentRotationLaw =True, bending and
twisting moments are computed using a linear law with moduli respectively kt and kr (the two

7.8. Constitutive laws 341

Yade Documentation, Release 1.07.0

values are the same currently), so that the moments are : Mb = kb ∗ Θb and Mt = kt ∗ Θt, with
Θb,t the relative rotations between interacting bodies. The maximum value of moments can be
defined and takes the form of rolling friction. Cohesive -type moment may also be included in the
future.
Creep at contact is implemented in this law, as defined in [Hassan2010]. If activated, there is a
viscous behaviour of the shear and twisting components, and the evolution of the elastic parts of
shear displacement and relative twist is given by dus,e/dt = −Fs/νs and dΘt,e/dt = −Mt/νt.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normElastEnergy() → float
Compute normal elastic energy.

shearElastEnergy() → float
Compute shear elastic energy.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity((object)arg1)
Contact law used to simulate granular filler in rock joints [Duriez2009a], [Duriez2011]. It includes
possibility of cohesion, moment transfer and inelastic compression behaviour (to reproduce the
normal inelasticity observed for rock joints, for the latter).
The moment transfer relation corresponds to the adaptation of the work of Plassiard & Belheine
(see in [DeghmReport2006] for example), which was realized by J. Kozicki, and is now coded in
ScGeom6D.
As others LawFunctor, it uses pre-computed data of the interactions (rigidities, friction angles
-with their tan()-, orientations of the interactions); this work is done here in Ip2_2xNormalInelas-
ticMat_NormalInelasticityPhys.
To use this you should also use NormalInelasticMat as material type of the bodies.
The effects of this law are illustrated in examples/normalInelasticityTest.py
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

momentAlwaysElastic(=false)
boolean, true=> the part of the contact torque (caused by relative rotations, which is com-
puted only if momentRotationLaw..) is not limited by a plastic threshold

342 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

momentRotationLaw(=true)
boolean, true=> computation of a torque (against relative rotation) exchanged between par-
ticles

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_BubblePhys_Bubble((object)arg1)
Constitutive law for Bubble model.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_CpmPhys_Cpm((object)arg1)
Constitutive law for the cpm-model.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “CpmPhys” contacts
epsSoft(=-3e-3, approximates confinement -20MPa precisely, -100MPa a little over, -200 and

-400 are OK (secant))
Strain at which softening in compression starts (non-negative to deactivate)

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

omegaThreshold(=1., >=1. to deactivate, i.e. never delete any contacts)
damage after which the contact disappears (<1), since omega reaches 1 only for strain →+∞

relKnSoft(=.3)
Relative rigidity of the softening branch in compression (0=perfect elastic-plastic, <0 soften-
ing, >0 hardening)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

yieldEllipseShift(=NaN)
horizontal scaling of the ellipse (shifts on the +x axis as interactions with +y are given)

7.8. Constitutive laws 343

Yade Documentation, Release 1.07.0

yieldLogSpeed(=.1)
scaling in the logarithmic yield surface (should be <1 for realistic results; >=0 for meaningful
results)

yieldSigmaTMagnitude((float)sigmaN, (float)omega, (float)undamagedCohesion,
(float)tanFrictionAngle) → float

Return radius of yield surface for given material and state parameters; uses attributes of the
current instance (yieldSurfType etc), change them before calling if you need that.

yieldSurfType(=2)
yield function: 0: mohr-coulomb (original); 1: parabolic; 2: logarithmic, 3: log+lin_tension,
4: elliptic, 5: elliptic+log

class yade.wrapper.Law2_ScGeom_FrictPhys_CundallStrack((object)arg1)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.
This law is well tested in the context of triaxial simulation, and has been used for a number of
published results (see e.g. [Scholtes2009b] and other papers from the same authors). It is gener-
alised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and moments
at contact.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

sphericalBodies(=true)
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM((object)arg1)
Interaction law for cohesive frictional material, e.g. rock, possibly presenting joint surfaces. Joint

344 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

surfaces can be defined in a preprocessing phase through .stl meshes (see ref for details of the pro-
cedure), and can be mechanically described with a smooth contact logic [Ivars2011] (implemented
in Yade in [Scholtes2012]).
Key(=”“)

string specifying the name of saved file ‘cracks___.txt’, when recordCracks is true.
bases

Ordered list of types (as strings) this functor accepts.
cracksFileExist(=false)

if true (and if recordCracks), data are appended to an existing ‘cracksKey’ text file; otherwise
its content is reset.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

recordCracks(=false)
if true a text file cracksKey.txt (see Key) will be created. It contains : apparition iteration,
position, type (tensile or shear), cross section and contact normal.

smoothJoint(=false)
if true, interactions of particles belonging to joint surface (JCFpmPhys.isOnJoint) are handled
according to a smooth contact logic [Ivars2011], [Scholtes2012].

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_LudingPhys_Basic((object)arg1)
Linear viscoelastic model operating on ScGeom and LudingPhys.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_HertzWithLinearShear((object)arg1)
Constitutive law for the Hertz formulation (using MindlinPhys.kno) and linear beahvior in shear
(using MindlinPhys.kso for stiffness and FrictPhys.tangensOfFrictionAngle).

Note: No viscosity or damping. If you need those, look at Law2_ScGeom_MindlinPhys_Mindlin,
which also includes non-linear Mindlin shear.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

7.8. Constitutive laws 345

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

nonLin(=0)
Shear force nonlinearity (the value determines how many features of the non-linearity are
taken in account). 1: ks as in HM 2: shearElastic increment computed as in HM 3. granular
ratcheting disabled.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_Mindlin((object)arg1)
Constitutive law for the Hertz-Mindlin formulation. It includes non linear elasticity in the normal
direction as predicted by Hertz for two non-conforming elastic contact bodies. In the shear direc-
tion, instead, it reseambles the simplified case without slip discussed in Mindlin’s paper, where a
linear relationship between shear force and tangential displacement is provided. Finally, the Mohr-
Coulomb criterion is employed to established the maximum friction force which can be developed
at the contact. Moreover, it is also possible to include the effect of linear viscous damping through
the definition of the parameters βn and βs.
bases

Ordered list of types (as strings) this functor accepts.
calcEnergy(=false)

bool to calculate energy terms (shear potential energy, dissipation of energy due to friction
and dissipation of energy due to normal and tangential damping)

contactsAdhesive() → float
Compute total number of adhesive contacts.

dict() → dict
Return dictionary of attributes.

frictionDissipation(=uninitalized)
Energy dissipation due to sliding

includeAdhesion(=false)
bool to include the adhesion force following the DMT formulation. If true, also the normal
elastic energy takes into account the adhesion effect.

includeMoment(=false)
bool to consider rolling resistance (if Ip2_FrictMat_FrictMat_MindlinPhys::eta is 0.0, no
plastic condition is applied.)

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normDampDissip(=uninitalized)
Energy dissipated by normal damping

normElastEnergy() → float
Compute normal elastic potential energy. It handles the DMT formulation if Law2_ScGeom_-
MindlinPhys_Mindlin::includeAdhesion is set to true.

346 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

preventGranularRatcheting(=true)
bool to avoid granular ratcheting

ratioSlidingContacts() → float
Return the ratio between the number of contacts sliding to the total number at a given time.

shearDampDissip(=uninitalized)
Energy dissipated by tangential damping

shearEnergy(=uninitalized)
Shear elastic potential energy

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_MindlinDeresiewitz((object)arg1)
Hertz-Mindlin contact law with partial slip solution, as described in [Thornton1991].
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ViscElPhys_Basic((object)arg1)
Linear viscoelastic model operating on ScGeom and ViscElPhys. The model is mostly based on
the paper for For details see Pournin [Pournin2001] .
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ViscoFrictPhys_CundallStrack((object)arg1)
Law similar to Law2_ScGeom_FrictPhys_CundallStrack with the addition of shear creep at con-
tacts.
bases

Ordered list of types (as strings) this functor accepts.

7.8. Constitutive laws 347

Yade Documentation, Release 1.07.0

creepStiffness(=1)
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

shearCreep(=false)
sphericalBodies(=true)

If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

viscosity(=1)
class yade.wrapper.Law2_ScGeom_WirePhys_WirePM((object)arg1)

Constitutive law for the wire model.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

linkThresholdIteration(=1)
Iteration to create the link.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGridCoGeom_CohFrictPhys_CundallStrack((object)arg1)
Law between a cohesive frictional GridConnection and a cohesive frictional Sphere. Almost the
same than Law2_ScGeom6D_CohFrictPhys_CohesionMoment, but THE ROTATIONAL MO-
MENTS ARE NOT COMPUTED.

348 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGridCoGeom_FrictPhys_CundallStrack((object)arg1)
Law between a frictional GridConnection and a frictional Sphere. Almost the same than Law2_-
ScGeom_FrictPhys_CundallStrack, but the force is divided and applied on the two GridNodes
only.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_TTetraSimpleGeom_NormPhys_Simple((object)arg1)
EXPERIMENTAL. TODO
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.8. Constitutive laws 349

Yade Documentation, Release 1.07.0

class yade.wrapper.PolyhedraVolumetricLaw((object)arg1)
Calculate physical response of 2 vector in interaction, based on penetration configuration given by
PolyhedraGeom.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

shearForce(=Vector3r::Zero())
Shear force from last step

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.8.2 LawDispatcher

class yade.wrapper.LawDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((IGeom)arg2, (IPhys)arg3) → LawFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

350 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.9 Callbacks

IntrCallback SumIntrForcesCb

class yade.wrapper.IntrCallback((object)arg1)
Abstract callback object which will be called for every (real) Interaction after the interaction has
been processed by InteractionLoop.
At the beginning of the interaction loop, stepInit is called, initializing the object; it returns either
NULL (to deactivate the callback during this time step) or pointer to function, which will then be
passed (1) pointer to the callback object itself and (2) pointer to Interaction.

Note: (NOT YET DONE) This functionality is accessible from python by passing 4th argument
to InteractionLoop constructor, or by appending the callback object to InteractionLoop::callbacks.

dict() → dict
Return dictionary of attributes.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.SumIntrForcesCb((object)arg1)
Callback summing magnitudes of forces over all interactions. IPhys of interactions must derive
from NormShearPhys (responsability fo the user).
dict() → dict

Return dictionary of attributes.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary

7.9. Callbacks 351

Yade Documentation, Release 1.07.0

7.10 Preprocessors

FileGenerator

CapillaryTriaxialTest

Cohes iveTriaxialTest

SimpleShear

TriaxialTest

class yade.wrapper.FileGenerator((object)arg1)
Base class for scene generators, preprocessors.
dict() → dict

Return dictionary of attributes.
generate((str)out) → None

Generate scene, save to given file
load() → None

Generate scene, save to temporary file and load immediately
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.CapillaryTriaxialTest((object)arg1)

This preprocessor is a variant of TriaxialTest, including the model of capillary forces developed
as part of the PhD of Luc Scholtès. See the documentation of Law2_ScGeom_CapillaryPhys_-
Capillarity or the main page https://yade-dem.org/wiki/CapillaryTriaxialTest, for more details.
Results obtained with this preprocessor were reported for instance in ‘Scholtes et al. Microme-
chanics of granular materials with capillary effects. International Journal of Engineering Science
2009,(47)1, 64-75.’
Key(=”“)

A code that is added to output filenames.
Rdispersion(=0.3)

Normalized standard deviation of generated sizes.
StabilityCriterion(=0.01)

Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./WallStressesWater”+Key)
autoCompressionActivation(=true)

Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

352 Chapter 7. Class reference (yade.wrapper module)

https://yade-dem.org/wiki/CapillaryTriaxialTest

Yade Documentation, Release 1.07.0

biaxial2dTest(=false)
FIXME : what is that?

binaryFusion(=true)
Defines how overlapping bridges affect the capillary forces (see CapillaryTriaxial-
Test::fusionDetection). If binary=true, the force is null as soon as there is an overlap detected,
if not, the force is divided by the number of overlaps.

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxWalls(=true)
Use boxes for boundaries (recommended).

boxYoungModulus(=15000000.0)
Stiffness of boxes.

capillaryPressure(=0)
Define succion in the packing [Pa]. This is the value used in the capillary model.

capillaryStressRecordFile(=”./capStresses”+Key)
compactionFrictionDeg(=sphereFrictionDeg)

Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

contactStressRecordFile(=”./contStresses”+Key)
dampingForce(=0.2)

Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)
dampingMomentum(=0.2)

Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)
defaultDt(=0.0001)

Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.
density(=2600)

density of spheres
dict() → dict

Return dictionary of attributes.
facetWalls(=false)

Use facets for boundaries (not tested)
finalMaxMultiplier(=1.001)

max multiplier of diameters during internal compaction (secondary precise adjustment)
fixedBoxDims(=”“)

string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

fixedPoroCompaction(=false)
flag to choose an isotropic compaction until a fixed porosity choosing a same translation speed
for the six walls

fixedPorosity(=1)
FIXME : what is that?

fusionDetection(=false)
test overlaps between liquid bridges on modify forces if overlaps exist

generate((str)out) → None
Generate scene, save to given file

7.10. Preprocessors 353

Yade Documentation, Release 1.07.0

importFilename(=”“)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

load() → None
Generate scene, save to temporary file and load immediately

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

recordIntervalIter(=20)
interval between file outputs

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmaLateralConfinement(=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to CapillaryTriaxialTest::SigmaIsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepOutputInterval(=50)
interval for outputing general information on the simulation (stress,unbalanced force,...)

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

354 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

water(=true)
activate capillary model

class yade.wrapper.CohesiveTriaxialTest((object)arg1)
This preprocessor is a variant of TriaxialTest using the cohesive-frictional contact law with mo-
ments. It sets up a scene for cohesive triaxial tests. See full documentation at http://yade-
dem.org/wiki/TriaxialTest.
Cohesion is initially 0 by default. The suggested usage is to define cohesion values in a second step,
after isotropic compaction : define shear and normal cohesions in Ip2_CohFrictMat_CohFrict-
Mat_CohFrictPhys, then turn Ip2_CohFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow
true to assign them at each contact at next iteration.
Key(=”“)

A code that is added to output filenames.
StabilityCriterion(=0.01)

Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./CohesiveWallStresses”+Key)
autoCompressionActivation(=true)

Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest(=false)
FIXME : what is that?

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxWalls(=true)
Use boxes for boundaries (recommended).

boxYoungModulus(=15000000.0)
Stiffness of boxes.

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

dampingForce(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

7.10. Preprocessors 355

http://yade-dem.org/wiki/TriaxialTest
http://yade-dem.org/wiki/TriaxialTest

Yade Documentation, Release 1.07.0

defaultDt(=0.001)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres

dict() → dict
Return dictionary of attributes.

facetWalls(=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims(=”“)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

fixedPoroCompaction(=false)
flag to choose an isotropic compaction until a fixed porosity choosing a same translation speed
for the six walls

fixedPorosity(=1)
FIXME : what is that?

generate((str)out) → None
Generate scene, save to given file

importFilename(=”“)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

load() → None
Generate scene, save to temporary file and load immediately

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

normalCohesion(=0)
Material parameter used to define contact strength in tension.

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusDeviation(=0.3)
Normalized standard deviation of generated sizes.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

recordIntervalIter(=20)
interval between file outputs

356 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

setCohesionOnNewContacts(=false)
create cohesionless (False) or cohesive (True) interactions for new contacts.

shearCohesion(=0)
Material parameter used to define shear strength of contacts.

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmaLateralConfinement(=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to TriaxialTest::sigmaIsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=0.1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

class yade.wrapper.SimpleShear((object)arg1)
Preprocessor for creating a numerical model of a simple shear box.

•Boxes (6) constitute the different sides of the box itself
•Spheres are contained in the box. The sample is generated by default via the same method
used in TriaxialTest Preprocesor (=> see in source function GenerateCloud). But import of
a list of spheres from a text file can be also performed after few changes in the source code.

Launching this preprocessor will carry out an oedometric compression, until a value of
normal stress equal to 2 MPa (and stable). But with others Engines KinemCNDEngine,
KinemCNSEngine and KinemCNLEngine, respectively constant normal displacement,
constant normal rigidity and constant normal stress paths can be carried out for such
simple shear boxes.

NB about micro-parameters : their default values correspond to those used in [Duriez2009a] and
[Duriez2011] to simulate infilled rock joints.
boxPoissonRatio(=0.04)

value of ElastMat::poisson for the spheres [-]

7.10. Preprocessors 357

Yade Documentation, Release 1.07.0

boxYoungModulus(=4.0e9)
value of ElastMat::young for the boxes [Pa]

density(=2600)
density of the spheres [kg/m3]

dict() → dict
Return dictionary of attributes.

generate((str)out) → None
Generate scene, save to given file

gravApplied(=false)
depending on this, GravityEngine is added or not to the scene to take into account the weight
of particles

gravity(=Vector3r(0, -9.81, 0))
vector corresponding to used gravity (if gravApplied) [m/s2]

height(=0.02)
initial height (along y-axis) of the shear box [m]

length(=0.1)
initial length (along x-axis) of the shear box [m]

load() → None
Generate scene, save to temporary file and load immediately

sphereFrictionDeg(=37)
value of ElastMat::poisson for the spheres [◦] (the necessary conversion in rad is done auto-
matically)

spherePoissonRatio(=0.04)
value of ElastMat::poisson for the spheres [-]

sphereYoungModulus(=4.0e9)
value of ElastMat::young for the spheres [Pa]

thickness(=0.001)
thickness of the boxes constituting the shear box [m]

timeStepUpdateInterval(=50)
value of TimeStepper::timeStepUpdateInterval for the TimeStepper used here

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

width(=0.04)
initial width (along z-axis) of the shear box [m]

class yade.wrapper.TriaxialTest((object)arg1)
Create a scene for triaxal test.
Introduction Yade includes tools to simulate triaxial tests on particles assemblies. This pre-

processor (and variants like e.g. CapillaryTriaxialTest) illustrate how to use them. It generates
a scene which will - by default - go through the following steps :
• generate random loose packings in a parallelepiped.
• compress the packing isotropicaly, either squeezing the packing between moving rigid

boxes or expanding the particles while boxes are fixed (depending on flag internalCom-
paction). The confining pressure in this stage is defined via sigmaIsoCompaction.

• when the packing is dense and stable, simulate a loading path and get the mechanical
response as a result.

The default loading path corresponds to a constant lateral stress (sigmaLateralConfinement)
in 2 directions and constant strain rate on the third direction. This default loading path is
performed when the flag autoCompressionActivation it True, otherwise the simulation stops
after isotropic compression.

358 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

Different loading paths might be performed. In order to define them, the user can modify
the flags found in engine TriaxialStressController at any point in the simulation (in c++).
If TriaxialStressController.wall_X_activated is true boundary X is moved automati-
cally to maintain the defined stress level sigmaN (see axis conventions below). If false the
boundary is not controlled by the engine at all. In that case the user is free to prescribe fixed
position, constant velocity, or more complex conditions.

Note: Axis conventions. Boundaries perpendicular to the x axis are called “left” and “right”,
y corresponds to “top” and “bottom”, and axis z to “front” and “back”. In the default loading
path, strain rate is assigned along y, and constant stresses are assigned on x and z.

Essential engines
1. The TriaxialCompressionEngine is used for controlling the state of the sample and simu-

lating loading paths. TriaxialCompressionEngine inherits from TriaxialStressController,
which computes stress- and strain-like quantities in the packing and maintain a constant
level of stress at each boundary. TriaxialCompressionEngine has few more members in
order to impose constant strain rate and control the transition between isotropic com-
pression and triaxial test. Transitions are defined by changing some flags of the Triaxial-
StressController, switching from/to imposed strain rate to/from imposed stress.

2. The class TriaxialStateRecorder is used to write to a file the history of stresses and strains.
3. TriaxialTest is using GlobalStiffnessTimeStepper to compute an appropriate ∆t for the

numerical scheme.

Note: TriaxialStressController::ComputeUnbalancedForce returns a value that can
be useful for evaluating the stability of the packing. It is defined as (mean force on parti-
cles)/(mean contact force), so that it tends to 0 in a stable packing. This parameter is checked
by TriaxialCompressionEngine to switch from one stage of the simulation to the next one (e.g.
stop isotropic confinment and start axial loading)

Frequently Asked Questions
1.How is generated the packing? How to change particles sizes distribution? Why do I have a message “Exceeded 3000 tries to insert non-overlapping sphere?

The initial positioning of spheres is done by generating random (x,y,z) in a box and
checking if a sphere of radius R (R also randomly generated with respect to a uniform
distribution between mean*(1-std_dev) and mean*(1+std_dev) can be inserted at this
location without overlaping with others.
If the sphere overlaps, new (x,y,z)’s are generated until a free position for the new sphere is
found. This explains the message you have: after 3000 trial-and-error, the sphere couldn’t
be placed, and the algorithm stops.
You get the message above if you try to generate an initialy dense packing, which is not
possible with this algorithm. It can only generate clouds. You should keep the default
value of porosity (n~0.7), or even increase if it is still to low in some cases. The dense
state will be obtained in the second step (compaction, see below).

2.How is the compaction done, what are the parameters maxWallVelocity and finalMaxMultiplier?

Compaction is done
(a) by moving rigid boxes or
(b) by increasing the sizes of the particles (decided using the option internalCompaction

� size increase).
Both algorithm needs numerical parameters to prevent instabilities. For instance, with
the method (1) maxWallVelocity is the maximum wall velocity, with method (2) final-
MaxMultiplier is the max value of the multiplier applied on sizes at each iteration (always
something like 1.00001).

7.10. Preprocessors 359

Yade Documentation, Release 1.07.0

3.During the simulation of triaxial compression test, the wall in one direction moves with an increment of strain while the stresses in other two directions are adjusted to sigma_iso. How the stresses in other directions are maintained constant to sigma_iso? What is the mechanism? Where is it implemented in Yade?
The control of stress on a boundary is based on the total stiffness K of all contacts
between the packing and this boundary. In short, at each step, displacement=stress_-
error/K. This algorithm is implemented in TriaxialStressController, and the control
itself is in TriaxialStressController::ControlExternalStress. The control can
be turned off independently for each boundary, using the flags wall_XXX_activated,
with XXX�{top, bottom, left, right, back, front}. The imposed sress is a unique value
(sigma_iso) for all directions if TriaxialStressController.isAxisymetric, or 3 independent
values sigma1, sigma2, sigma3.

4.Which value of friction angle do you use during the compaction phase of the Triaxial Test?
The friction during the compaction (whether you are using the expansion method or
the compression one for the specimen generation) can be anything between 0 and the
final value used during the Triaxial phase. Note that higher friction than the final one
would result in volumetric collapse at the beginning of the test. The purpose of using a
different value of friction during this phase is related to the fact that the final porosity
you get at the end of the sample generation essentially depends on it as well as on the
assumed Particle Size Distribution. Changing the initial value of friction will get to a
different value of the final porosity.

5.Which is the aim of the bool isRadiusControlIteration? This internal variable (up-
dated automatically) is true each N timesteps (with N=radiusControlInterval). For other
timesteps, there is no expansion. Cycling without expanding is just a way to speed up the
simulation, based on the idea that 1% increase each 10 iterations needs less operations
than 0.1% at each iteration, but will give similar results.

6.How comes the unbalanced force reaches a low value only after many timesteps in the compaction phase?
The value of unbalanced force (dimensionless) is expected to reach low value (i.e. identi-
fying a static-equilibrium condition for the specimen) only at the end of the compaction
phase. The code is not aiming at simulating a quasistatic isotropic compaction process,
it is only giving a stable packing at the end of it.

Key(=”“)
A code that is added to output filenames.

StabilityCriterion(=0.01)
Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./WallStresses”+Key)
autoCompressionActivation(=true)

Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest(=false)
FIXME : what is that?

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxYoungModulus(=15000000.0)
Stiffness of boxes.

360 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

dampingForce(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt(=-1)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres

dict() → dict
Return dictionary of attributes.

facetWalls(=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims(=”“)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

generate((str)out) → None
Generate scene, save to given file

importFilename(=”“)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

load() → None
Generate scene, save to temporary file and load immediately

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

radiusStdDev(=0.3)
Normalized standard deviation of generated sizes.

recordIntervalIter(=20)
interval between file outputs

7.10. Preprocessors 361

Yade Documentation, Release 1.07.0

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmaLateralConfinement(=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to TriaxialTest::sigmaIsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=0.1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

7.11 Rendering

7.11.1 OpenGLRenderer

class yade.wrapper.OpenGLRenderer((object)arg1)
Class responsible for rendering scene on OpenGL devices.
bgColor(=Vector3r(.2, .2, .2))

Color of the background canvas (RGB)
bound(=false)

Render body Bound
cellColor(=Vector3r(1, 1, 0))

Color of the periodic cell (RGB).
clipPlaneActive(=vector<bool>(numClipPlanes, false))

Activate/deactivate respective clipping planes
clipPlaneSe3(=vector<Se3r>(numClipPlanes, Se3r(Vector3r::Zero(), Quater-

nionr::Identity())))
Position and orientation of clipping planes

dict() → dict
Return dictionary of attributes.

362 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dispScale(=Vector3r::Ones(), disable scaling)
Artificially enlarge (scale) dispalcements from bodies’ reference positions by this relative
amount, so that they become better visible (independently in 3 dimensions). Disbled if (1,1,1).

dof(=false)
Show which degrees of freedom are blocked for each body

extraDrawers(=uninitalized)
Additional rendering components (GlExtraDrawer).

ghosts(=true)
Render objects crossing periodic cell edges by cloning them in multiple places (periodic sim-
ulations only).

id(=false)
Show body id’s

intrAllWire(=false)
Draw wire for all interactions, blue for potential and green for real ones (mostly for debugging)

intrGeom(=false)
Render Interaction::geom objects.

intrPhys(=false)
Render Interaction::phys objects

intrWire(=false)
If rendering interactions, use only wires to represent them.

light1(=true)
Turn light 1 on.

light2(=true)
Turn light 2 on.

light2Color(=Vector3r(0.5, 0.5, 0.1))
Per-color intensity of secondary light (RGB).

light2Pos(=Vector3r(-130, 75, 30))
Position of secondary OpenGL light source in the scene.

lightColor(=Vector3r(0.6, 0.6, 0.6))
Per-color intensity of primary light (RGB).

lightPos(=Vector3r(75, 130, 0))
Position of OpenGL light source in the scene.

mask(=~0, draw everything)
Bitmask for showing only bodies where ((mask & Body::mask)!=0)

render() → None
Render the scene in the current OpenGL context.

rotScale(=1., disable scaling)
Artificially enlarge (scale) rotations of bodies relative to their reference orientation, so the
they are better visible.

selId(=Body::ID_NONE)
Id of particle that was selected by the user.

setRefSe3() → None
Make current positions and orientation reference for scaleDisplacements and scaleRotations.

shape(=true)
Render body Shape

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Render all bodies with wire only (faster)

7.11. Rendering 363

Yade Documentation, Release 1.07.0

7.11.2 GlShapeFunctor

GlShapeFunctor

Gl1_Wall

Gl1_Box

Gl1_ChainedCylinderGl1_Cylinder

Gl1_Sphere

Gl1_Tetra

Gl1_GridConnection

Gl1_Polyhedra

Gl1_Facet

class yade.wrapper.GlShapeFunctor((object)arg1)
Abstract functor for rendering Shape objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_Box((object)arg1)
Renders Box object
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the

364 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

source code and O.timingEnabled==True.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.Gl1_ChainedCylinder((object)arg1)

Renders ChainedCylinder object including a shift for compensating flexion.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
glutNormalize = True
glutSlices = 8
glutStacks = 4
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False
class yade.wrapper.Gl1_Cylinder((object)arg1)

Renders Cylinder object
wire(=false) [static]

Only show wireframe (controlled by glutSlices and glutStacks.
glutNormalize(=true) [static]

Fix normals for non-wire rendering
glutSlices(=8) [static]

Number of sphere slices.
glutStacks(=4) [static]

Number of sphere stacks.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
glutNormalize = True
glutSlices = 8
glutStacks = 4
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False

7.11. Rendering 365

Yade Documentation, Release 1.07.0

class yade.wrapper.Gl1_Facet((object)arg1)
Renders Facet object
normals(=false) [static]

In wire mode, render normals of facets and edges; facet’s colors are disregarded in that case.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normals = False
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_GridConnection((object)arg1)
Renders Cylinder object
wire(=false) [static]

Only show wireframe (controlled by glutSlices and glutStacks.
glutNormalize(=true) [static]

Fix normals for non-wire rendering
glutSlices(=8) [static]

Number of cylinder slices.
glutStacks(=4) [static]

Number of cylinder stacks.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
glutNormalize = True
glutSlices = 8
glutStacks = 4
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False
class yade.wrapper.Gl1_Polyhedra((object)arg1)

Renders Polyhedra object
bases

Ordered list of types (as strings) this functor accepts.

366 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_Sphere((object)arg1)
Renders Sphere object
quality(=1.0) [static]

Change discretization level of spheres. quality>1 for better image quality, at the price
of more cpu/gpu usage, 0<quality<1 for faster rendering. If mono-color spheres are dis-
played (Gl1_Sphere::stripes = False), quality mutiplies Gl1_Sphere::glutSlices and Gl1_-
Sphere::glutStacks. If striped spheres are displayed (Gl1_Sphere::stripes = True), only integer
increments are meaningfull : quality=1 and quality=1.9 will give the same result, quality=2
will give finer result.

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

stripes(=false) [static]
In non-wire rendering, show stripes clearly showing particle rotation.

localSpecView(=true) [static]
Compute specular light in local eye coordinate system.

glutSlices(=12) [static]
Base number of sphere slices, multiplied by Gl1_Sphere::quality before use); not used with
stripes (see glut{Solid,Wire}Sphere reference)

glutStacks(=6) [static]
Base number of sphere stacks, multiplied by Gl1_Sphere::quality before use; not used with
stripes (see glut{Solid,Wire}Sphere reference)

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

glutSlices = 12
glutStacks = 6
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

localSpecView = True
quality = 1.0
stripes = False
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False

7.11. Rendering 367

http://www.opengl.org/documentation/specs/glut/spec3/node81.html
http://www.opengl.org/documentation/specs/glut/spec3/node81.html

Yade Documentation, Release 1.07.0

class yade.wrapper.Gl1_Tetra((object)arg1)
Renders Tetra object
wire(=true) [static]

TODO
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = True
class yade.wrapper.Gl1_Wall((object)arg1)

Renders Wall object
div(=20) [static]

Number of divisions of the wall inside visible scene part.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
div = 20
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.11.3 GlStateFunctor

class yade.wrapper.GlStateFunctor((object)arg1)
Abstract functor for rendering State objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

368 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.11.4 GlBoundFunctor

GlBoundFunctor Gl1_Aabb

class yade.wrapper.GlBoundFunctor((object)arg1)
Abstract functor for rendering Bound objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_Aabb((object)arg1)
Render Axis-aligned bounding box (Aabb).
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.11.5 GlIGeomFunctor

GlIGeomFunctor Gl1_L6GeomGl1_L3Geom

class yade.wrapper.GlIGeomFunctor((object)arg1)
Abstract functor for rendering IGeom objects.
bases

Ordered list of types (as strings) this functor accepts.

7.11. Rendering 369

Yade Documentation, Release 1.07.0

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_L3Geom((object)arg1)
Render L3Geom geometry.
axesLabels(=false) [static]

Whether to display labels for local axes (x,y,z)
axesScale(=1.) [static]

Scale local axes, their reference length being half of the minimum radius.
axesWd(=1.) [static]

Width of axes lines, in pixels; not drawn if non-positive
uPhiWd(=2.) [static]

Width of lines for drawing displacements (and rotations for L6Geom); not drawn if non-
positive.

uScale(=1.) [static]
Scale local displacements (u - u0); 1 means the true scale, 0 disables drawing local displace-
ments; negative values are permissible.

axesLabels = False
axesScale = 1.0
axesWd = 1.0
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

uPhiWd = 2.0
uScale = 1.0
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.Gl1_L6Geom((object)arg1)

Render L6Geom geometry.
phiScale(=1.) [static]

Scale local rotations (phi - phi0). The default scale is to draw π rotation with length equal
to minimum radius.

axesLabels = False
axesScale = 1.0

370 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

axesWd = 1.0
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

phiScale = 1.0
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

uPhiWd = 2.0
uScale = 1.0
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary

7.11.6 GlIPhysFunctor

GlIPhysFunctor

Gl1_CpmPhys

Gl1_NormPhys

class yade.wrapper.GlIPhysFunctor((object)arg1)
Abstract functor for rendering IPhys objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_CpmPhys((object)arg1)
Render CpmPhys objects of interactions.
contactLine(=true) [static]

Show contact line
dmgLabel(=true) [static]

Numerically show contact damage parameter
dmgPlane(=false) [static]

[what is this?]

7.11. Rendering 371

Yade Documentation, Release 1.07.0

epsT(=false) [static]
Show shear strain

epsTAxes(=false) [static]
Show axes of shear plane

normal(=false) [static]
Show contact normal

colorStrainRatio(=-1) [static]
If positive, set the interaction (wire) color based on εN normalized by ε0 × colorStrainRatio
(ε0 = CpmPhys.epsCrackOnset). Otherwise, color based on the residual strength.

epsNLabel(=false) [static]
Numerically show normal strain

bases
Ordered list of types (as strings) this functor accepts.

colorStrainRatio = -1.0
contactLine = True
dict() → dict

Return dictionary of attributes.
dmgLabel = True
dmgPlane = False
epsNLabel = False
epsT = False
epsTAxes = False
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normal = False
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_NormPhys((object)arg1)
Renders NormPhys objects as cylinders of which diameter and color depends on Norm-
Phys::normForce magnitude.
maxFn(=0) [static]

Value of NormPhys.normalForce corresponding to maxDiameter. This value will be increased
(but not decreased) automatically.

signFilter(=0) [static]
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

refRadius(=std::numeric_limits<Real>::infinity()) [static]
Reference (minimum) particle radius; used only if maxRadius is negative. This value will be
decreased (but not increased) automatically. (auto-updated)

maxRadius(=-1) [static]
Cylinder radius corresponding to the maximum normal force. If negative, auto-updated re-
fRadius will be used instead.

slices(=6) [static]
Number of sphere slices; (see glutCylinder reference)

372 Chapter 7. Class reference (yade.wrapper module)

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml

Yade Documentation, Release 1.07.0

stacks(=1) [static]
Number of sphere stacks; (see glutCylinder reference)

maxWeakFn(=NaN) [static]
Value that divides contacts by their normal force into the ‘‘weak fabric” and ‘‘strong fabric’‘.
This value is set as side-effect by utils.fabricTensor.

weakFilter(=0) [static]
If non-zero, only display contacts belonging to the ‘‘weak” (-1) or ‘‘strong” (+1) fabric.

weakScale(=1.) [static]
If maxWeakFn is set, scale radius of the weak fabric by this amount (usually smaller than 1).
If zero, 1 pixel line is displayed. Colors are not affected by this value.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

maxFn = 0.0
maxRadius = -1.0
maxWeakFn = nan
refRadius = inf
signFilter = 0
slices = 6
stacks = 1
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

weakFilter = 0
weakScale = 1.0

7.12 Simulation data

7.12.1 Omega

class yade.wrapper.Omega((object)arg1)

addScene() → int
Add new scene to Omega, returns its number

bodies
Bodies in the current simulation (container supporting index access by id and iteration)

cell
Periodic cell of the current scene (None if the scene is aperiodic).

childClassesNonrecursive((str)arg2) → list
Return list of all classes deriving from given class, as registered in the class factory

7.12. Simulation data 373

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml

Yade Documentation, Release 1.07.0

disableGdb() → None
Revert SEGV and ABRT handlers to system defaults.

dt
Current timestep (∆t) value.

dynDt
Whether a TimeStepper is used for dynamic ∆t control. See dt on how to enable/disable
TimeStepper.

dynDtAvailable
Whether a TimeStepper is amongst O.engines, activated or not.

energy
EnergyTracker of the current simulation. (meaningful only with O.trackEnergy)

engines
List of engines in the simulation (Scene::engines).

exitNoBacktrace([(int)status=0]) → None
Disable SEGV handler and exit, optionally with given status number.

filename
Filename under which the current simulation was saved (None if never saved).

forceSyncCount
Counter for number of syncs in ForceContainer, for profiling purposes.

forces
ForceContainer (forces, torques, displacements) in the current simulation.

interactions
Interactions in the current simulation (container supporting index acces by either (id1,id2) or
interactionNumber and iteration)

isChildClassOf((str)arg2, (str)arg3) → bool
Tells whether the first class derives from the second one (both given as strings).

iter
Get current step number

labeledEngine((str)arg2) → object
Return instance of engine/functor with the given label. This function shouldn’t be called
by the user directly; every ehange in O.engines will assign respective global python variables
according to labels.
For example:
O.engines=[InsertionSortCollider(label=’collider’)]
collider.nBins=5 # collider has become a variable after assignment to O.engines automatically

load((str)file[, (bool)quiet=False]) → None
Load simulation from file. The file should be saved in the same version of Yade, otherwise
compatibility is not guaranteed.

loadTmp([(str)mark=’‘[, (bool)quiet=False]]) → None
Load simulation previously stored in memory by saveTmp. mark optionally distinguishes
multiple saved simulations

lsTmp() → list
Return list of all memory-saved simulations.

materials
Shared materials; they can be accessed by id or by label

miscParams
MiscParams in the simulation (Scene::mistParams), usually used to save serializables that
don’t fit anywhere else, like GL functors

374 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

numThreads
Get maximum number of threads openMP can use.

pause() → None
Stop simulation execution. (May be called from within the loop, and it will stop after the
current step).

periodic
Get/set whether the scene is periodic or not (True/False).

plugins() → list
Return list of all plugins registered in the class factory.

realtime
Return clock (human world) time the simulation has been running.

reload([(bool)quiet=False]) → None
Reload current simulation

reset() → None
Reset simulations completely (including another scenes!).

resetAllScenes() → None
Reset all scenes.

resetCurrentScene() → None
Reset current scene.

resetThisScene() → None
Reset current scene.

resetTime() → None
Reset simulation time: step number, virtual and real time. (Doesn’t touch anything else,
including timings).

run([(int)nSteps=-1[, (bool)wait=False]]) → None
Run the simulation. nSteps how many steps to run, then stop (if positive); wait will cause
not returning to python until simulation will have stopped.

runEngine((Engine)arg2) → None
Run given engine exactly once; simulation time, step number etc. will not be incremented
(use only if you know what you do).

running
Whether background thread is currently running a simulation.

save((str)file[, (bool)quiet=False]) → None
Save current simulation to file (should be .xml or .xml.bz2). The file should be loaded in the
same version of Yade, otherwise compatibility is not guaranteed.

saveTmp([(str)mark=’‘[, (bool)quiet=False]]) → None
Save simulation to memory (disappears at shutdown), can be loaded later with loadTmp.
mark optionally distinguishes different memory-saved simulations.

sceneToString() → str
Return the entire scene as a string. Equivalent to using O.save(...) except that the scene goes
to a string instead of a file. (see also stringToScene())

speed
Return current calculation speed [iter/sec].

step() → None
Advance the simulation by one step. Returns after the step will have finished.

stopAtIter
Get/set number of iteration after which the simulation will stop.

stringToScene((str)arg2[, (str)mark=’‘]) → None
Load simulation from a string passed as argument (see also sceneToString).

7.12. Simulation data 375

Yade Documentation, Release 1.07.0

subStep
Get the current subStep number (only meaningful if O.subStepping==True); -1 when out-
side the loop, otherwise either 0 (O.subStepping==False) or number of engine to be run
(O.subStepping==True)

subStepping
Get/set whether subStepping is active.

switchScene() → None
Switch to alternative simulation (while keeping the old one). Calling the function again
switches back to the first one. Note that most variables from the first simulation will still
refer to the first simulation even after the switch (e.g. b=O.bodies[4]; O.switchScene(); [b still
refers to the body in the first simulation here])

switchToScene((int)arg2) → None
Switch to defined scene. Default scene has number 0, other scenes have to be created by
addScene method.

tags
Tags (string=string dictionary) of the current simulation (container supporting string-index
access/assignment)

time
Return virtual (model world) time of the simulation.

timingEnabled
Globally enable/disable timing services (see documentation of the timing module).

tmpFilename() → str
Return unique name of file in temporary directory which will be deleted when yade exits.

tmpToFile((str)fileName[, (str)mark=’‘]) → None
Save XML of saveTmp‘d simulation into fileName.

tmpToString([(str)mark=’‘]) → str
Return XML of saveTmp‘d simulation as string.

trackEnergy
When energy tracking is enabled or disabled in this simulation.

wait() → None
Don’t return until the simulation will have been paused. (Returns immediately if not running).

7.12.2 BodyContainer

class yade.wrapper.BodyContainer((object)arg1, (BodyContainer)arg2)

__init__((BodyContainer)arg2) → None

addToClump((object)arg2, (int)arg3[, (int)discretization=15[, (bool)integrateInertia=True]])→ None
Add body b (or a list of bodies) to an existing clump c. c must be clump and b may not be
a clump member of c. Clump masses and inertia are adapted automatically (for details see
clump()).
See examples/clumps/addToClump-example.py for an example script.

Note: If b is a clump itself, then all members will be added to c and b will be deleted. If
b is a clump member of clump d, then all members from d will be added to c and d will be
deleted. If you need to add just clump member b, release this member from d first.

append((Body)arg2) → int
Append one Body instance, return its id.

376 Chapter 7. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/examples/clumps/addToClump-example.py

Yade Documentation, Release 1.07.0

append((BodyContainer)arg1, (object)arg2) → object : Append list of Body in-
stance, return list of ids

appendClumped((object)arg2[, (int)discretization=15[, (bool)integrateInertia=True]]) → tu-
ple

Append given list of bodies as a clump (rigid aggregate); returns a tuple of
(clumpId,[memberId1,memberId2,...]). Clump masses and inertia are adapted automati-
cally (for details see clump()).

clear() → None
Remove all bodies (interactions not checked)

clump((object)arg2[, (int)discretization=15[, (bool)integrateInertia=True]]) → int
Clump given bodies together (creating a rigid aggregate); returns clumpId. Clump masses and
inertia are adapted automatically (default with integrateInertia=True). If clump members are
overlapping this is done by integration/summation over mass points using a regular grid of
cells (number of grid cells in one direction is defined as Rmin/discretization, where Rmin is
minimum clump member radius). For non-overlapping members inertia of the clump is the
sum of inertias from members. If integrateInertia=False sum of inertias from members is used
(faster, but inaccurate).

erase((int)arg2) → bool
Erase body with the given id; all interaction will be deleted by InteractionLoop in the next
step.

getRoundness([(list)excludeList=[]]) → float
Returns roundness coefficient RC = R2/R1. R1 is the theoretical radius of a sphere, with
same volume as clump. R2 is the minimum radius of a sphere, that imbeds clump. If just
spheres are present RC = 1. If clumps are present 0 < RC < 1. Bodies can be excluded from
the calculation by giving a list of ids: O.bodies.getRoundness([ids]).
See examples/clumps/replaceByClumps-example.py for an example script.

releaseFromClump((int)arg2, (int)arg3[, (int)discretization=15[,
(bool)integrateInertia=True]]) → None

Release body b from clump c. b must be a clump member of c. Clump masses and inertia
are adapted automatically (for details see clump()).
See examples/clumps/releaseFromClump-example.py for an example script.

Note: If c contains only 2 members b will not be released and a warning will appear. In
this case clump c should be erased.

replace((object)arg2) → object

replaceByClumps((list)arg2, (object)arg3[, (int)discretization=15[,
(bool)integrateInertia=True]]) → list

Replace spheres by clumps using a list of clump tem-
plates and a list of amounts; returns a list of tuples:
[(clumpId1,[memberId1,memberId2,...]),(clumpId2,[memberId1,memberId2,...]),...].
A new clump will have the same volume as the sphere, that was replaced. Clump masses and
inertia are adapted automatically (for details see clump()).
O.bodies.replaceByClumps([utils.clumpTemplate([1,1],[.5,.5])] , [.9]) #will replace 90 % of
all standalone spheres by ‘dyads’
See examples/clumps/replaceByClumps-example.py for an example script.

7.12.3 InteractionContainer

class yade.wrapper.InteractionContainer((object)arg1, (InteractionContainer)arg2)
Access to interactions of simulation, by using

7.12. Simulation data 377

https://github.com/yade/trunk/blob/master/examples/clumps/replaceByClumps-example.py
https://github.com/yade/trunk/blob/master/examples/clumps/releaseFromClump-example.py
https://github.com/yade/trunk/blob/master/examples/clumps/replaceByClumps-example.py

Yade Documentation, Release 1.07.0

1.id’s of both Bodies of the interactions, e.g. O.interactions[23,65]
2.iteraction over the whole container:

for i in O.interactions: print i.id1,i.id2

Note: Iteration silently skips interactions that are not real.

__init__((InteractionContainer)arg2) → None
clear() → None

Remove all interactions, and invalidate persistent collider data (if the collider supports it).
countReal() → int

Return number of interactions that are “real”, i.e. they have phys and geom.
erase((int)arg2, (int)arg3) → None

Erase one interaction, given by id1, id2 (internally, requestErase is called – the interaction
might still exist as potential, if the Collider decides so).

eraseNonReal() → None
Erase all interactions that are not real .

nth((int)arg2) → Interaction
Return n-th interaction from the container (usable for picking random interaction).

serializeSorted

withBody((int)arg2) → list
Return list of real interactions of given body.

withBodyAll((int)arg2) → list
Return list of all (real as well as non-real) interactions of given body.

7.12.4 ForceContainer

class yade.wrapper.ForceContainer((object)arg1, (ForceContainer)arg2)

__init__((ForceContainer)arg2) → None

addF((int)id, (Vector3)f [, (bool)permanent=False]) → None
Apply force on body (accumulates).

If permanent=false (default), the force applies for one iteration, then it is reset
by ForceResetter. # If permanent=true, it persists over iterations, until it is over-
written by another call to addF(id,f,True) or removed by reset(resetAll=True). The
permanent force on a body can be checked with permF(id).

addMove((int)id, (Vector3)m) → None
Apply displacement on body (accumulates).

addRot((int)id, (Vector3)r) → None
Apply rotation on body (accumulates).

addT((int)id, (Vector3)t[, (bool)permanent=False]) → None
Apply torque on body (accumulates).

If permanent=false (default), the torque applies for one iteration, then it is reset
by ForceResetter. # If permanent=true, it persists over iterations, until it is over-
written by another call to addT(id,f,True) or removed by reset(resetAll=True). The
permanent torque on a body can be checked with permT(id).

f((int)id[, (bool)sync=False]) → Vector3
Force applied on body. For clumps in openMP, synchronize the force container with
sync=True, else the value will be wrong.

378 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

getPermForceUsed() → bool
Check wether permanent forces are present.

m((int)id[, (bool)sync=False]) → Vector3
Deprecated alias for t (torque).

move((int)id) → Vector3
Displacement applied on body.

permF((int)id) → Vector3
read the value of permanent force on body (set with setPermF()).

permT((int)id) → Vector3
read the value of permanent torque on body (set with setPermT()).

reset([(bool)resetAll=True]) → None
Reset the force container, including user defined permanent forces/torques. resetAll=False
will keep permanent forces/torques unchanged.

rot((int)id) → Vector3
Rotation applied on body.

syncCount
Number of synchronizations of ForceContainer (cummulative); if significantly higher than
number of steps, there might be unnecessary syncs hurting performance.

t((int)id[, (bool)sync=False]) → Vector3
Torque applied on body. For clumps in openMP, synchronize the force container with
sync=True, else the value will be wrong.

7.12.5 MaterialContainer

class yade.wrapper.MaterialContainer((object)arg1, (MaterialContainer)arg2)
Container for Materials. A material can be accessed using

1.numerical index in range(0,len(cont)), like cont[2];
2.textual label that was given to the material, like cont[’steel’]. This etails traversing all mate-
rials and should not be used frequently.

__init__((MaterialContainer)arg2) → None
append((Material)arg2) → int

Add new shared Material; changes its id and return it.

append((MaterialContainer)arg1, (object)arg2) → object : Append list of Material
instances, return list of ids.

index((str)arg2) → int
Return id of material, given its label.

7.12.6 Scene

class yade.wrapper.Scene((object)arg1)
Object comprising the whole simulation.
compressionNegative

Whether the convention is that compression has negative sign (set by IGeomFunctor).
dict() → dict

Return dictionary of attributes.
doSort(=false)

Used, when new body is added to the scene.

7.12. Simulation data 379

Yade Documentation, Release 1.07.0

dt(=1e-8)
Current timestep for integration.

flags(=0)
Various flags of the scene; 1 (Scene::LOCAL_COORDS): use local coordinate system rather
than global one for per-interaction quantities (set automatically from the functor).

isPeriodic(=false)
Whether periodic boundary conditions are active.

iter(=0)
Current iteration (computational step) number

localCoords
Whether local coordianate system is used on interactions (set by IGeomFunctor).

selectedBody(=-1)
Id of body that is selected by the user

speed(=0)
Current calculation speed [iter/s]

stopAtIter(=0)
Iteration after which to stop the simulation.

stopAtTime(=0)
Time after which to stop the simulation

subStep(=-1)
Number of sub-step; not to be changed directly. -1 means to run loop prologue (cell integra-
tion), 0…n-1 runs respective engines (n is number of engines), n runs epilogue (increment step
number and time.

subStepping(=false)
Whether we currently advance by one engine in every step (rather than by single run through
all engines).

tags(=uninitalized)
Arbitrary key=value associations (tags like mp3 tags: author, date, version, description etc.)

time(=0)
Simulation time (virtual time) [s]

trackEnergy(=false)
Whether energies are being traced.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

7.12.7 Cell

class yade.wrapper.Cell((object)arg1)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.
dict() → dict

Return dictionary of attributes.
getDefGrad() → Matrix3

Returns deformation gradient tensor F of the cell deformation
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getEulerianAlmansiStrain() → Matrix3
Returns Eulerian-Almansi strain tensor e = 1

2
(I − b−1) = 1

2
(I − (FFT)−1) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)
getLCauchyGreenDef() → Matrix3

Returns left Cauchy-Green deformation tensor b = FFT of the cell
(http://en.wikipedia.org/wiki/Finite_strain_theory)

380 Chapter 7. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory

Yade Documentation, Release 1.07.0

getLagrangianStrain() → Matrix3
Returns Lagrangian strain tensor E = 1

2
(C − I) = 1

2
(FTF − I) = 1

2
(U2 − I) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)
getLeftStretch() → Matrix3

Returns left (spatial) stretch tensor of the cell (matrix U from polar decomposition F = RU)
getPolarDecOfDefGrad() → tuple

Returns orthogonal matrix R and symmetric positive semi-definite matrix U as polar decom-
position of deformation gradient F of the cell (F = RU)

getRCauchyGreenDef() → Matrix3
Returns right Cauchy-Green deformation tensor C = FTF of the cell
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getRightStretch() → Matrix3
Returns right (material) stretch tensor of the cell (matrix V from polar decomposition F =
RU = VR → V = FRT)

getRotation() → Matrix3
Returns rotation of the cell (orthogonal matrix R from polar decomposition F = RU)

getSmallStrain() → Matrix3
Returns small strain tensor ε = 1

2
(F+FT)−I of the cell (http://en.wikipedia.org/wiki/Finite_-

strain_theory)
hSize

Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

hSize0
Value of untransformed hSize, with respect to current trsf (computed as trsf −¹ × hSize.

homoDeform(=true)
Deform (velGrad) the cell homothetically, by adjusting positions and velocities of bodies. The
velocity change is obtained by deriving the expression v=�v.x, where �v is the macroscopic
velocity gradient, giving in an incremental form: ∆v=∆ �v x + �v ∆x. As a result, velocities
are modified as soon as velGrad changes, according to the first term: ∆v(t)=∆ �v x(t), while
the 2nd term reflects a convective term: ∆v’= �v v(t-dt/2).

nextVelGrad(=Matrix3r::Zero())
see Cell.velGrad.

prevHSize(=Matrix3r::Identity())
hSize from the previous step, used in the definition of relative velocity across periods.

prevVelGrad(=Matrix3r::Zero())
Velocity gradient in the previous step.

refHSize(=Matrix3r::Identity())
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the Reference button in the UI).

refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

setBox((Vector3)arg2) → None
Set Cell shape to be rectangular, with dimensions along axes specified by given ar-
gument. Shorthand for assigning diagonal matrix with respective entries to hSize.

7.12. Simulation data 381

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory

Yade Documentation, Release 1.07.0

setBox((Cell)arg1, (float)arg2, (float)arg3, (float)arg4) → None : Set Cell shape to
be rectangular, with dimensions along x, y, z specified by arguments. Shorthand for
assigning diagonal matrix with the respective entries to hSize.

shearPt((Vector3)arg2) → Vector3
Apply shear (cell skew+rot) on the point

shearTrsf
Current skew+rot transformation (no resize)

size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
Updated automatically at every step.

trsf
Current transformation matrix of the cell, obtained from time integration of Cell.velGrad.

unshearPt((Vector3)arg2) → Vector3
Apply inverse shear on the point (removes skew+rot of the cell)

unshearTrsf
Inverse of the current skew+rot transformation (no resize)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velGrad
Velocity gradient of the transformation; used in NewtonIntegrator. Values of velGrad accu-
mulate in trsf at every step.
NOTE: changing velGrad at the beginning of a simulation loop would lead to inacurate in-
tegration for one step, as it should normaly be changed after the contact laws (but before
Newton). To avoid this problem, assignment is deferred automatically. The target value
typed in terminal is actually stored in Cell.nextVelGrad and will be applied right in time by
Newton integrator.

velGradChanged(=false)
true when velGrad has been changed manually (see also Cell.nextVelGrad)

volume
Current volume of the cell.

wrap((Vector3)arg2) → Vector3
Transform an arbitrary point into a point in the reference cell

wrapPt((Vector3)arg2) → Vector3
Wrap point inside the reference cell, assuming the cell has no skew+rot.

7.13 Other classes

class yade.wrapper.Engine((object)arg1)
Basic execution unit of simulation, called from the simulation loop (O.engines)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

382 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Cell((object)arg1)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.
dict() → dict

Return dictionary of attributes.
getDefGrad() → Matrix3

Returns deformation gradient tensor F of the cell deformation
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getEulerianAlmansiStrain() → Matrix3
Returns Eulerian-Almansi strain tensor e = 1

2
(I − b−1) = 1

2
(I − (FFT)−1) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)
getLCauchyGreenDef() → Matrix3

Returns left Cauchy-Green deformation tensor b = FFT of the cell
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getLagrangianStrain() → Matrix3
Returns Lagrangian strain tensor E = 1

2
(C − I) = 1

2
(FTF − I) = 1

2
(U2 − I) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)
getLeftStretch() → Matrix3

Returns left (spatial) stretch tensor of the cell (matrix U from polar decomposition F = RU)
getPolarDecOfDefGrad() → tuple

Returns orthogonal matrix R and symmetric positive semi-definite matrix U as polar decom-
position of deformation gradient F of the cell (F = RU)

getRCauchyGreenDef() → Matrix3
Returns right Cauchy-Green deformation tensor C = FTF of the cell
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getRightStretch() → Matrix3
Returns right (material) stretch tensor of the cell (matrix V from polar decomposition F =
RU = VR → V = FRT)

getRotation() → Matrix3
Returns rotation of the cell (orthogonal matrix R from polar decomposition F = RU)

getSmallStrain() → Matrix3
Returns small strain tensor ε = 1

2
(F+FT)−I of the cell (http://en.wikipedia.org/wiki/Finite_-

strain_theory)
hSize

Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported

7.13. Other classes 383

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory

Yade Documentation, Release 1.07.0

by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

hSize0
Value of untransformed hSize, with respect to current trsf (computed as trsf −¹ × hSize.

homoDeform(=true)
Deform (velGrad) the cell homothetically, by adjusting positions and velocities of bodies. The
velocity change is obtained by deriving the expression v=�v.x, where �v is the macroscopic
velocity gradient, giving in an incremental form: ∆v=∆ �v x + �v ∆x. As a result, velocities
are modified as soon as velGrad changes, according to the first term: ∆v(t)=∆ �v x(t), while
the 2nd term reflects a convective term: ∆v’= �v v(t-dt/2).

nextVelGrad(=Matrix3r::Zero())
see Cell.velGrad.

prevHSize(=Matrix3r::Identity())
hSize from the previous step, used in the definition of relative velocity across periods.

prevVelGrad(=Matrix3r::Zero())
Velocity gradient in the previous step.

refHSize(=Matrix3r::Identity())
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the Reference button in the UI).

refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

setBox((Vector3)arg2) → None
Set Cell shape to be rectangular, with dimensions along axes specified by given ar-
gument. Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox((Cell)arg1, (float)arg2, (float)arg3, (float)arg4) → None : Set Cell shape to
be rectangular, with dimensions along x, y, z specified by arguments. Shorthand for
assigning diagonal matrix with the respective entries to hSize.

shearPt((Vector3)arg2) → Vector3
Apply shear (cell skew+rot) on the point

shearTrsf
Current skew+rot transformation (no resize)

size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
Updated automatically at every step.

trsf
Current transformation matrix of the cell, obtained from time integration of Cell.velGrad.

unshearPt((Vector3)arg2) → Vector3
Apply inverse shear on the point (removes skew+rot of the cell)

unshearTrsf
Inverse of the current skew+rot transformation (no resize)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velGrad
Velocity gradient of the transformation; used in NewtonIntegrator. Values of velGrad accu-
mulate in trsf at every step.

384 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

NOTE: changing velGrad at the beginning of a simulation loop would lead to inacurate in-
tegration for one step, as it should normaly be changed after the contact laws (but before
Newton). To avoid this problem, assignment is deferred automatically. The target value
typed in terminal is actually stored in Cell.nextVelGrad and will be applied right in time by
Newton integrator.

velGradChanged(=false)
true when velGrad has been changed manually (see also Cell.nextVelGrad)

volume
Current volume of the cell.

wrap((Vector3)arg2) → Vector3
Transform an arbitrary point into a point in the reference cell

wrapPt((Vector3)arg2) → Vector3
Wrap point inside the reference cell, assuming the cell has no skew+rot.

class yade.wrapper.TimingDeltas((object)arg1)

data
Get timing data as list of tuples (label, execTime[nsec], execCount) (one tuple per checkpoint)

reset() → None
Reset timing information

class yade.wrapper.GlExtraDrawer((object)arg1)
Performing arbitrary OpenGL drawing commands; called from OpenGLRenderer (see OpenGLRen-
derer.extraDrawers) once regular rendering routines will have finished.
This class itself does not render anything, derived classes should override the render method.
dead(=false)

Deactivate the object (on error/exception).
dict() → dict

Return dictionary of attributes.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.GlIGeomDispatcher((object)arg1)

Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((IGeom)arg2) → GlIGeomFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

7.13. Other classes 385

Yade Documentation, Release 1.07.0

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ParallelEngine((object)arg1)
Engine for running other Engine in parallel.
__init__() → None

object __init__(tuple args, dict kwds)
__init__((list)arg2) → object : Construct from (possibly nested) list of slaves.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

slaves
List of lists of Engines; each top-level group will be run in parallel with other groups, while
Engines inside each group will be run sequentially, in given order.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlShapeDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).

386 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Shape)arg2) → GlShapeFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Functor((object)arg1)
Function-like object that is called by Dispatcher, if types of arguments match those the Functor
declares to accept.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Serializable((object)arg1)

dict() → dict
Return dictionary of attributes.

7.13. Other classes 387

Yade Documentation, Release 1.07.0

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlExtra_LawTester((object)arg1)
Find an instance of LawTester and show visually its data.
dead(=false)

Deactivate the object (on error/exception).
dict() → dict

Return dictionary of attributes.
tester(=uninitalized)

Associated LawTester object.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.GlStateDispatcher((object)arg1)

Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((State)arg2) → GlStateFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.MatchMaker((object)arg1)
Class matching pair of ids to return pre-defined (for a pair of ids defined in matches) or derived
value (computed using algo) of a scalar parameter. It can be called (id1, id2, val1=NaN, val2=NaN)
in both python and c++.

388 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

Note: There is a converter from python number defined for this class, which creates a new
MatchMaker returning the value of that number; instead of giving the object instance therefore,
you can only pass the number value and it will be converted automatically.

algo
Alogorithm used to compute value when no match for ids is found. Possible values are

•‘avg’ (arithmetic average)
•‘min’ (minimum value)
•‘max’ (maximum value)
•‘harmAvg’ (harmonic average)

The following algo algorithms do not require meaningful input values in order to work:
•‘val’ (return value specified by val)
•‘zero’ (always return 0.)

computeFallback((float)val1, (float)val2) → float
Compute algo value for val1 and val2, using algorithm specified by algo.

dict() → dict
Return dictionary of attributes.

matches(=uninitalized)
Array of (id1,id2,value) items; queries matching id1 + id2 or id2 + id1 will return value

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

val(=NaN)
Constant value returned if there is no match and algo is val

class yade.wrapper.GlBoundDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Bound)arg2) → GlBoundFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

7.13. Other classes 389

Yade Documentation, Release 1.07.0

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlIPhysDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((IPhys)arg2) → GlIPhysFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlExtra_OctreeCubes((object)arg1)
Render boxed read from file
boxesFile(=uninitalized)

File to read boxes from; ascii files with x0 y0 z0 x1 y1 z1 c records, where c is an integer
specifying fill (0 for wire, 1 for filled).

390 Chapter 7. Class reference (yade.wrapper module)

Yade Documentation, Release 1.07.0

dead(=false)
Deactivate the object (on error/exception).

dict() → dict
Return dictionary of attributes.

fillRangeDraw(=Vector2i(-2, 2))
Range of fill indices that will be rendered.

fillRangeFill(=Vector2i(2, 2))
Range of fill indices that will be filled.

levelRangeDraw(=Vector2i(-2, 2))
Range of levels that will be rendered.

noFillZero(=true)
Do not fill 0-fill boxed (those that are further subdivided)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Dispatcher((object)arg1)
Engine dispatching control to its associated functors, based on types of argument it receives. This
abstract base class provides no functionality in itself.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.EnergyTracker((object)arg1)
Storage for tracing energies. Only to be used if O.trackEnergy is True.
clear() → None

Clear all stored values.
dict() → dict

Return dictionary of attributes.
energies(=uninitalized)

Energy values, in linear array

7.13. Other classes 391

Yade Documentation, Release 1.07.0

items() → list
Return contents as list of (name,value) tuples.

keys() → list
Return defined energies.

total() → float
Return sum of all energies.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

392 Chapter 7. Class reference (yade.wrapper module)

Chapter 8

Yade modules

8.1 yade.bodiesHandling module

Miscellaneous functions, which are useful for handling bodies.

yade.bodiesHandling.facetsDimensions(idFacets=[], mask=-1)
The function accepts the list of facet id’s or list of facets and calculates max and min dimensions,
geometrical center.

Parameters
• idFacets (list) – list of spheres
• mask (int) – Body.mask for the checked bodies

Returns dictionary with keys min (minimal dimension, Vector3), max (maximal dimen-
sion, Vector3), minId (minimal dimension facet Id, Vector3), maxId (maximal dimen-
sion facet Id, Vector3), center (central point of bounding box, Vector3), extends
(sizes of bounding box, Vector3), number (number of facets, int),

yade.bodiesHandling.sphereDuplicate(idSphere)
The functions makes a copy of sphere

yade.bodiesHandling.spheresModify(idSpheres=[], mask=-1, shift=Vector3(0, 0, 0),
scale=1.0, orientation=Quaternion((1, 0, 0), 0),
copy=False)

The function accepts the list of spheres id’s or list of bodies and modifies them: rotating, scaling,
shifting. if copy=True copies bodies and modifies them. Also the mask can be given. If idSpheres
not empty, the function affects only bodies, where the mask passes. If idSpheres is empty, the
function search for bodies, where the mask passes.

Parameters
• shift (Vector3) – Vector3(X,Y,Z) parameter moves spheres.
• scale (float) – factor scales given spheres.
• orientation (Quaternion) – orientation of spheres
• mask (int) – Body.mask for the checked bodies

Returns list of bodies if copy=True, and Boolean value if copy=False

yade.bodiesHandling.spheresPackDimensions(idSpheres=[], mask=-1)
The function accepts the list of spheres id’s or list of bodies and calculates max and min dimensions,
geometrical center.

Parameters
• idSpheres (list) – list of spheres
• mask (int) – Body.mask for the checked bodies

393

Yade Documentation, Release 1.07.0

Returns dictionary with keys min (minimal dimension, Vector3), max (maximal di-
mension, Vector3), minId (minimal dimension sphere Id, Vector3), maxId (maximal
dimension sphere Id, Vector3), center (central point of bounding box, Vector3),
extends (sizes of bounding box, Vector3), volume (volume of spheres, Real), mass
(mass of spheres, Real), number (number of spheres, int),

8.2 yade.export module

Export (not only) geometry to various formats.
class yade.export.VTKExporter

Class for exporting data to VTK Simple Legacy File (for example if, for some reason, you are not
able to use VTKRecorder). Export of spheres, facets and interactions is supported.
USAGE: create object vtkExporter = VTKExporter(‘baseFileName’), add to engines PyRunner
with command=’vtkExporter.exportSomething(params)’
Example: examples/test/vtk-exporter/vtkExporter.py, examples/test/unv-
read/unvReadVTKExport.py.

Parameters
• baseName (string) – name of the exported files. The files would be named

baseName-spheres-snapNb.vtk or baseName-facets-snapNb.vtk
• startSnap (int=0) – the numbering of files will start form startSnap

exportFacets()
exports facets (positions) and defined properties. Facets are exported with multiplicated nodes
:param [int]|”all” ids: if “all”, then export all facets, otherwise only facets from integer list
:param [tuple(2)] what: see exportSpheres :param string comment: comment to add to vtk
file :param int numLabel: number of file (e.g. time step), if unspecified, the last used value +
1 will be used

exportFacetsAsMesh()
exports facets (positions) and defined properties. Facets are exported as mesh (not with
multiplicated nodes). Therefore additional parameters connectivityTable is needed
:param [int]|”all” ids: if “all”, then export all facets, otherwise only facets from integer list
:param [tuple(2)] what: see exportSpheres :param string comment: comment to add to vtk
file :param int numLabel: number of file (e.g. time step), if unspecified, the last used value
+ 1 will be used :param [(float,float,float)|Vector3] nodes: list of coordinates of nodes :param
[(int,int,int)] connectivityTable: list of node ids of individual elements (facets)

exportInteractions()
exports interactions and defined properties.
:param ids: if “all”, then export all spheres, otherwise only spheres from integer list :type
ids: [int] | “all” :param what: what to export. parameter is list of couple (name,command).
Name is string under which it is save to vtk, command is string to evaluate. Node that
the interactions are labeled as i in this function. Scalar, vector and tensor variables are
supported. For example, to export stiffness difference from certain value (1e9) (named as
dStiff) you should write: ... what=[(‘dStiff’,’i.phys.kn-1e9’), ... :type what: [tuple(2)] :param
string comment: comment to add to vtk file :param int numLabel: number of file (e.g. time
step), if unspecified, the last used value + 1 will be used

exportPeriodicCell()
exports spheres (positions and radius) and defined properties.
:param string comment: comment to add to vtk file :param int numLabel: number of file (e.g.
time step), if unspecified, the last used value + 1 will be used

exportSpheres()
exports spheres (positions and radius) and defined properties.

394 Chapter 8. Yade modules

https://github.com/yade/trunk/blob/master/examples/test/vtk-exporter/vtkExporter.py
https://github.com/yade/trunk/blob/master/examples/test/unv-read/unvReadVTKExport.py
https://github.com/yade/trunk/blob/master/examples/test/unv-read/unvReadVTKExport.py

Yade Documentation, Release 1.07.0

:param ids: if “all”, then export all spheres, otherwise only spheres from integer list :type
ids: [int] | “all” :param what: what other than then position and radius export. parame-
ter is list of couple (name,command). Name is string under which it is save to vtk, com-
mand is string to evaluate. Node that the bodies are labeled as b in this function. Scalar,
vector and tensor variables are supported. For example, to export velocity (with name
particleVelocity) and the distance form point (0,0,0) (named as dist) you should write: ...
what=[(‘particleVelocity’,’b.state.vel’),(‘dist’,’b.state.pos.norm()’, ... :type what: [tuple(2)]
:param string comment: comment to add to vtk file :param int numLabel: number of file (e.g.
time step), if unspecified, the last used value + 1 will be used :param bool useRef: if False
(default), use current position of the spheres for export, use reference position otherwise

class yade.export.VTKWriter
USAGE: create object vtk_writer = VTKWriter(‘base_file_name’), add to engines PyRunner with
command=’vtk_writer.snapshot()’
snapshot()

yade.export.gmshGeo(filename, comment=’‘, mask=-1, accuracy=-1)
Save spheres in geo-file for the following using in GMSH (http://www.geuz.org/gmsh/doc/texinfo/)
program. The spheres can be there meshed.

Parameters
• filename (string) – the name of the file, where sphere coordinates will be ex-

ported.
• mask (int) – export only spheres with the corresponding mask export only

spheres with the corresponding mask
• accuracy (float) – the accuracy parameter, which will be set for the poinst in

geo-file. By default: 1./10. of the minimal sphere diameter.
Returns number of spheres which were exported.
Return type int

yade.export.text(filename, mask=-1)
Save sphere coordinates into a text file; the format of the line is: x y z r. Non-spherical bodies are
silently skipped. Example added to examples/regular-sphere-pack/regular-sphere-pack.py

Parameters
• filename (string) – the name of the file, where sphere coordinates will be ex-

ported.
• mask (int) – export only spheres with the corresponding mask

Returns number of spheres which were written.
Return type int

yade.export.textClumps(filename, format=’x_y_z_r_clumpId’, comment=’‘, mask=-1)
Save clumps-members into a text file. Non-clumps members are bodies are silently skipped.

Parameters
• filename (string) – the name of the file, where sphere coordinates will be ex-

ported.
• comment (string) – the text, which will be added as a comment at the top of

file. If you want to create several lines of text, please use ‘\n#’ for next lines.
• mask (int) – export only spheres with the corresponding mask export only

spheres with the corresponding mask
Returns number of clumps, number of spheres which were written.
Return type int

yade.export.textExt(filename, format=’x_y_z_r’, comment=’‘, mask=-1)
Save sphere coordinates and other parameters into a text file in specific format. Non-spherical

8.2. yade.export module 395

http://www.geuz.org/gmsh/doc/texinfo/

Yade Documentation, Release 1.07.0

bodies are silently skipped. Users can add here their own specific format, giving meaningful names.
The first file row will contain the format name. Be sure to add the same format specification in
ymport.textExt.

Parameters
• filename (string) – the name of the file, where sphere coordinates will be ex-

ported.
• format (string) – the name of output format. Supported ‘x_y_z_r’(default),

‘x_y_z_r_matId’
• comment (string) – the text, which will be added as a comment at the top of

file. If you want to create several lines of text, please use ‘\n#’ for next lines.
• mask (int) – export only spheres with the corresponding mask export only

spheres with the corresponding mask
Returns number of spheres which were written.
Return type int

8.3 yade.geom module

Creates geometry objects from facets.
yade.geom.facetBox(center, extents, orientation=Quaternion((1, 0, 0), 0), wallMask=63, **kw)

Create arbitrarily-aligned box composed of facets, with given center, extents and orientation. If
any of the box dimensions is zero, corresponding facets will not be created. The facets are oriented
outwards from the box.

Parameters
• center (Vector3) – center of the box
• extents (Vector3) – lengths of the box sides
• orientation (Quaternion) – orientation of the box
• wallMask (bitmask) – determines which walls will be created, in the order -x

(1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the
default 63 means to create all walls

• **kw – (unused keyword arguments) passed to utils.facet
Returns list of facets forming the box

yade.geom.facetBunker(center, dBunker, dOutput, hBunker, hOutput, hPipe=0.0, orienta-
tion=Quaternion((1, 0, 0), 0), segmentsNumber=10, wallMask=4, an-
gleRange=None, closeGap=False, **kw)

Create arbitrarily-aligned bunker, composed of facets, with given center, radii, heights and orien-
tation. Return List of facets forming the bunker;

dBunker

| |
| |
| | hBunker
| |
| |
| |
|____________|
\ /
\ /
\ / hOutput
\ /
____/

396 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

| |
|____| hPipe
dOutput

Parameters
• center (Vector3) – center of the created bunker
• dBunker (float) – bunker diameter, top
• dOutput (float) – bunker output diameter
• hBunker (float) – bunker height
• hOutput (float) – bunker output height
• hPipe (float) – bunker pipe height
• orientation (Quaternion) – orientation of the bunker; the reference orientation

has axis along the +x axis.
• segmentsNumber (int) – number of edges on the bunker surface (>=5)
• wallMask (bitmask) – determines which walls will be created, in the order up

(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((ϑmin,Θmax)) – allows one to create only part of bunker by spec-
ifying range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetCone(center, radiusTop, radiusBottom, height, orientation=Quaternion((1,
0, 0), 0), segmentsNumber=10, wallMask=7, angleRange=None,
closeGap=False, **kw)

Create arbitrarily-aligned cone composed of facets, with given center, radius, height and orientation.
Return List of facets forming the cone;

Parameters
• center (Vector3) – center of the created cylinder
• radiusTop (float) – cone top radius
• radiusBottom (float) – cone bottom radius
• height (float) – cone height
• orientation (Quaternion) – orientation of the cone; the reference orientation

has axis along the +x axis.
• segmentsNumber (int) – number of edges on the cone surface (>=5)
• wallMask (bitmask) – determines which walls will be created, in the order up

(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((ϑmin,Θmax)) – allows one to create only part of cone by speci-
fying range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;

8.3. yade.geom module 397

Yade Documentation, Release 1.07.0

yade.geom.facetCylinder(center, radius, height, orientation=Quaternion((1, 0, 0), 0), seg-
mentsNumber=10, wallMask=7, angleRange=None, closeGap=False,
**kw)

Create arbitrarily-aligned cylinder composed of facets, with given center, radius, height and orien-
tation. Return List of facets forming the cylinder;

Parameters
• center (Vector3) – center of the created cylinder
• radius (float) – cylinder radius
• height (float) – cylinder height
• orientation (Quaternion) – orientation of the cylinder; the reference orientation

has axis along the +x axis.
• segmentsNumber (int) – number of edges on the cylinder surface (>=5)
• wallMask (bitmask) – determines which walls will be created, in the order up

(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((ϑmin,Θmax)) – allows one to create only part of bunker by spec-
ifying range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;
yade.geom.facetCylinderConeGenerator(center, radiusTop, height, orientation=Quaternion((1,

0, 0), 0), segmentsNumber=10, wallMask=7, an-
gleRange=None, closeGap=False, radiusBottom=-1,
**kw)

Please, do not use this function directly! Use geom.facetCylinder and geom.facetCone instead.
This is the base function for generating cylinders and cones from facets. :param float radiusTop:
top radius :param float radiusBottom: bottom radius :param **kw: (unused keyword arguments)
passed to utils.facet;

yade.geom.facetHelix(center, radiusOuter, pitch, orientation=Quaternion((1, 0, 0), 0), seg-
mentsNumber=10, angleRange=None, radiusInner=0, **kw)

Create arbitrarily-aligned helix composed of facets, with given center, radius (outer and inner),
pitch and orientation. Return List of facets forming the helix;

Parameters
• center (Vector3) – center of the created cylinder
• radiusOuter (float) – outer radius
• radiusInner (float) – inner height (can be 0)
• orientation (Quaternion) – orientation of the helix; the reference orientation

has axis along the +x axis.
• segmentsNumber (int) – number of edges on the helix surface (>=3)
• angleRange ((ϑmin,Θmax)) – range of angles; if None, (0,2*pi) is assumed.
• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetParallelepiped(center, extents, height, orientation=Quaternion((1, 0, 0), 0),
wallMask=63, **kw)

Create arbitrarily-aligned Parallelepiped composed of facets, with given center, extents, height and
orientation. If any of the parallelepiped dimensions is zero, corresponding facets will not be created.
The facets are oriented outwards from the parallelepiped.

Parameters
• center (Vector3) – center of the parallelepiped
• extents (Vector3) – lengths of the parallelepiped sides

398 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

• height (Real) – height of the parallelepiped (along axis z)
• orientation (Quaternion) – orientation of the parallelepiped
• wallMask (bitmask) – determines which walls will be created, in the order -x

(1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the
default 63 means to create all walls

• **kw – (unused keyword arguments) passed to utils.facet
Returns list of facets forming the parallelepiped

yade.geom.facetPolygon(center, radiusOuter, orientation=Quaternion((1, 0, 0), 0), seg-
mentsNumber=10, angleRange=None, radiusInner=0, **kw)

Create arbitrarily-aligned polygon composed of facets, with given center, radius (outer and inner)
and orientation. Return List of facets forming the polygon;

Parameters
• center (Vector3) – center of the created cylinder
• radiusOuter (float) – outer radius
• radiusInner (float) – inner height (can be 0)
• orientation (Quaternion) – orientation of the polygon; the reference orientation

has axis along the +x axis.
• segmentsNumber (int) – number of edges on the polygon surface (>=3)
• angleRange ((ϑmin,Θmax)) – allows one to create only part of polygon by

specifying range of angles; if None, (0,2*pi) is assumed.
• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetPolygonHelixGenerator(center, radiusOuter, pitch=0, orienta-
tion=Quaternion((1, 0, 0), 0), segmentsNumber=10,
angleRange=None, radiusInner=0, **kw)

Please, do not use this function directly! Use geom.facetPloygon and geom.facetHelix instead. This
is the base function for generating polygons and helixes from facets.

yade.geom.facetSphere(center, radius, thetaResolution=8, phiResolution=8, returnEle-
mentMap=False, **kw)

Create arbitrarily-aligned sphere composed of facets, with given center, radius and orientation.
Return List of facets forming the sphere. Parameters inspired by ParaView sphere glyph

Parameters
• center (Vector3) – center of the created sphere
• radius (float) – sphere radius
• thetaResolution (int) – number of facets around “equator”
• phiResolution (int) – number of facets between “poles” + 1
• returnElementMap (bool) – returns also tuple of nodes

((x1,y1,z1),(x2,y2,z2),...) and elements ((id01,id02,id03),(id11,id12,id13),...) if
true, only facets otherwise

• **kw – (unused keyword arguments) passed to utils.facet;

8.4 yade.linterpolation module

Module for rudimentary support of manipulation with piecewise-linear functions (which are usually
interpolations of higher-order functions, whence the module name). Interpolation is always given as two
lists of the same length, where the x-list must be increasing.
Periodicity is supported by supposing that the interpolation can wrap from the last x-value to the first
x-value (which should be 0 for meaningful results).

8.4. yade.linterpolation module 399

Yade Documentation, Release 1.07.0

Non-periodic interpolation can be converted to periodic one by padding the interpolation with constant
head and tail using the sanitizeInterpolation function.
There is a c++ template function for interpolating on such sequences in
pkg/common/Engine/PartialEngine/LinearInterpolate.hpp (stateful, therefore fast for sequential
reads).
TODO: Interpolating from within python is not (yet) supported.
yade.linterpolation.integral(x, y)

Return integral of piecewise-linear function given by points x0,x1,… and y0,y1,…
yade.linterpolation.revIntegrateLinear(I, x0, y0, x1, y1)

Helper function, returns value of integral variable x for linear function f passing through
(x0,y0),(x1,y1) such that 1. x�[x0,x1] 2. �_x0^x f dx=I and raise exception if such number doesn’t
exist or the solution is not unique (possible?)

yade.linterpolation.sanitizeInterpolation(x, y, x0, x1)
Extends piecewise-linear function in such way that it spans at least the x0…x1 interval, by adding
constant padding at the beginning (using y0) and/or at the end (using y1) or not at all.

yade.linterpolation.xFractionalFromIntegral(integral, x, y)
Return x within range x0…xn such that �_x0^x f dx==integral. Raises error if the integral value
is not reached within the x-range.

yade.linterpolation.xFromIntegral(integralValue, x, y)
Return x such that �_x0^x f dx==integral. x wraps around at xn. For meaningful results, therefore,
x0 should == 0

8.5 yade.pack module

Creating packings and filling volumes defined by boundary representation or constructive solid geometry.
For examples, see

• scripts/test/gts-operators.py
• scripts/test/gts-random-pack-obb.py
• scripts/test/gts-random-pack.py
• scripts/test/pack-cloud.py
• scripts/test/pack-predicates.py
• examples/packs/packs.py
• examples/gts-horse/gts-horse.py
• examples/WireMatPM/wirepackings.py

yade.pack.SpherePack_toSimulation(self, rot=Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1), **kw)
Append spheres directly to the simulation. In addition calling O.bodies.append, this method also
appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import *
>>> sp=pack.SpherePack()

Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20)
20

Virgin simulation is aperiodic:

>>> O.reset()
>>> O.periodic
False

400 Chapter 8. Yade modules

https://github.com/yade/trunk/blob/master/scripts/test/gts-operators.py
https://github.com/yade/trunk/blob/master/scripts/test/gts-random-pack-obb.py
https://github.com/yade/trunk/blob/master/scripts/test/gts-random-pack.py
https://github.com/yade/trunk/blob/master/scripts/test/pack-cloud.py
https://github.com/yade/trunk/blob/master/scripts/test/pack-predicates.py
https://github.com/yade/trunk/blob/master/examples/packs/packs.py
https://github.com/yade/trunk/blob/master/examples/gts-horse/gts-horse.py
https://github.com/yade/trunk/blob/master/examples/WireMatPM/wirepackings.py

Yade Documentation, Release 1.07.0

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation (this could be
avoided by explicitly passing “hSize=O.cell.hSize” as an argument):

>>> O.periodic
True
>>> O.cell.refSize
Vector3(5,5,5)

yade.pack.filterSpherePack(predicate, spherePack, returnSpherePack=None, **kw)
Using given SpherePack instance, return spheres that satisfy predicate. It returns either a
pack.SpherePack (if returnSpherePack) or a list. The packing will be recentered to match the
predicate and warning is given if the predicate is larger than the packing.

yade.pack.gtsSurface2Facets(surf, **kw)
Construct facets from given GTS surface. **kw is passed to utils.facet.

yade.pack.gtsSurfaceBestFitOBB(surf)
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) describing best-fit oriented
bounding box (OBB) for the given surface. See cloudBestFitOBB for details.

yade.pack.hexaNet(radius, cornerCoord=[0, 0, 0], xLength=1.0, yLength=0.5, mos=0.08,
a=0.04, b=0.04, startAtCorner=True, isSymmetric=False, **kw)

Definition of the particles for a hexagonal wire net in the x-y-plane for the WireMatPM.
Parameters

• radius – radius of the particle
• cornerCoord – coordinates of the lower left corner of the net
• xLenght – net length in x-direction
• yLenght – net length in y-direction
• mos – mesh opening size (horizontal distance between the double twists)
• a – length of double-twist
• b – height of single wire section
• startAtCorner – if true the generation starts with a double-twist at the lower

left corner
• isSymmetric – defines if the net is symmetric with respect to the y-axis

Returns set of spheres which defines the net (net) and exact dimensions of the net
(lx,ly).

note:: This packing works for the WireMatPM only. The particles at the corner are always gener-
ated first. For examples on how to use this packing see examples/WireMatPM. In order to create
the proper interactions for the net the interaction radius has to be adapted in the simulation.

class yade.pack.inGtsSurface_py(inherits Predicate)
This class was re-implemented in c++, but should stay here to serve as reference for implementing
Predicates in pure python code. C++ allows us to play dirty tricks in GTS which are not accessible
through pygts itself; the performance penalty of pygts comes from fact that if constructs and
destructs bb tree for the surface at every invocation of gts.Point().is_inside(). That is cached in
the c++ code, provided that the surface is not manipulated with during lifetime of the object
(user’s responsibility).
—
Predicate for GTS surfaces. Constructed using an already existing surfaces, which must be closed.

import gts surf=gts.read(open(‘horse.gts’)) inGtsSurface(surf)

8.5. yade.pack module 401

Yade Documentation, Release 1.07.0

Note: Padding is optionally supported by testing 6 points along the axes in the pad distance.
This must be enabled in the ctor by saying doSlowPad=True. If it is not enabled and pad is not
zero, warning is issued.

aabb()

center() → Vector3
dim() → Vector3

class yade.pack.inSpace(inherits Predicate)
Predicate returning True for any points, with infinite bounding box.
aabb()

center()

dim()

yade.pack.randomDensePack(predicate, radius, material=-1, dim=None, cropLayers=0, rRel-
Fuzz=0.0, spheresInCell=0, memoizeDb=None, useOBB=False,
memoDbg=False, color=None, returnSpherePack=None)

Generator of random dense packing with given geometry properties, using TriaxialTest (aperiodic)
or PeriIsoCompressor (periodic). The periodicity depens on whether the spheresInCell parameter
is given.
O.switchScene()magic is used to have clean simulation for TriaxialTest without deleting the original
simulation. This function therefore should never run in parallel with some code accessing your
simulation.

Parameters
• predicate – solid-defining predicate for which we generate packing
• spheresInCell – if given, the packing will be periodic, with given number of

spheres in the periodic cell.
• radius – mean radius of spheres
• rRelFuzz – relative fuzz of the radius – e.g. radius=10, rRelFuzz=.2, then

spheres will have radii 10 ± (10*.2)), with an uniform distribution. 0 by default,
meaning all spheres will have exactly the same radius.

• cropLayers – (aperiodic only) how many layers of spheres will be added to
the computed dimension of the box so that there no (or not so much, at least)
boundary effects at the boundaries of the predicate.

• dim – dimension of the packing, to override dimensions of the predicate (if it is
infinite, for instance)

• memoizeDb – name of sqlite database (existent or nonexistent) to find an
already generated packing or to store the packing that will be generated, if not
found (the technique of caching results of expensive computations is known as
memoization). Fuzzy matching is used to select suitable candidate – packing will
be scaled, rRelFuzz and dimensions compared. Packing that are too small are
dictarded. From the remaining candidate, the one with the least number spheres
will be loaded and returned.

• useOBB – effective only if a inGtsSurface predicate is given. If true (not de-
fault), oriented bounding box will be computed first; it can reduce substantially
number of spheres for the triaxial compression (like 10× depending on how much
asymmetric the body is), see examples/gts-horse/gts-random-pack-obb.py

• memoDbg – show packings that are considered and reasons why they are re-
jected/accepted

• returnSpherePack – see the corresponding argument in pack.filterSpherePack
Returns SpherePack object with spheres, filtered by the predicate.

402 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

yade.pack.randomPeriPack(radius, initSize, rRelFuzz=0.0, memoizeDb=None, noPrint=False)
Generate periodic dense packing.
A cell of initSize is stuffed with as many spheres as possible, then we run periodic compression
with PeriIsoCompressor, just like with randomDensePack.

Parameters
• radius – mean sphere radius
• rRelFuzz – relative fuzz of sphere radius (equal distribution); see the same

param for randomDensePack.
• initSize – initial size of the periodic cell.

Returns SpherePack object, which also contains periodicity information.
yade.pack.regularHexa(predicate, radius, gap, **kw)

Return set of spheres in regular hexagonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.regularOrtho(predicate, radius, gap, **kw)
Return set of spheres in regular orthogonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.revolutionSurfaceMeridians(sects, angles, origin=Vector3(0, 0, 0), orienta-
tion=Quaternion((1, 0, 0), 0))

Revolution surface given sequences of 2d points and sequence of corresponding angles, returning
sequences of 3d points representing meridian sections of the revolution surface. The 2d sections
are turned around z-axis, but they can be transformed using the origin and orientation arguments
to give arbitrary orientation.

yade.pack.sweptPolylines2gtsSurface(pts, threshold=0, capStart=False, capEnd=False)
Create swept suface (as GTS triangulation) given same-length sequences of points (as 3-tuples).
If threshold is given (>0), then

•degenerate faces (with edges shorter than threshold) will not be created
•gts.Surface().cleanup(threshold) will be called before returning, which merges vertices mutu-
ally closer than threshold. In case your pts are closed (last point concident with the first
one) this will the surface strip of triangles. If you additionally have capStart==True and
capEnd==True, the surface will be closed.

Note: capStart and capEnd make the most naive polygon triangulation (diagonals) and will
perhaps fail for non-convex sections.

Warning: the algorithm connects points sequentially; if two polylines are mutually rotated or
have inverse sense, the algorithm will not detect it and connect them regardless in their given
order.

Creation, manipulation, IO for generic sphere packings.

class yade._packSpheres.SpherePack((object)arg1[, (list)list])
Set of spheres represented as centers and radii. This class is returned by pack.randomDensePack,
pack.randomPeriPack and others. The object supports iteration over spheres, as in

>>> sp=SpherePack()
>>> for center,radius in sp: print center,radius

>>> for sphere in sp: print sphere[0],sphere[1] ## same, but without unpacking the tuple automatically

>>> for i in range(0,len(sp)): print sp[i][0], sp[i][1] ## same, but accessing spheres by index

Special constructors

8.5. yade.pack module 403

Yade Documentation, Release 1.07.0

Construct from list of [(c1,r1),(c2,r2),…]. To convert two same-length lists of centers and
radii, construct with zip(centers,radii).

__init__([(list)list]) → None
Empty constructor, optionally taking list [((cx,cy,cz),r), …] for initial data.

aabb() → tuple
Get axis-aligned bounding box coordinates, as 2 3-tuples.

add((Vector3)arg2, (float)arg3) → None
Add single sphere to packing, given center as 3-tuple and radius

appliedPsdScaling
A factor between 0 and 1, uniformly applied on all sizes of of the PSD.

cellFill((Vector3)arg2) → None
Repeat the packing (if periodic) so that the results has dim() >= given size. The packing
retains periodicity, but changes cellSize. Raises exception for non-periodic packing.

cellRepeat((Vector3i)arg2) → None
Repeat the packing given number of times in each dimension. Periodicity is retained, cellSize
changes. Raises exception for non-periodic packing.

cellSize
Size of periodic cell; is Vector3(0,0,0) if not periodic. (Change this property only if you know
what you’re doing).

center() → Vector3
Return coordinates of the bounding box center.

dim() → Vector3
Return dimensions of the packing in terms of aabb(), as a 3-tuple.

fromList((list)arg2) → None
Make packing from given list, same format as for constructor. Discards current data.

fromList((SpherePack)arg1, (object)centers, (object)radii) → None : Make pack-
ing from given list, same format as for constructor. Discards current data.

fromSimulation() → None
Make packing corresponding to the current simulation. Discards current data.

getClumps() → tuple
Return lists of sphere ids sorted by clumps they belong to. The return value is (stan-
dalones,[clump1,clump2,…]), where each item is list of id’s of spheres.

hasClumps() → bool
Whether this object contains clumps.

isPeriodic
was the packing generated in periodic boundaries?

load((str)fileName) → None
Load packing from external text file (current data will be discarded).

makeCloud([(Vector3)minCorner=Vector3(0, 0, 0)[, (Vector3)maxCorner=Vector3(0, 0, 0)[,
(float)rMean=-1[, (float)rRelFuzz=0[, (int)num=-1[, (bool)periodic=False[,
(float)porosity=0.65[, (object)psdSizes=[][, (object)psdCumm=[][,
(bool)distributeMass=False[, (int)seed=0[, (Matrix3)hSize=Matrix3(0, 0, 0,
0, 0, 0, 0, 0, 0)]]]]]]]]]]]]) → int

Create random loose packing enclosed in a parallelepiped (also works in 2D if min-
Corner[k]=maxCorner[k] for one coordinate). Sphere radius distribution can be specified
using one of the following ways:

404 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

1.rMean, rRelFuzz and num gives uniform radius distribution in rMean×(1 ± rRelFuzz).
Less than num spheres can be generated if it is too high.

2.rRelFuzz, num and (optional) porosity, which estimates mean radius so that porosity is
attained at the end. rMean must be less than 0 (default). porosity is only an initial guess
for the generation algorithm, which will retry with higher porosity until the prescibed
num is obtained.

3.psdSizes and psdCumm, two arrays specifying points of the particle size distribution func-
tion. As many spheres as possible are generated.

4.psdSizes, psdCumm, num, and (optional) porosity, like above but if num is not obtained,
psdSizes will be scaled down uniformly, until num is obtained (see appliedPsdScaling).

By default (with distributeMass==False), the distribution is applied to particle radii. The
usual sense of “particle size distribution” is the distribution of mass fraction (rather than
particle count); this can be achieved with distributeMass=True.
If num is defined, then sizes generation is deterministic, giving the best fit of target distribu-
tion. It enables spheres placement in descending size order, thus giving lower porosity than
the random generation.

Parameters
• minCorner (Vector3) – lower corner of an axis-aligned box
• maxCorner (Vector3) – upper corner of an axis-aligned box
• hSize (Matrix3) – base vectors of a generalized box (arbitrary parallelepiped,

typically Cell::hSize), superseeds minCorner and maxCorner if defined. For
periodic boundaries only.

• rMean (float) – mean radius or spheres
• rRelFuzz (float) – dispersion of radius relative to rMean
• num (int) – number of spheres to be generated. If negavite (default), generate

as many as possible with stochastic sizes, ending after a fixed number of tries to
place the sphere in space, else generate exactly num spheres with deterministic
size distribution.

• periodic (bool) – whether the packing to be generated should be periodic
• porosity (float) – initial guess for the iterative generation procedure (if

num>1). The algorithm will be retrying until the number of generated spheres
is num. The first iteration tries with the provided porosity, but next itera-
tions increase it if necessary (hence an initialy high porosity can speed-up the
algorithm). If psdSizes is not defined, rRelFuzz (z) and num (N) are used so
that the porosity given (ρ) is approximately achieved at the end of generation,
rm = 3

√
V(1−ρ)

4
3
π(1+z2)N

. The default is ρ=0.5. The optimal value depends on
rRelFuzz or psdSizes.

• psdSizes – sieve sizes (particle diameters) when particle size distribution
(PSD) is specified

• psdCumm – cummulative fractions of particle sizes given by psdSizes; must
be the same length as psdSizes and should be non-decreasing

• distributeMass (bool) – if True, given distribution will be used to distribute
sphere’s mass rather than radius of them.

• seed – number used to initialize the random number generator.
Returns number of created spheres, which can be lower than num depending on the

method used.
makeClumpCloud((Vector3)minCorner, (Vector3)maxCorner, (object)clumps[,

(bool)periodic=False[, (int)num=-1[, (int)seed=0]]]) → int
Create random loose packing of clumps within box given by minCorner and maxCorner.

8.5. yade.pack module 405

http://en.wikipedia.org/wiki/Particle_size_distribution

Yade Documentation, Release 1.07.0

Clumps are selected with equal probability. At most num clumps will be positioned if num is
positive; otherwise, as many clumps as possible will be put in space, until maximum number
of attempts to place a new clump randomly is attained. :param seed: number used to initialize
the random number generator.

particleSD((Vector3)minCorner, (Vector3)maxCorner, (float)rMean, (bool)periodic=False,
(str)name, (int)numSph[, (object)radii=[][, (object)passing=[][,
(bool)passingIsNotPercentageButCount=False[, (int)seed=0]]]]) → int

Create random packing enclosed in box given by minCorner and maxCorner, containing num-
Sph spheres. Returns number of created spheres, which can be < num if the packing is too
tight. The computation is done according to the given psd.

particleSD2((object)radii, (object)passing, (int)numSph[, (bool)periodic=False[,
(float)cloudPorosity=0.8[, (int)seed=0]]]) → int

Create random packing following the given particle size distribution (radii and volume/mass
passing for each fraction) and total number of particles numSph. The cloud size (periodic or
aperiodic) is computed from the PSD and is always cubic.

particleSD_2d((Vector2)minCorner, (Vector2)maxCorner, (float)rMean,
(bool)periodic=False, (str)name, (int)numSph[, (object)radii=[][, (ob-
ject)passing=[][, (bool)passingIsNotPercentageButCount=False[, (int)seed=0
]]]]) → int

Create random packing on XY plane, defined by minCorner and maxCorner, containing num-
Sph spheres. Returns number of created spheres, which can be < num if the packing is too
tight. The computation is done according to the given psd.

psd([(int)bins=50[, (bool)mass=True]]) → tuple
Return particle size distribution of the packing. :param int bins: number of bins between
minimum and maximum diameter :param mass: Compute relative mass rather than relative
particle count for each bin. Corresponds to distributeMass parameter for makeCloud. :returns:
tuple of (cumm,edges), where cumm are cummulative fractions for respective diameters and
edges are those diameter values. Dimension of both arrays is equal to bins+1.

relDensity() → float
Relative packing density, measured as sum of spheres’ volumes / aabb volume. (Sphere
overlaps are ignored.)

rotate((Vector3)axis, (float)angle) → None
Rotate all spheres around packing center (in terms of aabb()), given axis and angle of the
rotation.

save((str)fileName) → None
Save packing to external text file (will be overwritten).

scale((float)arg2) → None
Scale the packing around its center (in terms of aabb()) by given factor (may be negative).

toList() → list
Return packing data as python list.

toSimulation()

Append spheres directly to the simulation. In addition calling O.bodies.append,
this method also appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import *
>>> sp=pack.SpherePack()

Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20)
20

406 Chapter 8. Yade modules

http://en.wikipedia.org/wiki/Particle_size_distribution

Yade Documentation, Release 1.07.0

Virgin simulation is aperiodic:

>>> O.reset()
>>> O.periodic
False

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation (this
could be avoided by explicitly passing “hSize=O.cell.hSize” as an argument):

>>> O.periodic
True
>>> O.cell.refSize
Vector3(5,5,5)

translate((Vector3)arg2) → None
Translate all spheres by given vector.

class yade._packSpheres.SpherePackIterator((object)arg1, (SpherePackIterator)arg2)

__init__((SpherePackIterator)arg2) → None
next() → tuple

Spatial predicates for volumes (defined analytically or by triangulation).
class yade._packPredicates.Predicate((object)arg1)

aabb() → tuple
aabb((Predicate)arg1) → None

center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateBoolean(inherits Predicate)
Boolean operation on 2 predicates (abstract class)
A

B

__init__()
Raises an exception This class cannot be instantiated from Python

aabb() → tuple
aabb((Predicate)arg1) → None

center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateDifference((object)arg1, (object)arg2, (object)arg3)
Difference (conjunction with negative predicate) of 2 predicates. A point has to be inside the first
and outside the second predicate. Can be constructed using the - operator on predicates: pred1
- pred2.
A

B

__init__((object)arg2, (object)arg3) → None
aabb() → tuple

aabb((Predicate)arg1) → None

8.5. yade.pack module 407

Yade Documentation, Release 1.07.0

center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateIntersection((object)arg1, (object)arg2, (object)arg3)
Intersection (conjunction) of 2 predicates. A point has to be inside both predicates. Can be
constructed using the & operator on predicates: pred1 & pred2.
A

B

__init__((object)arg2, (object)arg3) → None
aabb() → tuple

aabb((Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateSymmetricDifference((object)arg1, (object)arg2, (ob-
ject)arg3)

SymmetricDifference (exclusive disjunction) of 2 predicates. A point has to be in exactly one
predicate of the two. Can be constructed using the ^ operator on predicates: pred1 ^ pred2.
A

B

__init__((object)arg2, (object)arg3) → None
aabb() → tuple

aabb((Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateUnion((object)arg1, (object)arg2, (object)arg3)
Union (non-exclusive disjunction) of 2 predicates. A point has to be inside any of the two predicates
to be inside. Can be constructed using the | operator on predicates: pred1 | pred2.
A

B

__init__((object)arg2, (object)arg3) → None
aabb() → tuple

aabb((Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.inAlignedBox((object)arg1, (Vector3)minAABB, (Vec-
tor3)maxAABB)

Axis-aligned box predicate
__init__((Vector3)minAABB, (Vector3)maxAABB) → None

Ctor taking minumum and maximum points of the box (as 3-tuples).
aabb() → tuple

aabb((Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.inCylinder((object)arg1, (Vector3)centerBottom, (Vec-
tor3)centerTop, (float)radius)

Cylinder predicate

408 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

__init__((Vector3)centerBottom, (Vector3)centerTop, (float)radius) → None
Ctor taking centers of the lateral walls (as 3-tuples) and radius.

aabb() → tuple
aabb((Predicate)arg1) → None

center() → Vector3
dim() → Vector3

class yade._packPredicates.inEllipsoid((object)arg1, (Vector3)centerPoint, (Vector3)abc)
Ellipsoid predicate
__init__((Vector3)centerPoint, (Vector3)abc) → None

Ctor taking center of the ellipsoid (3-tuple) and its 3 radii (3-tuple).
aabb() → tuple

aabb((Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.inGtsSurface((object)arg1, (object)surface[, (bool)noPad])
GTS surface predicate

__init__((object)surface[, (bool)noPad]) → None
Ctor taking a gts.Surface() instance, which must not be modified during instance lifetime.
The optional noPad can disable padding (if set to True), which speeds up calls several times.
Note: padding checks inclusion of 6 points along +- cardinal directions in the pad distance
from given point, which is not exact.

aabb() → tuple
aabb((Predicate)arg1) → None

center() → Vector3
dim() → Vector3
surf

The associated gts.Surface object.
class yade._packPredicates.inHyperboloid((object)arg1, (Vector3)centerBottom, (Vec-

tor3)centerTop, (float)radius, (float)skirt)
Hyperboloid predicate
__init__((Vector3)centerBottom, (Vector3)centerTop, (float)radius, (float)skirt) → None

Ctor taking centers of the lateral walls (as 3-tuples), radius at bases and skirt (middle radius).
aabb() → tuple

aabb((Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.inParallelepiped((object)arg1, (Vector3)o, (Vector3)a, (Vec-
tor3)b, (Vector3)c)

Parallelepiped predicate
__init__((Vector3)o, (Vector3)a, (Vector3)b, (Vector3)c) → None

Ctor taking four points: o (for origin) and then a, b, c which define endpoints of 3 respective
edges from o.

aabb() → tuple
aabb((Predicate)arg1) → None

center() → Vector3
dim() → Vector3

class yade._packPredicates.inSphere((object)arg1, (Vector3)center, (float)radius)
Sphere predicate.

8.5. yade.pack module 409

Yade Documentation, Release 1.07.0

__init__((Vector3)center, (float)radius) → None
Ctor taking center (as a 3-tuple) and radius

aabb() → tuple
aabb((Predicate)arg1) → None

center() → Vector3
dim() → Vector3

class yade._packPredicates.notInNotch((object)arg1, (Vector3)centerPoint, (Vector3)edge,
(Vector3)normal, (float)aperture)

Outside of infinite, rectangle-shaped notch predicate
__init__((Vector3)centerPoint, (Vector3)edge, (Vector3)normal, (float)aperture) → None

Ctor taking point in the symmetry plane, vector pointing along the edge, plane normal and
aperture size. The side inside the notch is edge×normal. Normal is made perpendicular to
the edge. All vectors are normalized at construction time.

aabb() → tuple
aabb((Predicate)arg1) → None

center() → Vector3
dim() → Vector3

Computation of oriented bounding box for cloud of points.
yade._packObb.cloudBestFitOBB((tuple)arg1) → tuple

Return (Vector3 center, Vector3 halfSize, Quaternion orientation) of best-fit oriented bounding-box
for given tuple of points (uses brute-force velome minimization, do not use for very large clouds).

8.6 yade.plot module

Module containing utility functions for plotting inside yade. See examples/simple-scene/simple-scene-
plot.py or examples/concrete/uniax.py for example of usage.
yade.plot.data = {‘force’: [nan, nan, 1000.0, nan, nan, 1000.0], ‘sigma’: [12, nan, nan, 12, nan, nan], ‘eps’: [0.0001, 0.001, nan, 0.0001, 0.001, nan]}

Global dictionary containing all data values, common for all plots, in the form {‘name’:[value,...],...}.
Data should be added using plot.addData function. All [value,...] columns have the same length,
they are padded with NaN if unspecified.

yade.plot.plots = {‘i’: (‘t’,), ‘i ‘: (‘z1’, ‘v1’)}
dictionary x-name -> (yspec,...), where yspec is either y-name or (y-name,’line-specification’). If
(yspec,...) is None, then the plot has meaning of image, which will be taken from respective
field of plot.imgData.

yade.plot.labels = {}
Dictionary converting names in data to human-readable names (TeX names, for instance); if a
variable is not specified, it is left untranslated.

yade.plot.live = False
Enable/disable live plot updating. Disabled by default for now, since it has a few rough edges.

yade.plot.liveInterval = 1
Interval for the live plot updating, in seconds.

yade.plot.autozoom = True
Enable/disable automatic plot rezooming after data update.

yade.plot.plot(noShow=False, subPlots=True)
Do the actual plot, which is either shown on screen (and nothing is returned: if noShow is False
- note that your yade compilation should present qt4 feature so that figures can be displayed) or,
if noShow is True, returned as matplotlib’s Figure object or list of them.
You can use

410 Chapter 8. Yade modules

https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 1.07.0

>>> from yade import plot
>>> plot.resetData()
>>> plot.plots={'foo':('bar',)}
>>> plot.plot(noShow=True).savefig('someFile.pdf')
>>> import os
>>> os.path.exists('someFile.pdf')
True

to save the figure to file automatically.

Note: For backwards compatibility reasons, noShow option will return list of figures for multiple
figures but a single figure (rather than list with 1 element) if there is only 1 figure.

yade.plot.reset()
Reset all plot-related variables (data, plots, labels)

yade.plot.resetData()
Reset all plot data; keep plots and labels intact.

yade.plot.splitData()
Make all plots discontinuous at this point (adds nan’s to all data fields)

yade.plot.reverseData()
Reverse yade.plot.data order.
Useful for tension-compression test, where the initial (zero) state is loaded and, to make data
continuous, last part must end in the zero state.

yade.plot.addData(*d_in, **kw)
Add data from arguments name1=value1,name2=value2 to yade.plot.data. (the old
{‘name1’:value1,’name2’:value2} is deprecated, but still supported)
New data will be padded with nan’s, unspecified data will be nan (nan’s don’t appear in graphs).
This way, equal length of all data is assured so that they can be plotted one against any other.

>>> from yade import plot
>>> from pprint import pprint
>>> plot.resetData()
>>> plot.addData(a=1)
>>> plot.addData(b=2)
>>> plot.addData(a=3,b=4)
>>> pprint(plot.data)
{'a': [1, nan, 3], 'b': [nan, 2, 4]}

Some sequence types can be given to addData; they will be saved in synthesized columns for
individual components.

>>> plot.resetData()
>>> plot.addData(c=Vector3(5,6,7),d=Matrix3(8,9,10, 11,12,13, 14,15,16))
>>> pprint(plot.data)
{'c_x': [5.0],
'c_y': [6.0],
'c_z': [7.0],
'd_xx': [8.0],
'd_xy': [9.0],
'd_xz': [10.0],
'd_yy': [12.0],
'd_yz': [11.0],
'd_zx': [14.0],
'd_zy': [15.0],
'd_zz': [16.0]}

yade.plot.addAutoData()
Add data by evaluating contents of plot.plots. Expressions rasing exceptions will be handled
gracefully, but warning is printed for each.

8.6. yade.plot module 411

Yade Documentation, Release 1.07.0

>>> from yade import plot
>>> from pprint import pprint
>>> O.reset()
>>> plot.resetData()
>>> plot.plots={'O.iter':('O.time',None,'numParticles=len(O.bodies)')}
>>> plot.addAutoData()
>>> pprint(plot.data)
{'O.iter': [0], 'O.time': [0.0], 'numParticles': [0]}

Note that each item in plot.plots can be
•an expression to be evaluated (using the eval builtin);
•name=expression string, where name will appear as label in plots, and expression will be
evaluated each time;

•a dictionary-like object – current keys are labels of plots and current values are added to
plot.data. The contents of the dictionary can change over time, in which case new lines will
be created as necessary.

A simple simulation with plot can be written in the following way; note how the energy plot is
specified.

>>> from yade import plot, utils
>>> plot.plots={'i=O.iter':(O.energy,None,'total energy=O.energy.total()')}
>>> # we create a simple simulation with one ball falling down
>>> plot.resetData()
>>> O.bodies.append(utils.sphere((0,0,0),1))
0
>>> O.dt=utils.PWaveTimeStep()
>>> O.engines=[
... ForceResetter(),
... GravityEngine(gravity=(0,0,-10),warnOnce=False),
... NewtonIntegrator(damping=.4,kinSplit=True),
... # get data required by plots at every step
... PyRunner(command='yade.plot.addAutoData()',iterPeriod=1,initRun=True)
...]
>>> O.trackEnergy=True
>>> O.run(2,True)
>>> pprint(plot.data)
{'gravWork': [0.0, -25.13274...],
'i': [0, 1],
'kinRot': [0.0, 0.0],
'kinTrans': [0.0, 7.5398...],
'nonviscDamp': [0.0, 10.0530...],
'total energy': [0.0, -7.5398...]}

yade.plot.saveGnuplot(baseName, term=’wxt’, extension=None, timestamp=False, com-
ment=None, title=None, varData=False)

Save data added with plot.addData into (compressed) file and create .gnuplot file that attempts
to mimick plots specified with plot.plots.

Parameters
• baseName – used for creating baseName.gnuplot (command file for gnuplot),

associated baseName.data.bz2 (data) and output files (if applicable) in the form
baseName.[plot number].extension

• term – specify the gnuplot terminal; defaults to x11, in which case gnuplot will
draw persistent windows to screen and terminate; other useful terminals are png,
cairopdf and so on

• extension – extension for baseName defaults to terminal name; fine for png for
example; if you use cairopdf, you should also say extension='pdf' however

• timestamp (bool) – append numeric time to the basename

412 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

• varData (bool) – whether file to plot will be declared as variable or be in-place
in the plot expression

• comment – a user comment (may be multiline) that will be embedded in the
control file

Returns name of the gnuplot file created.
yade.plot.saveDataTxt(fileName, vars=None)

Save plot data into a (optionally compressed) text file. The first line contains a comment (starting
with #) giving variable name for each of the columns. This format is suitable for being loaded for
further processing (outside yade) with numpy.genfromtxt function, which recognizes those variable
names (creating numpy array with named entries) and handles decompression transparently.

>>> from yade import plot
>>> from pprint import pprint
>>> plot.reset()
>>> plot.addData(a=1,b=11,c=21,d=31) # add some data here
>>> plot.addData(a=2,b=12,c=22,d=32)
>>> pprint(plot.data)
{'a': [1, 2], 'b': [11, 12], 'c': [21, 22], 'd': [31, 32]}
>>> plot.saveDataTxt('/tmp/dataFile.txt.bz2',vars=('a','b','c'))
>>> import numpy
>>> d=numpy.genfromtxt('/tmp/dataFile.txt.bz2',dtype=None,names=True)
>>> d['a']
array([1, 2])
>>> d['b']
array([11, 12])

Parameters
• fileName – file to save data to; if it ends with .bz2 / .gz, the file will be

compressed using bzip2 / gzip.
• vars – Sequence (tuple/list/set) of variable names to be saved. If None (default),

all variables in plot.plot are saved.

yade.plot.savePlotSequence(fileBase, stride=1, imgRatio=(5, 7), title=None, titleFrames=20,
lastFrames=30)

Save sequence of plots, each plot corresponding to one line in history. It is especially meant to be
used for utils.makeVideo.

Parameters
• stride – only consider every stride-th line of history (default creates one frame

per each line)
• title – Create title frame, where lines of title are separated with newlines (\n)

and optional subtitle is separated from title by double newline.
• titleFrames (int) – Create this number of frames with title (by repeating its

filename), determines how long the title will stand in the movie.
• lastFrames (int) – Repeat the last frame this number of times, so that the

movie does not end abruptly.
Returns List of filenames with consecutive frames.

8.7 yade.polyhedra_utils module

Auxiliary functions for polyhedra
yade.polyhedra_utils.fillBox(mincoord, maxcoord, material, sizemin=[1, 1, 1], sizemax=[1,

1, 1], ratio=[0, 0, 0], seed=None, mask=1)
fill box [mincoord, maxcoord] by non-overlaping polyhedrons with random geometry and sizes

8.7. yade.polyhedra_utils module 413

Yade Documentation, Release 1.07.0

within the range (uniformly distributed) :param Vector3 mincoord: first corner :param Vector3
maxcoord: second corner :param Vector3 sizemin: minimal size of bodies :param Vector3 sizemax:
maximal size of bodies :param Vector3 ratio: scaling ratio :param float seed: random seed

yade.polyhedra_utils.polyhedra(material, size=Vector3(1,1,1), seed=None, v=[], mask=1,
fixed=False, color=[-1, -1, -1])

create polyhedra, one can specify vertices directly, or leave it empty for random shape.
Parameters

• material (Material) – material of new body
• size (Vector3) – size of new body (see Polyhedra docs)
• seed (float) – seed for random operations
• v ([Vector3]) – list of body vertices (see Polyhedra docs)

yade.polyhedra_utils.polyhedralBall(radius, N, material, center, mask=1)
creates polyhedra having N vertices and resembling sphere

Parameters
• radius (float) – ball radius
• N (int) – number of vertices
• material (Material) – material of new body
• center (Vector3) – center of the new body

yade.polyhedra_utils.randomColor(seed=None)
yade._polyhedra_utils.MaxCoord((Shape)arg1, (State)arg2) → Vector3

returns max coordinates
yade._polyhedra_utils.MinCoord((Shape)arg1, (State)arg2) → Vector3

returns min coordinates
yade._polyhedra_utils.PWaveTimeStep() → float

Get timestep accoring to the velocity of P-Wave propagation; computed from sphere radii, rigidities
and masses.

yade._polyhedra_utils.PrintPolyhedra((Shape)arg1) → None
Print list of vertices sorted according to polyhedrons facets.

yade._polyhedra_utils.PrintPolyhedraActualPos((Shape)arg1, (State)arg2) → None
Print list of vertices sorted according to polyhedrons facets.

yade._polyhedra_utils.SieveCurve() → None
save sieve curve coordinates into file

yade._polyhedra_utils.SieveSize((Shape)arg1) → float
returns approximate sieve size of polyhedron

yade._polyhedra_utils.SizeOfPolyhedra((Shape)arg1) → Vector3
returns max, middle an min size in perpendicular directions

yade._polyhedra_utils.SizeRatio() → None
save sizes of polyhedra into file

yade._polyhedra_utils.Split((Body)arg1, (Vector3)arg2) → None
split polyhedron perpendicularly to given direction direction

yade._polyhedra_utils.convexHull((object)arg1) → bool
yade._polyhedra_utils.do_Polyhedras_Intersect((Shape)arg1, (Shape)arg2, (State)arg3,

(State)arg4) → bool
check polyhedras intersection

yade._polyhedra_utils.fillBox_cpp((Vector3)arg1, (Vector3)arg2, (Vector3)arg3, (Vec-
tor3)arg4, (Vector3)arg5, (int)arg6, (Material)arg7) →
object

Generate non-overlaping polyhedrons in box

414 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

8.8 yade.post2d module

Module for 2d postprocessing, containing classes to project points from 3d to 2d in various ways, providing
basic but flexible framework for extracting arbitrary scalar values from bodies/interactions and plotting
the results. There are 2 basic components: flatteners and extractors.
The algorithms operate on bodies (default) or interactions, depending on the intr parameter of
post2d.data.

8.8.1 Flatteners

Instance of classes that convert 3d (model) coordinates to 2d (plot) coordinates. Their interface is defined
by the post2d.Flatten class (__call__, planar, normal).

8.8.2 Extractors

Callable objects returning scalar or vector value, given a body/interaction object. If a 3d vector is
returned, Flattener.planar is called, which should return only in-plane components of the vector.

8.8.3 Example

This example can be found in examples/concrete/uniax-post.py

from yade import post2d
import pylab # the matlab-like interface of matplotlib

O.load('/tmp/uniax-tension.xml.bz2')

flattener that project to the xz plane
flattener=post2d.AxisFlatten(useRef=False,axis=1)
return scalar given a Body instance
extractDmg=lambda b: b.state.normDmg
will call flattener.planar implicitly
the same as: extractVelocity=lambda b: flattener.planar(b,b.state.vel)
extractVelocity=lambda b: b.state.vel

create new figure
pylab.figure()
plot raw damage
post2d.plot(post2d.data(extractDmg,flattener))

plot smooth damage into new figure
pylab.figure(); ax,map=post2d.plot(post2d.data(extractDmg,flattener,stDev=2e-3))
show color scale
pylab.colorbar(map,orientation='horizontal')

raw velocity (vector field) plot
pylab.figure(); post2d.plot(post2d.data(extractVelocity,flattener))

smooth velocity plot; data are sampled at regular grid
pylab.figure(); ax,map=post2d.plot(post2d.data(extractVelocity,flattener,stDev=1e-3))
save last (current) figure to file
pylab.gcf().savefig('/tmp/foo.png')

show the figures
pylab.show()

class yade.post2d.AxisFlatten(inherits Flatten)

8.8. yade.post2d module 415

Yade Documentation, Release 1.07.0

__init__()
:param bool useRef: use reference positions rather than actual positions (only meaningful
when operating on Bodies) :param {0,1,2} axis: axis normal to the plane; the return value
will be simply position with this component dropped.

normal()

planar()

class yade.post2d.CylinderFlatten(inherits Flatten)
Class for converting 3d point to 2d based on projection onto plane from circle. The y-axis in the
projection corresponds to the rotation axis; the x-axis is distance form the axis.
__init__()

:param useRef: (bool) use reference positions rather than actual positions :param axis: axis
of the cylinder, �{0,1,2}

normal()

planar()

class yade.post2d.Flatten
Abstract class for converting 3d point into 2d. Used by post2d.data2d.
normal()

Given position and vector value, return lenght of the vector normal to the flat plane.
planar()

Given position and vector value, project the vector value to the flat plane and return its 2
in-plane components.

class yade.post2d.HelixFlatten(inherits Flatten)
Class converting 3d point to 2d based on projection from helix. The y-axis in the projection
corresponds to the rotation axis
__init__()

:param bool useRef: use reference positions rather than actual positions :param (ϑmin,ϑmax)
thetaRange: bodies outside this range will be discarded :param float dH_dTheta: inclination
of the spiral (per radian) :param {0,1,2} axis: axis of rotation of the spiral :param float
periodStart: height of the spiral for zero angle

normal()

planar()

yade.post2d.data(extractor, flattener, intr=False, onlyDynamic=True, stDev=None, relThresh-
old=3.0, perArea=0, div=(50, 50), margin=(0, 0), radius=1)

Filter all bodies/interactions, project them to 2d and extract required scalar value; return either
discrete array of positions and values, or smoothed data, depending on whether the stDev value is
specified.
The intr parameter determines whether we operate on bodies or interactions; the extractor pro-
vided should expect to receive body/interaction.

Parameters
• extractor (callable) – receives Body (or Interaction, if intr is True) in-

stance, should return scalar, a 2-tuple (vector fields) or None (to skip that
body/interaction)

• flattener (callable) – post2d.Flatten instance, receiving body/interaction, re-
turns its 2d coordinates or None (to skip that body/interaction)

• intr (bool) – operate on interactions rather than bodies
• onlyDynamic (bool) – skip all non-dynamic bodies
• stDev (float/None) – standard deviation for averaging, enables smoothing; None

(default) means raw mode, where discrete points are returned

416 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

• relThreshold (float) – threshold for the gaussian weight function relative to
stDev (smooth mode only)

• perArea (int) – if 1, compute weightedSum/weightedArea rather than weighted
average (weightedSum/sumWeights); the first is useful to compute average stress;
if 2, compute averages on subdivision elements, not using weight function

• div ((int,int)) – number of cells for the gaussian grid (smooth mode only)
• margin ((float,float)) – x,y margins around bounding box for data (smooth

mode only)
• radius (float/callable) – Fallback value for radius (for raw plotting) for non-

spherical bodies or interactions; if a callable, receives body/interaction and re-
turns radius

Returns dictionary
Returned dictionary always containing keys ‘type’ (one of
‘rawScalar’,’rawVector’,’smoothScalar’,’smoothVector’, depending on value of smooth and on
return value from extractor), ‘x’, ‘y’, ‘bbox’.
Raw data further contains ‘radii’.
Scalar fields contain ‘val’ (value from extractor), vector fields have ‘valX’ and ‘valY’ (2 components
returned by the extractor).

yade.post2d.plot(data, axes=None, alpha=0.5, clabel=True, cbar=False, aspect=’equal’, **kw)
Given output from post2d.data, plot the scalar as discrete or smooth plot.
For raw discrete data, plot filled circles with radii of particles, colored by the scalar value.
For smooth discrete data, plot image with optional contours and contour labels.
For vector data (raw or smooth), plot quiver (vector field), with arrows colored by the magnitude.

Parameters
• axes – matplotlib.axesinstance where the figure will be plotted; if None, will be

created from scratch.
• data – value returned by post2d.data
• clabel (bool) – show contour labels (smooth mode only), or annotate cells with

numbers inside (with perArea==2)
• cbar (bool) – show colorbar (equivalent to calling pylab.colorbar(mappable) on

the returned mappable)
Returns tuple of (axes,mappable); mappable can be used in further calls to py-

lab.colorbar.

8.9 yade.qt module

8.10 yade.timing module

Functions for accessing timing information stored in engines and functors.
See Timing section of the programmer’s manual, wiki page for some examples.
yade.timing.reset()

Zero all timing data.
yade.timing.stats()

Print summary table of timing information from engines and functors. Absolute times as well as
percentages are given. Sample output:

8.9. yade.qt module 417

http://yade-dem.org/index.php/Speed_profiling_using_TimingInfo_and_TimingDeltas_classes

Yade Documentation, Release 1.07.0

Name Count Time Rel. time

ForceResetter 102 2150us 0.02%
"collider" 5 64200us 0.60%
InteractionLoop 102 10571887us 98.49%
"combEngine" 102 8362us 0.08%
"newton" 102 73166us 0.68%
"cpmStateUpdater" 1 9605us 0.09%
PyRunner 1 136us 0.00%
"plotDataCollector" 1 291us 0.00%
TOTAL 10733564us 100.00%

sample output (compiled with -DCMAKE_CXX_FLAGS=”-DUSE_TIMING_DELTAS” op-
tion):

Name Count Time Rel. time

ForceResetter 102 2150us 0.02%
"collider" 5 64200us 0.60%
InteractionLoop 102 10571887us 98.49%
Ig2_Sphere_Sphere_ScGeom 1222186 1723168us 16.30%

Ig2_Sphere_Sphere_ScGeom 1222186 1723168us 100.00%
Ig2_Facet_Sphere_ScGeom 753 1157us 0.01%

Ig2_Facet_Sphere_ScGeom 753 1157us 100.00%
Ip2_CpmMat_CpmMat_CpmPhys 11712 26015us 0.25%

end of Ip2_CpmPhys 11712 26015us 100.00%
Ip2_FrictMat_CpmMat_FrictPhys 0 0us 0.00%
Law2_ScGeom_CpmPhys_Cpm 3583872 4819289us 45.59%

GO A 1194624 1423738us 29.54%
GO B 1194624 1801250us 37.38%
rest 1194624 1594300us 33.08%
TOTAL 3583872 4819289us 100.00%

Law2_ScGeom_FrictPhys_CundallStrack 0 0us 0.00%
"combEngine" 102 8362us 0.08%
"newton" 102 73166us 0.68%
"cpmStateUpdater" 1 9605us 0.09%
PyRunner 1 136us 0.00%
"plotDataCollector" 1 291us 0.00%
TOTAL 10733564us 100.00%

8.11 yade.utils module

Heap of functions that don’t (yet) fit anywhere else.
Devs: please DO NOT ADD more functions here, it is getting too crowded!
yade.utils.NormalRestitution2DampingRate(en)

Compute the normal damping rate as a function of the normal coefficient of restitution en. For
en ∈ ⟨0, 1⟩ damping rate equals

−
log en√
e2n + π2

yade.utils.SpherePWaveTimeStep(radius, density, young)
Compute P-wave critical timestep for a single (presumably representative) sphere, using formula
for P-Wave propagation speed ∆tc = r√

E/ρ
. If you want to compute minimum critical timestep

for all spheres in the simulation, use utils.PWaveTimeStep instead.

418 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

>>> SpherePWaveTimeStep(1e-3,2400,30e9)
2.8284271247461903e-07

class yade.utils.TableParamReader
Class for reading simulation parameters from text file.
Each parameter is represented by one column, each parameter set by one line. Colums are separated
by blanks (no quoting).
First non-empty line contains column titles (without quotes). You may use special column named
‘description’ to describe this parameter set; if such colum is absent, description will be built by
concatenating column names and corresponding values (param1=34,param2=12.22,param4=foo)

•from columns ending in ! (the ! is not included in the column name)
•from all columns, if no columns end in !.

Empty lines within the file are ignored (although counted); # starts comment till the end of line.
Number of blank-separated columns must be the same for all non-empty lines.
A special value = can be used instead of parameter value; value from the previous non-empty line
will be used instead (works recursively).
This class is used by utils.readParamsFromTable.
__init__()

Setup the reader class, read data into memory.
paramDict()

Return dictionary containing data from file given to constructor. Keys are line numbers (which
might be non-contiguous and refer to real line numbers that one can see in text editors), values
are dictionaries mapping parameter names to their values given in the file. The special value
‘=’ has already been interpreted, ! (bangs) (if any) were already removed from column titles,
description column has already been added (if absent).

class yade.utils.UnstructuredGrid
EXPERIMENTAL. Class representing triangulated FEM-like unstructured grid. It is used for
transfereing data from ad to YADE and external FEM program. The main purpose of this class is
to store information about individual grid vertices/nodes coords (since facets stores only coordinates
of vertices in local coords) and to avaluate and/or apply nodal forces from contact forces (from
actual contact force and contact point the force is distributed to nodes using linear approximation).
TODO rewrite to C++ TODO better docs

Parameters
• vertices (dict) – dict of {internal vertex label:vertex}, e.g.

{5:(0,0,0),22:(0,1,0),23:(1,0,0)}
• connectivityTable (dict) – dict of {internal element label:[indices of vertices]},

e.g. {88:[5,22,23]}
build()

getForcesOfNodes()
Computes forces for each vertex/node. The nodal force is computed from contact force and
contact point using linear approximation

resetForces()

setPositionsOfNodes()
Sets new position of nodes and also updates all elements in the simulation
:param [Vector3] newPoss: list of new positions

setup()
Sets new information to receiver
:param dict vertices: see constructor for explanation :param dict connectivityTable: see con-
structor for explanation :param bool toSimulation: if new information should be inserted to

8.11. yade.utils module 419

Yade Documentation, Release 1.07.0

Yade simulation (create new bodies or not) :param [[int]]|None bodies: list of list of bodies
indices to be appended as clumps (thus no contact detection is done within one body)

toSimulation()
Insert all elements to Yade simulation

updateElements()
Updates positions of all elements in the simulation

yade.utils.aabbDim(cutoff=0.0, centers=False)
Return dimensions of the axis-aligned bounding box, optionally with relative part cutoff cut away.

yade.utils.aabbExtrema2d(pts)
Return 2d bounding box for a sequence of 2-tuples.

yade.utils.aabbWalls(extrema=None, thickness=0, oversizeFactor=1.5, **kw)
Return 6 boxes that will wrap existing packing as walls from all sides; extrema are extremal points of
the Aabb of the packing (will be calculated if not specified) thickness is wall thickness (will be 1/10
of the X-dimension if not specified) Walls will be enlarged in their plane by oversizeFactor. returns
list of 6 wall Bodies enclosing the packing, in the order minX,maxX,minY,maxY,minZ,maxZ.

yade.utils.avgNumInteractions(cutoff=0.0, skipFree=False, considerClumps=False)
Return average numer of interactions per particle, also known as coordination number Z. This
number is defined as

Z = 2C/N

where C is number of contacts and N is number of particles. When clumps are present, number of
particles is the sum of standalone spheres plus the sum of clumps. Clumps are considered in the
calculation if cutoff != 0 or skipFree = True. If cutoff=0 (default) and skipFree=False (default)
one needs to set considerClumps=True to consider clumps in the calculation.
With skipFree, particles not contributing to stable state of the packing are skipped, following
equation (8) given in [Thornton2000]:

Zm =
2C−N1

N−N0 −N1

Parameters
• cutoff – cut some relative part of the sample’s bounding box away.
• skipFree – see above.
• considerClumps – also consider clumps if cutoff=0 and skipFree=False; for

further explanation see above.
yade.utils.box(center, extents, orientation=Quaternion((1, 0, 0), 0), dynamic=None,

fixed=False, wire=False, color=None, highlight=False, material=-1, mask=1)
Create box (cuboid) with given parameters.

Parameters extents (Vector3) – half-sizes along x,y,z axes
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.chainedCylinder(begin=Vector3(0, 0, 0), end=Vector3(1, 0, 0), radius=0.2,
dynamic=None, fixed=False, wire=False, color=None, high-
light=False, material=-1, mask=1)

Create and connect a chainedCylinder with given parameters. The shape generated by repeted
calls of this function is the Minkowski sum of polyline and sphere.

Parameters
• radius (Real) – radius of sphere in the Minkowski sum.
• begin (Vector3) – first point positioning the line in the Minkowski sum
• last (Vector3) – last point positioning the line in the Minkowski sum

420 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

In order to build a correct chain, last point of element of rank N must correspond to first point of
element of rank N+1 in the same chain (with some tolerance, since bounding boxes will be used to
create connections.

Returns Body object with the ChainedCylinder shape.
class yade.utils.clumpTemplate

Create a clump template by a list of relative radii and a list of relative positions. Both lists must
have the same length.

Parameters
• relRadii ([float,float,...]) – list of relative radii (minimum length = 2)
• relPositions ([Vector3,Vector3,...]) – list of relative positions (minimum length

= 2)
yade.utils.defaultMaterial()

Return default material, when creating bodies with utils.sphere and friends, material is unspecified
and there is no shared material defined yet. By default, this function returns:

.. code-block:: python

FrictMat(density=1e3,young=1e7,poisson=.3,frictionAngle=.5,label=’defaultMat’)

yade.utils.facet(vertices, dynamic=None, fixed=True, wire=True, color=None, high-
light=False, noBound=False, material=-1, mask=1, chain=-1)

Create facet with given parameters.
Parameters

• vertices ([Vector3,Vector3,Vector3]) – coordinates of vertices in the global co-
ordinate system.

• wire (bool) – if True, facets are shown as skeleton; otherwise facets are filled
• noBound (bool) – set Body.bounded
• color (Vector3-or-None) – color of the facet; random color will be assigned if

None.
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.fractionalBox(fraction=1.0, minMax=None)
retrurn (min,max) that is the original minMax box (or aabb of the whole simulation if not specified)
linearly scaled around its center to the fraction factor

yade.utils.gridConnection(id1, id2, radius, wire=False, color=None, highlight=False,
material=-1, mask=1, cellDist=None)

yade.utils.gridNode(center, radius, dynamic=None, fixed=False, wire=False, color=None, high-
light=False, material=-1)

yade.utils.loadVars(mark=None)
Load variables from utils.saveVars, which are saved inside the simulation. If mark==None, all save
variables are loaded. Otherwise only those with the mark passed.

yade.utils.makeVideo(frameSpec, out, renameNotOverwrite=True, fps=24, kbps=6000,
bps=None)

Create a video from external image files using mencoder. Two-pass encoding using the default
mencoder codec (mpeg4) is performed, running multi-threaded with number of threads equal to
number of OpenMP threads allocated for Yade.

Parameters
• frameSpec – wildcard | sequence of filenames. If list or tuple, filenames to be

encoded in given order; otherwise wildcard understood by mencoder’s mf:// URI
option (shell wildcards such as /tmp/snap-*.png or and printf-style pattern like
/tmp/snap-%05d.png)

• out (str) – file to save video into

8.11. yade.utils module 421

http://www.mplayerhq.hu

Yade Documentation, Release 1.07.0

• renameNotOverwrite (bool) – if True, existing same-named video file will have
-number appended; will be overwritten otherwise.

• fps (int) – Frames per second (-mf fps=…)
• kbps (int) – Bitrate (-lavcopts vbitrate=…) in kb/s

yade.utils.perpendicularArea(axis)
Return area perpendicular to given axis (0=x,1=y,2=z) generated by bodies for which the function
consider returns True (defaults to returning True always) and which is of the type Sphere.

yade.utils.plotDirections(aabb=(), mask=0, bins=20, numHist=True, noShow=False)
Plot 3 histograms for distribution of interaction directions, in yz,xz and xy planes and (optional
but default) histogram of number of interactions per body.

Returns If noShow is False, displays the figure and returns nothing. If noShow, the
figure object is returned without being displayed (works the same way as plot.plot).

yade.utils.plotNumInteractionsHistogram(cutoff=0.0)
Plot histogram with number of interactions per body, optionally cutting away cutoff relative axis-
aligned box from specimen margin.

yade.utils.psd(bins=5, mass=True, mask=-1)
Calculates particle size distribution.

Parameters
• bins (int) – number of bins
• mass (bool) – if true, the mass-PSD will be calculated
• mask (int) – Body.mask for the body

Returns
• binsSizes: list of bin’s sizes
• binsProc: how much material (in percents) are in the bin, cumulative
• binsSumCum: how much material (in units) are in the bin, cumulative
binsSizes, binsProc, binsSumCum

yade.utils.randomColor()
Return random Vector3 with each component in interval 0…1 (uniform distribution)

yade.utils.randomizeColors(onlyDynamic=False)
Assign random colors to Shape::color.
If onlyDynamic is true, only dynamic bodies will have the color changed.

yade.utils.readParamsFromTable(tableFileLine=None, noTableOk=True, unknownOk=False,
**kw)

Read parameters from a file and assign them to __builtin__ variables.
The format of the file is as follows (commens starting with # and empty lines allowed):

commented lines allowed anywhere
name1 name2 … # first non-blank line are column headings

empty line is OK, with or without comment
val1 val2 … # 1st parameter set
val2 val2 … # 2nd
…

Assigned tags (the description column is synthesized if absent,see utils.TableParamReader);
O.tags[’description’]=… # assigns the description column; might be synthe-
sized O.tags[’params’]=”name1=val1,name2=val2,…” # all explicitly assigned pa-
rameters O.tags[’defaultParams’]=”unassignedName1=defaultValue1,…” # parameters
that were left at their defaults O.tags[’d.id’]=O.tags[’id’]+’.’+O.tags[’description’]
O.tags[’id.d’]=O.tags[’description’]+’.’+O.tags[’id’]

All parameters (default as well as settable) are saved using utils.saveVars('table').

422 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

Parameters
• tableFile – text file (with one value per blank-separated columns)
• tableLine (int) – number of line where to get the values from
• noTableOk (bool) – if False, raise exception if the file cannot be open; use

default values otherwise
• unknownOk (bool) – do not raise exception if unknown column name is found

in the file, and assign it as well
Returns number of assigned parameters

yade.utils.replaceCollider(colliderEngine)
Replaces collider (Collider) engine with the engine supplied. Raises error if no collider is in engines.

yade.utils.runningInBatch()
Tell whether we are running inside the batch or separately.

yade.utils.saveVars(mark=’‘, loadNow=True, **kw)
Save passed variables into the simulation so that it can be recovered when the simulation is loaded
again.
For example, variables a, b and c are defined. To save them, use:

>>> saveVars('something',a=1,b=2,c=3)
>>> from yade.params.something import *
>>> a,b,c
(1, 2, 3)

those variables will be save in the .xml file, when the simulation itself is saved. To recover those
variables once the .xml is loaded again, use

>>> loadVars('something')

and they will be defined in the yade.params.mark module. The loadNow parameter calls
utils.loadVars after saving automatically.
If ‘something’ already exists, given variables will be inserted.

yade.utils.sphere(center, radius, dynamic=None, fixed=False, wire=False, color=None, high-
light=False, material=-1, mask=1)

Create sphere with given parameters; mass and inertia computed automatically.
Last assigned material is used by default (material = -1), and utils.defaultMaterial() will be used
if no material is defined at all.

Parameters
• center (Vector3) – center
• radius (float) – radius
• dynamic (float) – deprecated, see “fixed”
• fixed (float) – generate the body with all DOFs blocked?
• material –

specify Body.material; different types are accepted:
– int: O.materials[material] will be used; as a special case, if material==-

1 and there is no shared materials defined, utils.defaultMaterial() will be
assigned to O.materials[0]

– string: label of an existing material that will be used
– Material instance: this instance will be used
– callable: will be called without arguments; returned Material value will be

used (Material factory object, if you like)
• mask (int) – Body.mask for the body

8.11. yade.utils module 423

Yade Documentation, Release 1.07.0

• wire – display as wire sphere?
• highlight – highlight this body in the viewer?
• Vector3-or-None – body’s color, as normalized RGB; random color will be

assigned if None.
Returns A Body instance with desired characteristics.

Creating default shared material if none exists neither is given:

>>> O.reset()
>>> from yade import utils
>>> len(O.materials)
0
>>> s0=utils.sphere([2,0,0],1)
>>> len(O.materials)
1

Instance of material can be given:

>>> s1=utils.sphere([0,0,0],1,wire=False,color=(0,1,0),material=ElastMat(young=30e9,density=2e3))
>>> s1.shape.wire
False
>>> s1.shape.color
Vector3(0,1,0)
>>> s1.mat.density
2000.0

Material can be given by label:

>>> O.materials.append(FrictMat(young=10e9,poisson=.11,label='myMaterial'))
1
>>> s2=utils.sphere([0,0,2],1,material='myMaterial')
>>> s2.mat.label
'myMaterial'
>>> s2.mat.poisson
0.11

Finally, material can be a callable object (taking no arguments), which returns a Material instance.
Use this if you don’t call this function directly (for instance, through yade.pack.randomDensePack),
passing only 1 material parameter, but you don’t want material to be shared.
For instance, randomized material properties can be created like this:

>>> import random
>>> def matFactory(): return ElastMat(young=1e10*random.random(),density=1e3+1e3*random.random())
...
>>> s3=utils.sphere([0,2,0],1,material=matFactory)
>>> s4=utils.sphere([1,2,0],1,material=matFactory)

yade.utils.tetra(vertices, strictCheck=True, dynamic=True, fixed=False, wire=True,
color=None, highlight=False, noBound=False, material=-1, mask=1,
chain=-1)

Create tetrahedron with given parameters.
Parameters

• vertices ([Vector3,Vector3,Vector3,Vector3]) – coordinates of vertices in the
global coordinate system.

• strictCheck (bool) – checks vertices order, raise RuntimeError for negative vol-
ume

See utils.sphere‘s documentation for meaning of other parameters.

424 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

yade.utils.tetraPoly(vertices, strictCheck=True, dynamic=True, fixed=False, wire=True,
color=None, highlight=False, noBound=False, material=-1, mask=1,
chain=-1)

Create tetrahedron (actually simple Polyhedra) with given parameters.
Parameters vertices ([Vector3,Vector3,Vector3,Vector3]) – coordinates of vertices in

the global coordinate system.
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.trackPerfomance(updateTime=5)
Track perfomance of a simulation. (Experimental) Will create new thread to produce some plots.
Useful for track perfomance of long run simulations (in bath mode for example).

yade.utils.typedEngine(name)
Return first engine from current O.engines, identified by its type (as string). For example:

>>> from yade import utils
>>> O.engines=[InsertionSortCollider(),NewtonIntegrator(),GravityEngine()]
>>> utils.typedEngine("NewtonIntegrator") == O.engines[1]
True

yade.utils.uniaxialTestFeatures(filename=None, areaSections=10, axis=-1, distFactor=2.2,
**kw)

Get some data about the current packing useful for uniaxial test:
1.Find the dimensions that is the longest (uniaxial loading axis)
2.Find the minimum cross-section area of the specimen by examining several (areaSections)
sections perpendicular to axis, computing area of the convex hull for each one. This will work
also for non-prismatic specimen.

3.Find the bodies that are on the negative/positive boundary, to which the straining condition
should be applied.

Parameters
• filename – if given, spheres will be loaded from this file (ASCII format); if not,

current simulation will be used.
• areaSection (float) – number of section that will be used to estimate cross-

section
• axis (�{0,1,2}) – if given, force strained axis, rather than computing it from

predominant length
Returns dictionary with keys negIds, posIds, axis, area.

Warning: The function utils.approxSectionArea uses convex hull algorithm to find the area,
but the implementation is reported to be buggy (bot works in some cases). Always check this
number, or fix the convex hull algorithm (it is documented in the source, see py/_utils.cpp).

yade.utils.vmData()
Return memory usage data from Linux’s /proc/[pid]/status, line VmData.

yade.utils.voxelPorosityTriaxial(triax, resolution=200, offset=0)
Calculate the porosity of a sample, given the TriaxialCompressionEngine.
A function utils.voxelPorosity is invoked, with the volume of a box enclosed by TriaxialCompres-
sionEngine walls. The additional parameter offset allows using a smaller volume inside the box,
where each side of the volume is at offset distance from the walls. By this way it is possible to find
a more precise porosity of the sample, since at walls’ contact the porosity is usually reduced.
A recommended value of offset is bigger or equal to the average radius of spheres inside.
The value of resolution depends on size of spheres used. It can be calibrated by invoking voxel-
PorosityTriaxial with offset=0 and comparing the result with TriaxialCompressionEngine.porosity.
After calibration, the offset can be set to radius, or a bigger value, to get the result.

8.11. yade.utils module 425

https://github.com/yade/trunk/blob/master/py/_utils.cpp

Yade Documentation, Release 1.07.0

Parameters
• triax – the TriaxialCompressionEngine handle
• resolution – voxel grid resolution
• offset – offset distance

Returns the porosity of the sample inside given volume
Example invocation:

from yade import utils
rAvg=0.03
TriaxialTest(numberOfGrains=200,radiusMean=rAvg).load()
O.dt=-1
O.run(1000)
O.engines[4].porosity
0.44007807740143889
utils.voxelPorosityTriaxial(O.engines[4],200,0)
0.44055412500000002
utils.voxelPorosityTriaxial(O.engines[4],200,rAvg)
0.36798199999999998

yade.utils.waitIfBatch()
Block the simulation if running inside a batch. Typically used at the end of script so that it does
not finish prematurely in batch mode (the execution would be ended in such a case).

yade.utils.wall(position, axis, sense=0, color=None, material=-1, mask=1)
Return ready-made wall body.

Parameters
• position (float-or-Vector3) – center of the wall. If float, it is the position along

given axis, the other 2 components being zero
• axis (�{0,1,2}) – orientation of the wall normal (0,1,2) for x,y,z (sc. planes yz,

xz, xy)
• sense (�{-1,0,1}) – sense in which to interact (0: both, -1: negative, +1: positive;

see Wall)
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.xMirror(half)
Mirror a sequence of 2d points around the x axis (changing sign on the y coord). The sequence
should start up and then it will wrap from y downwards (or vice versa). If the last point’s x coord
is zero, it will not be duplicated.

yade._utils.PWaveTimeStep() → float
Get timestep accoring to the velocity of P-Wave propagation; computed from sphere radii, rigidities
and masses.

yade._utils.RayleighWaveTimeStep() → float
Determination of time step according to Rayleigh wave speed of force propagation.

yade._utils.TetrahedronCentralInertiaTensor((object)arg1) → Matrix3
TODO

yade._utils.TetrahedronInertiaTensor((object)arg1) → Matrix3
TODO

yade._utils.TetrahedronSignedVolume((object)arg1) → float
TODO

yade._utils.TetrahedronVolume((object)arg1) → float
TODO

yade._utils.TetrahedronWithLocalAxesPrincipal((Body)arg1) → Quaternion
TODO

426 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

yade._utils.aabbExtrema([(float)cutoff=0.0[, (bool)centers=False]]) → tuple
Return coordinates of box enclosing all bodies

Parameters
• centers (bool) – do not take sphere radii in account, only their centroids
• cutoff (float�〈0…1〉) – relative dimension by which the box will be cut away at

its boundaries.
Returns (lower corner, upper corner) as (Vector3,Vector3)

yade._utils.angularMomentum([(Vector3)origin=Vector3(0, 0, 0)]) → Vector3
TODO

yade._utils.approxSectionArea((float)arg1, (int)arg2) → float
Compute area of convex hull when when taking (swept) spheres crossing the plane at coord, per-
pendicular to axis.

yade._utils.bodyNumInteractionsHistogram([(tuple)aabb]) → tuple
yade._utils.bodyStressTensors() → list

Compute and return a table with per-particle stress tensors. Each tensor represents the average
stress in one particle, obtained from the contour integral of applied load as detailed below. This
definition is considering each sphere as a continuum. It can be considered exact in the context of
spheres at static equilibrium, interacting at contact points with negligible volume changes of the
solid phase (this last assumption is not restricting possible deformations and volume changes at
the packing scale).
Proof:
First, we remark the identity: σij = δikσkj = xi,kσkj = (xiσkj),k − xiσkj,k.
At equilibrium, the divergence of stress is null: σkj,k = 0. Consequently, after divergence theorem:
1
V

∫
V
σijdV = 1

V

∫
V
(xiσkj),kdV = 1

V

∫
∂V

xiσkjnkdS = 1
V

∑
b xbi f

b
j .

The last equality is implicitely based on the representation of external loads as Dirac distributions
whose zeros are the so-called contact points: 0-sized surfaces on which the contact forces are applied,
located at xi in the deformed configuration.
A weighted average of per-body stresses will give the average stress inside the solid phase. There is
a simple relation between the stress inside the solid phase and the stress in an equivalent continuum
in the absence of fluid pressure. For porosity n, the relation reads: σequ.

ij = (1− n)σsolid
ij .

yade._utils.calm([(int)mask=-1]) → None
Set translational and rotational velocities of all bodies to zero.

yade._utils.coordsAndDisplacements((int)axis[, (tuple)Aabb=()]) → tuple
Return tuple of 2 same-length lists for coordinates and displacements (coordinate minus reference
coordinate) along given axis (1st arg); if the Aabb=((x_min,y_min,z_min),(x_max,y_max,z_-
max)) box is given, only bodies within this box will be considered.

yade._utils.createInteraction((int)id1, (int)id2) → Interaction
Create interaction between given bodies by hand.
Current engines are searched for IGeomDispatcher and IPhysDispatcher (might be both hidden
in InteractionLoop). Geometry is created using force parameter of the geometry dispatcher,
wherefore the interaction will exist even if bodies do not spatially overlap and the functor would
return false under normal circumstances.

Warning: This function will very likely behave incorrectly for periodic simulations (though
it could be extended it to handle it farily easily).

yade._utils.fabricTensor([(bool)splitTensor=False[, (bool)revertSign=False[,
(float)thresholdForce=nan]]]) → tuple

Compute the fabric tensor of the periodic cell. The original paper can be found in [Satake1982].

8.11. yade.utils module 427

Yade Documentation, Release 1.07.0

Parameters
• splitTensor (bool) – split the fabric tensor into two parts related to the strong

and weak contact forces respectively.
• revertSign (bool) – it must be set to true if the contact law’s convention takes

compressive forces as positive.
• thresholdForce (Real) – if the fabric tensor is split into two parts, a threshold

value can be specified otherwise the mean contact force is considered by default.
It is worth to note that this value has a sign and the user needs to set it according
to the convention adopted for the contact law. To note that this value could be
set to zero if one wanted to make distinction between compressive and tensile
forces.

yade._utils.flipCell([(Matrix3)flip=Matrix3(0, 0, 0, 0, 0, 0, 0, 0, 0)]) → Matrix3
Flip periodic cell so that angles between R3 axes and transformed axes are as small as possible.
This function relies on the fact that periodic cell defines by repetition or its corners regular grid of
points in R3; however, all cells generating identical grid are equivalent and can be flipped one over
another. This necessiatates adjustment of Interaction.cellDist for interactions that cross boundary
and didn’t before (or vice versa), and re-initialization of collider. The flip argument can be used
to specify desired flip: integers, each column for one axis; if zero matrix, best fit (minimizing the
angles) is computed automatically.
In c++, this function is accessible as Shop::flipCell.

Warning: This function is currently broken and should not be used.

yade._utils.forcesOnCoordPlane((float)arg1, (int)arg2) → Vector3
yade._utils.forcesOnPlane((Vector3)planePt, (Vector3)normal) → Vector3

Find all interactions deriving from NormShearPhys that cross given plane and sum forces (both
normal and shear) on them.

Parameters
• planePt (Vector3) – a point on the plane
• normal (Vector3) – plane normal (will be normalized).

yade._utils.getBodyIdsContacts([(int)bodyID=0]) → list
Get a list of body-ids, which contacts the given body.

yade._utils.getCapillaryStress([(float)volume=0]) → Matrix3
Compute and return Love-Weber capillary stress tensor:

σ
cap
ij = 1

V

∑
b lbi f

cap,b
j , where the sum is over all interactions, with l the branch vector

(joining centers of the bodies) and fcap is the capillary force. V can be passed to the
function. If it is not, it will be equal to one in non-periodic cases, or equal to the volume of
the cell in periodic cases. Only the CapillaryPhys interaction type is supported presently.

yade._utils.getSpheresMass([(int)mask=-1]) → float
Compute the total mass of spheres in the simulation (might crash for now if dynamic bodies are
not spheres), mask parameter is considered

yade._utils.getSpheresVolume([(int)mask=-1]) → float
Compute the total volume of spheres in the simulation (might crash for now if dynamic bodies are
not spheres), mask parameter is considered

yade._utils.getStress([(float)volume=0]) → Matrix3
Compute and return Love-Weber stress tensor:

σij =
1
V

∑
b fbi l

b
j , where the sum is over all interactions, with f the contact force and l

the branch vector (joining centers of the bodies). Stress is negativ for repulsive contact
forces, i.e. compression. V can be passed to the function. If it is not, it will be equal to
one in non-periodic cases, or equal to the volume of the cell in periodic cases.

428 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

yade._utils.getViscoelasticFromSpheresInteraction((float)tc, (float)en, (float)es) → dict
Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision
problem:

kn =
m

t2c

(
π2 + (ln en)2

)
cn = −

2m

tc
ln en

kt =
2

7

m

t2c

(
π2 + (ln et)2

)
ct = −

2

7

m

tc
ln et

where kn, cn are normal elastic and viscous coefficients and kt, ct shear elastic and viscous coeffi-
cients. For details see [Pournin2001].

Parameters
• m (float) – sphere mass m
• tc (float) – collision time tc

• en (float) – normal restitution coefficient en
• es (float) – tangential restitution coefficient es

Returns dictionary with keys kn (the value of kn), cn (cn), kt (kt), ct (ct).

yade._utils.growParticle((int)bodyID, (float)multiplier[, (bool)updateMass=True]) → None
Change the size of a single sphere (to be implemented: single clump). If updateMass=True, then
the mass is updated.

yade._utils.growParticles((float)multiplier[, (bool)updateMass=True[,
(bool)dynamicOnly=True[, (int)discretization=15[,
(bool)integrateInertia=True]]]]) → None

Change the size of spheres and sphere clumps by the multiplier. If updateMass=True, then the mass
is updated. dynamicOnly=True is mandatory in many cases since in current implementation the
function would crash on the non-spherical and non-dynamic bodies (e.g. facets, boxes, etc.). For
clumps the masses and inertias are adapted automatically (for details of inertia tensor integration
scheme see clump()).

yade._utils.highlightNone() → None
Reset highlight on all bodies.

yade._utils.inscribedCircleCenter((Vector3)v1, (Vector3)v2, (Vector3)v3) → Vector3
Return center of inscribed circle for triangle given by its vertices v1, v2, v3.

yade._utils.interactionAnglesHistogram((int)axis[, (int)mask[, (int)bins[, (tuple)aabb]]])→ tuple
yade._utils.intrsOfEachBody() → list

returns list of lists of interactions of each body

yade._utils.kineticEnergy([(bool)findMaxId=False]) → object
Compute overall kinetic energy of the simulation as∑ 1

2

(
miv

2
i +ω(IωT)

)
.

For aspherical bodies, the inertia tensor I is transformed to global frame, before multiplied by ω,
therefore the value should be accurate.

8.11. yade.utils module 429

Yade Documentation, Release 1.07.0

yade._utils.maxOverlapRatio() → float
Return maximum overlap ration in interactions (with ScGeom) of two spheres. The ratio is com-
puted as uN

2(r1r2)/r1+r2
, where uN is the current overlap distance and r1, r2 are radii of the two

spheres in contact.
yade._utils.momentum() → Vector3

TODO
yade._utils.negPosExtremeIds((int)axis[, (float)distFactor]) → tuple

Return list of ids for spheres (only) that are on extremal ends of the specimen along given axis;
distFactor multiplies their radius so that sphere that do not touch the boundary coordinate can
also be returned.

yade._utils.normalShearStressTensors([(bool)compressionPositive=False[,
(bool)splitNormalTensor=False[,
(float)thresholdForce=nan]]]) → tuple

Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal
forces, the other by shear forces. The formulation can be found in [Thornton2000], eq. (3):

σij =
2

V

∑
RNninj +

2

V

∑
RTnitj

where V is the cell volume, R is “contact radius” (in our implementation, current distance between
particle centroids), n is the normal vector, t is a vector perpendicular to n, N and T are norms of
normal and shear forces.

Parameters
• splitNormalTensor (bool) – if true the function returns normal stress tensor

split into two parts according to the two subnetworks of strong an weak forces.
• thresholdForce (Real) – threshold value according to which the normal stress

tensor can be split (e.g. a zero value would make distinction between tensile and
compressive forces).

yade._utils.numIntrsOfEachBody() → list
returns list of number of interactions of each body

yade._utils.pointInsidePolygon((tuple)arg1, (object)arg2) → bool

yade._utils.porosity([(float)volume=-1]) → float
Compute packing poro sity V−Vs

V
where V is overall volume and Vs is volume of spheres.

Parameters volume (float) – overall volume which must be specified for aperiodic
simulations. For periodic simulations, current volume of the Cell is used.

yade._utils.ptInAABB((Vector3)arg1, (Vector3)arg2, (Vector3)arg3) → bool
Return True/False whether the point p is within box given by its min and max corners

yade._utils.scalarOnColorScale((float)arg1, (float)arg2, (float)arg3) → Vector3
yade._utils.setContactFriction((float)angleRad) → None

Modify the friction angle (in radians) inside the material classes and existing contacts. The friction
for non-dynamic bodies is not modified.

yade._utils.setNewVerticesOfFacet((Body)b, (Vector3)v1, (Vector3)v2, (Vector3)v3) → None
Sets new vertices (in global coordinates) to given facet.

yade._utils.setRefSe3() → None
Set reference positions and orientations of all bodies equal to their current positions and orienta-
tions.

yade._utils.shiftBodies((list)ids, (Vector3)shift) → float
Shifts bodies listed in ids without updating their velocities.

yade._utils.spiralProject((Vector3)pt, (float)dH_dTheta[, (int)axis=2[,
(float)periodStart=nan[, (float)theta0=0]]]) → tuple

430 Chapter 8. Yade modules

Yade Documentation, Release 1.07.0

yade._utils.sumFacetNormalForces((object)ids[, (int)axis=-1]) → float
Sum force magnitudes on given bodies (must have shape of the Facet type), considering only part
of forces perpendicular to each facet’s face; if axis has positive value, then the specified axis (0=x,
1=y, 2=z) will be used instead of facet’s normals.

yade._utils.sumForces((list)ids, (Vector3)direction) → float
Return summary force on bodies with given ids, projected on the direction vector.

yade._utils.sumTorques((list)ids, (Vector3)axis, (Vector3)axisPt) → float
Sum forces and torques on bodies given in ids with respect to axis specified by a point axisPt and
its direction axis.

yade._utils.totalForceInVolume() → tuple
Return summed forces on all interactions and average isotropic stiffness, as tuple (Vector3,float)

yade._utils.unbalancedForce([(bool)useMaxForce=False]) → float
Compute the ratio of mean (or maximum, if useMaxForce) summary force on bodies and mean force
magnitude on interactions. For perfectly static equilibrium, summary force on all bodies is zero
(since forces from interactions cancel out and induce no acceleration of particles); this ratio will tend
to zero as simulation stabilizes, though zero is never reached because of finite precision computation.
Sufficiently small value can be e.g. 1e-2 or smaller, depending on how much equilibrium it should
be.

yade._utils.voxelPorosity([(int)resolution=200[, (Vector3)start=Vector3(0, 0, 0)[, (Vec-
tor3)end=Vector3(0, 0, 0)]]]) → float

Compute packing porosity V−Vv

V
where V is a specified volume (from start to end) and Vv is volume

of voxels that fall inside any sphere. The calculation method is to divide whole volume into a dense
grid of voxels (at given resolution), and count the voxels that fall inside any of the spheres. This
method allows one to calculate porosity in any given sub-volume of a whole sample. It is properly
excluding part of a sphere that does not fall inside a specified volume.

Parameters
• resolution (int) – voxel grid resolution, values bigger than resolution=1600

require a 64 bit operating system, because more than 4GB of RAM is used, a
resolution=800 will use 500MB of RAM.

• start (Vector3) – start corner of the volume.
• end (Vector3) – end corner of the volume.

yade._utils.wireAll() → None
Set Shape::wire on all bodies to True, rendering them with wireframe only.

yade._utils.wireNoSpheres() → None
Set Shape::wire to True on non-spherical bodies (Facets, Walls).

yade._utils.wireNone() → None
Set Shape::wire on all bodies to False, rendering them as solids.

8.12 yade.ymport module

Import geometry from various formats (‘import’ is python keyword, hence the name ‘ymport’).
yade.ymport.gengeo(mntable, shift=Vector3(0, 0, 0), scale=1.0, **kw)

Imports geometry from LSMGenGeo library and creates spheres. Since 2012 the package is avail-
able in Debian/Ubuntu and known as python-demgengeo http://packages.qa.debian.org/p/python-
demgengeo.html

Parameters
mntable: mntable object, which creates by LSMGenGeo library, see example
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.

8.12. yade.ymport module 431

http://packages.qa.debian.org/p/python-demgengeo.html
http://packages.qa.debian.org/p/python-demgengeo.html

Yade Documentation, Release 1.07.0

**kw: (unused keyword arguments) is passed to utils.sphere
LSMGenGeo library allows one to create pack of spheres with given [Rmin:Rmax] with null stress
inside the specimen. Can be useful for Mining Rock simulation.
Example: examples/packs/packs.py, usage of LSMGenGeo library in exam-
ples/test/genCylLSM.py.

•https://answers.launchpad.net/esys-particle/+faq/877
•http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-
module.html

•https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
yade.ymport.gengeoFile(fileName=’file.geo’, shift=Vector3(0, 0, 0), scale=1.0, orienta-

tion=Quaternion((1, 0, 0), 0), **kw)
Imports geometry from LSMGenGeo .geo file and creates spheres. Since 2012 the package is avail-
able in Debian/Ubuntu and known as python-demgengeo http://packages.qa.debian.org/p/python-
demgengeo.html

Parameters
filename: string file which has 4 colums [x, y, z, radius].
shift: Vector3 Vector3(X,Y,Z) parameter moves the specimen.
scale: float factor scales the given data.
orientation: quaternion orientation of the imported geometry
**kw: (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
LSMGenGeo library allows one to create pack of spheres with given [Rmin:Rmax] with null stress
inside the specimen. Can be useful for Mining Rock simulation.
Example: examples/packs/packs.py, usage of LSMGenGeo library in exam-
ples/test/genCylLSM.py.

•https://answers.launchpad.net/esys-particle/+faq/877
•http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-
module.html

•https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
yade.ymport.gmsh(meshfile=’file.mesh’, shift=Vector3(0, 0, 0), scale=1.0, orienta-

tion=Quaternion((1, 0, 0), 0), **kw)
Imports geometry from mesh file and creates facets.

Parameters
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
orientation: quaternion orientation of the imported mesh
**kw: (unused keyword arguments) is passed to utils.facet

Returns list of facets forming the specimen.
mesh files can be easily created with GMSH. Example added to examples/regular-sphere-
pack/regular-sphere-pack.py
Additional examples of mesh-files can be downloaded from http://www-
roc.inria.fr/gamma/download/download.php

yade.ymport.gts(meshfile, shift=(0, 0, 0), scale=1.0, **kw)
Read given meshfile in gts format.

Parameters
meshfile: string name of the input file.

432 Chapter 8. Yade modules

https://github.com/yade/trunk/blob/master/examples/packs/packs.py
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
https://answers.launchpad.net/esys-particle/+faq/877
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
http://packages.qa.debian.org/p/python-demgengeo.html
http://packages.qa.debian.org/p/python-demgengeo.html
https://github.com/yade/trunk/blob/master/examples/packs/packs.py
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
https://answers.launchpad.net/esys-particle/+faq/877
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
http://www.geuz.org/gmsh/
https://github.com/yade/trunk/blob/master/examples/regular-sphere-pack/regular-sphere-pack.py
https://github.com/yade/trunk/blob/master/examples/regular-sphere-pack/regular-sphere-pack.py
http://www-roc.inria.fr/gamma/download/download.php
http://www-roc.inria.fr/gamma/download/download.php

Yade Documentation, Release 1.07.0

shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
**kw: (unused keyword arguments) is passed to utils.facet

Returns list of facets.
yade.ymport.iges(fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw)

Import triangular mesh from .igs file, return list of created facets.
Parameters

• fileName (string) – name of iges file
• shift ((float,float,float)|Vector3) – (X,Y,Z) parameter moves the specimen.
• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.facet
• returnConnectivityTable (bool) – if True, apart from facets returns also nodes

(list of (x,y,z) nodes coordinates) and elements (list of (id1,id2,id3) element nodes
ids). If False (default), returns only facets

yade.ymport.stl(file, dynamic=None, fixed=True, wire=True, color=None, highlight=False,
noBound=False, material=-1)

Import geometry from stl file, return list of created facets.
yade.ymport.text(fileName, shift=Vector3(0, 0, 0), scale=1.0, **kw)

Load sphere coordinates from file, create spheres, insert them to the simulation.
Parameters

• filename (string) – file which has 4 colums [x, y, z, radius].
• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.
• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
Lines starting with # are skipped

yade.ymport.textClumps(fileName, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Load clumps-members from file, insert them to the simulation.

Parameters
• filename (str) – file name
• format (str) – the name of output format. Supported x_y_z_r‘(default), ‘x_-

y_z_r_matId
• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.
• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
Lines starting with # are skipped

yade.ymport.textExt(fileName, format=’x_y_z_r’, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Load sphere coordinates from file in specific format, create spheres, insert them to the simulation.

Parameters
• filename (str) – file name
• format (str) – the name of output format. Supported x_y_z_r‘(default), ‘x_-

y_z_r_matId
• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.

8.12. yade.ymport module 433

Yade Documentation, Release 1.07.0

• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
Lines starting with # are skipped

yade.ymport.unv(fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw)
Import geometry from unv file, return list of created facets.

param string fileName name of unv file
param (float,float,float)|Vector3 shift (X,Y,Z) parameter moves the spec-

imen.
param float scale factor scales the given data.
param **kw (unused keyword arguments) is passed to utils.facet
param bool returnConnectivityTable if True, apart from facets returns

also nodes (list of (x,y,z) nodes coordinates) and elements (list of (id1,id2,id3)
element nodes ids). If False (default), returns only facets

unv files are mainly used for FEM analyses (are used by OOFEM and Abaqus), but triangular
elements can be imported as facets. These files cen be created e.g. with open-source free software
Salome.
Example: examples/test/unv-read/unvRead.py.

434 Chapter 8. Yade modules

http://www.oofem.org/
http://www.simulia.com/products/abaqus_fea.html
http://salome-platform.org
https://github.com/yade/trunk/blob/master/examples/test/unv-read/unvRead.py

Chapter 9

Acknowledging Yade

In order to let users cite Yade consistently in publications, we provide a list of bibliographic references
for the different parts of the documentation, as in the citation model pushed by CGAL. This way of
acknowledging Yade is also a way to make developments and documentation of Yade more attractive for
researchers, who are evaluated on the basis of citations of their work by others. We therefore kindly ask
users to cite Yade as accurately as possible in their papers. A more detailed discussion of the citation
model and its application to Yade can be found here.
If new developments are presented and explained in self-contained papers (at the end of a PhD, typically),
we will be glad to include them in the documentation and to reference them in the list below. Any other
substantial improvement is welcome and can be discussed in the yade-dev mailing list.

9.1 Citing the Yade Project as a whole (the lazy citation method)

If it is not possible to choose the right chapter (but please try), you may cite the documentation [yade:doc]
as a whole:
22. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C. Modenese,

L. Scholtès, L. Sibille, J. Stránský, and K. Thoeni, Yade Documentation (V. Šmilauer, ed.), The
Yade Project, 1st ed., 2010. http://yade-dem.org/doc/.

9.2 Citing chapters of Yade Documentation

The first edition of Yade documentation is seen as a collection with the three volumes (or “chapters”)
listed below, also provided as bibtex entries. Please cite the chapter that is the most relevant in your case.
For instance, a paper using one of the documented contact laws will cite the reference documentation
[yade:reference]; if programing concepts are discussed, Yade’s manual [yade:manual] will be cited; the
theoretical background [yade:background] can be used as the refence for contact detection, time-step
determination, or periodic boundary conditions.

• The reference documentation includes details on equations and algorithms found at the highest levels of Yade (contact laws, boundary conditions controllers, pre- and post-processing modules,...) (pdf version):

22. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C.
Modenese, L. Scholtès, L. Sibille, J. Stránský, and K. Thoeni, “Yade Reference Docu-
mentation,” in Yade Documentation (V. Šmilauer, ed.), The Yade Project, 1st ed., 2010.
http://yade-dem.org/doc/.

• Software design, user’s and programmer’s manuals are in (pdf version):
22. Šmilauer, A. Gladky, J. Kozicki, C. Modenese, and J. Stránský, “Yade Using and Pro-

gramming,” in Yade Documentation (V. Šmilauer, ed.), The Yade Project, 1st ed., 2010.
http://yade-dem.org/doc/.

435

http://www.cgal.org/bibliography.html
https://yade-dem.org/w/images/c/c9/AcknowledgingYADE.pdf
https://www.yade-dem.org/wiki/Contact
http://yade-dem.org/doc/
http://bazaar.launchpad.net/~yade-dev/yade/trunk/view/head:/doc/citing_yade.bib
https://yade-dem.org/w/images/9/98/YadeRefDoc.pdf
http://yade-dem.org/doc/
https://yade-dem.org/w/images/0/09/YadeManuals.pdf
http://yade-dem.org/doc/

Yade Documentation, Release 1.07.0

• Fundamentals of the DEM as implemented in Yade are explained in (pdf version):
22. Šmilauer and B. Chareyre, “Yade Dem Formulation”, in Yade Documentation (V. Šmi-

lauer, ed.), The Yade Project, 1st ed., 2010. http://yade-dem.org/doc/formulation.html.

436 Chapter 9. Acknowledging Yade

https://yade-dem.org/w/images/e/e0/YadeFormulation.pdf
http://yade-dem.org/doc/formulation.html

Chapter 10

Publications on Yade

This page should be a relatively complete list of publications on Yade itself or done with Yade. If you
publish something, do not hesitate to add it on the list. If PDF is freely available, add url for direct
fulltext downlad. If not, consider uploading fulltext in PDF, either to Yade wiki or to other website, if
legally permitted.
The last section gives the references that we recommend to use for citing Yade in publications, as
explained in the “Acknowledging Yade” section.

Note: This file is generated from doc/yade-articles.bib, doc/yade-conferences.bib, doc/yade-theses.bib
and doc/yade-docref.bib.

10.1 Citing Yade

Corresponding bibtex entries here. Pdf versions are available for each of them. See also “Acknowledging
Yade”.

10.2 Journal articles

10.3 Conference materials

10.4 Master and PhD theses

437

https://www.yade-dem.org/wiki/
https://github.com/yade/trunk/blob/master/doc/yade-articles.bib
https://github.com/yade/trunk/blob/master/doc/yade-conferences.bib
https://github.com/yade/trunk/blob/master/doc/yade-theses.bib
https://github.com/yade/trunk/blob/master/doc/yade-docref.bib
http://bazaar.launchpad.net/~yade-dev/yade/trunk/view/head:/doc/citing_yade.bib

Yade Documentation, Release 1.07.0

438 Chapter 10. Publications on Yade

Chapter 11

References

All external articles referenced in Yade documentation.

Note: This file is generated from doc/references.bib.

439

https://github.com/yade/trunk/blob/master/doc/references.bib

Yade Documentation, Release 1.07.0

440 Chapter 11. References

Chapter 12

Indices and tables

• genindex
• modindex
• search

441

Yade Documentation, Release 1.07.0

442 Chapter 12. Indices and tables

Bibliography

[yade:background] V. Šmilauer, B. Chareyre (2010), Yade dem formulation. In Yade Documentation (
V. Šmilauer, ed.), The Yade Project , 1st ed. (fulltext) (http://yade-dem.org/doc/formulation.html)

[yade:doc] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C.
Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), Yade Documentation. The Yade
Project. (http://yade-dem.org/doc/)

[yade:manual] V. Šmilauer, A. Gladky, J. Kozicki, C. Modenese, J. Stránský (2010), Yade, using and
programming. In Yade Documentation (V. Šmilauer, ed.), The Yade Project , 1st ed. (fulltext)
(http://yade-dem.org/doc/)

[yade:reference] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Koz-
icki, C. Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), Yade Reference Doc-
umentation. In Yade Documentation (V. Šmilauer, ed.), The Yade Project , 1st ed. (fulltext)
(http://yade-dem.org/doc/)

[Boon2012a] Boon,C.W., Houlsby, G.T., Utili, S. (2012), A new algorithm for contact detection
between convex polygonal and polyhedral particles in the discrete element method.
Computers and Geotechnics (44), pages 73 - 82. DOI 10.1016/j.compgeo.2012.03.012 (fulltext)

[Boon2012b] Boon,C.W., Houlsby, G.T., Utili, S. (2013), A new contact detection al-
gorithm for three-dimensional non-spherical particles. Powder Technology. DOI
10.1016/j.powtec.2012.12.040 (fulltext)

[Bourrier2013] Bourrier, F., Kneib, F., Chareyre, B., Fourcaud, T. (2013), Discrete mod-
eling of granular soils reinforcement by plant roots. Ecological Engineering. DOI
10.1016/j.ecoleng.2013.05.002 (fulltext)

[Catalano2013a] Catalano, E., Chareyre, B., Barthélémy, E. (2013), Pore-scale modeling of fluid-
particles interaction and emerging poromechanical effects. International Journal for Nu-
merical and Analytical Methods in Geomechanics. DOI 10.1002/nag.2198 (fulltext) (in press, arxiv
version available)

[Chareyre2012a] Chareyre, B., Cortis, A., Catalano, E., Barthélemy, E. (2012), Pore-scale modeling
of viscous flow and induced forces in dense sphere packings. Transport in Porous Media (92),
pages 473-493. DOI 10.1007/s11242-011-9915-6 (fulltext)

[Chen2007] Chen, F., Drumm, E. C., Guiochon, G. (2007), Prediction/verification of particle mo-
tion in one dimension with the discrete-element method. International Journal of Geome-
chanics, ASCE (7), pages 344–352. DOI 10.1061/(ASCE)1532-3641(2007)7:5(344)

[Chen2011a] Chen, F., Drumm, E., Guiochon G. (2011), Coupled discrete element and finite vol-
ume solution of two classical soil mechanics problems. Computers and Geotechnics. DOI
10.1016/j.compgeo.2011.03.009 (fulltext)

[Chen2012] Chen, Jingsong, Huang, Baoshan, Chen, Feng, Shu, Xiang (2012), Application of discrete
element method to superpave gyratory compaction. Road Materials and Pavement Design
(13), pages 480-500. DOI 10.1080/14680629.2012.694160 (fulltext)

[Dang2010a] Dang, H. K., Meguid, M. A. (2010), Algorithm to generate a discrete element spec-
imen with predefined properties. International Journal of Geomechanics (10), pages 85-91. DOI
10.1061/(ASCE)GM.1943-5622.0000028

443

https://yade-dem.org/w/images/e/e0/YadeFormulation.pdf
http://yade-dem.org/doc/formulation.html
http://yade-dem.org/doc/
https://yade-dem.org/w/images/0/09/YadeManuals.pdf
http://yade-dem.org/doc/
https://yade-dem.org/w/images/9/98/YadeRefDoc.pdf
http://yade-dem.org/doc/
http://dx.doi.org/10.1016/j.compgeo.2012.03.012
http://www.sciencedirect.com/science/article/pii/S0266352X12000535
http://dx.doi.org/10.1016/j.powtec.2012.12.040
http://www.sciencedirect.com/science/article/pii/S003259101200839X
http://dx.doi.org/10.1016/j.ecoleng.2013.05.002
http://dx.doi.org/10.1016/j.ecoleng.2013.05.002
http://dx.doi.org/10.1002/nag.2198
http://arxiv.org/pdf/1304.4895.pdf
http://dx.doi.org/10.1007/s11242-011-9915-6
http://dx.doi.org/10.1007/s11242-011-9915-6
http://dx.doi.org/10.1061/(ASCE)1532-3641(2007)7:5(344)
http://dx.doi.org/10.1016/j.compgeo.2011.03.009
http://www.sciencedirect.com/science/article/pii/S0266352X11000504
http://dx.doi.org/10.1080/14680629.2012.694160
http://www.tandfonline.com/doi/abs/10.1080/14680629.2012.694160
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000028

Yade Documentation, Release 1.07.0

[Dang2010b] Dang, H. K., Meguid, M. A. (2010), Evaluating the performance of an explicit dy-
namic relaxation technique in analyzing non-linear geotechnical engineering problems.
Computers and Geotechnics (37), pages 125 - 131. DOI 10.1016/j.compgeo.2009.08.004

[Donze2008] Donzé, F.V. (2008), Impacts on cohesive frictional geomaterials. European Journal
of Environmental and Civil Engineering (12), pages 967–985.

[Duriez2011] Duriez,J., Darve, F., Donzé, F.V. (2011), A discrete modeling-based constitutive
relation for infilled rock joints. International Journal of Rock Mechanics & Mining Sciences
(48), pages 458–468. DOI 10.1016/j.ijrmms.2010.09.008

[Duriez2013] Duriez, J., Darve, F., Donzé, F.V. (2013), Incrementally non-linear plasticity ap-
plied to rock joint modelling. International Journal for Numerical and Analytical Methods in
Geomechanics (37), pages 453–477. DOI 10.1002/nag.1105 (fulltext)

[Epifancev2013] Epifancev, K., Nikulin, A., Kovshov, S., Mozer, S., Brigadnov, I. (2013), Modeling of
peat mass process formation based on 3d analysis of the screw machine by the code yade.
American Journal of Mechanical Engineering (1), pages 73–75. DOI 10.12691/ajme-1-3-3 (fulltext)

[Epifantsev2012] Epifantsev, K., Mikhailov, A., Gladky, A. (2012), Proizvodstvo kuskovogo torfa,
ekstrudirovanie, forma zakhodnoi i kalibriruyushchei chasti fil’ery matritsy, metod
diskretnykh elementov [rus].Mining informational and analytical bulletin (scientific and technical
journal), pages 212-219.

[Favier2009a] Favier, L., Daudon, D., Donzé, F.V., Mazars, J. (2009), Predicting the drag coefficient
of a granular flow using the discrete element method. Journal of Statistical Mechanics: Theory
and Experiment (2009), pages P06012.

[Favier2012] Favier, L., Daudon, D., Donzé, F.V. (2012), Rigid obstacle impacted by a supercrit-
ical cohesive granular flow using a 3d discrete element model. Cold Regions Science and
Technology (85), pages 232–241. (fulltext)

[Grujicic2013] Grujicic, M, Snipes, JS, Ramaswami, S, Yavari, R (2013), Discrete element modeling
and analysis of structural collapse/survivability of a building subjected to improvised
explosive device (ied) attack. Advances in Materials Science and Applications (2), pages 9–24.

[Gusenbauer2012] Gusenbauer, M., Kovacs, A., Reichel, F., Exl, L., Bance, S., Özelt, H., Schrefl, T.
(2012), Self-organizing magnetic beads for biomedical applications. Journal of Magnetism
and Magnetic Materials (324), pages 977–982.

[Hadda2013] Hadda, Nejib, Nicot, François, Bourrier, Franck, Sibille, Luc, Radjai, Farhang, Darve, Félix
(2013), Micromechanical analysis of second order work in granular media. Granular Matter
(15), pages 221–235. DOI 10.1007/s10035-013-0402-3 (fulltext)

[Harthong2009] Harthong, B., Jerier, J.F., Doremus, P., Imbault, D., Donzé, F.V. (2009), Modeling
of high-density compaction of granular materials by the discrete element method. Inter-
national Journal of Solids and Structures (46), pages 3357–3364. DOI 10.1016/j.ijsolstr.2009.05.008

[Harthong2012b] Harthong, B., Jerier, J.-F., Richefeu, V., Chareyre, B., Doremus, P., Imbault, D.,
Donzé, F.V. (2012),Contact impingement in packings of elastic–plastic spheres, application
to powder compaction. International Journal of Mechanical Sciences (61), pages 32–43.

[Hartong2012a] Harthong, B., Scholtès, L., Donzé, F.-V. (2012), Strength characterization of rock
masses, using a coupled dem–dfn model. Geophysical Journal International (191), pages 467–
480. DOI 10.1111/j.1365-246X.2012.05642.x (fulltext)

[Hassan2010] Hassan, A., Chareyre, B., Darve, F., Meyssonier, J., Flin, F. (2010 (submitted)),
Microtomography-based discrete element modelling of creep in snow. Granular Matter.

[Hilton2013] Hilton, J. E., Tordesillas, A. (2013), Drag force on a spherical intruder in a gran-
ular bed at low froude number. *Phys. Rev. E*6 (88), pages 062203. DOI 10.1103/Phys-
RevE.88.062203 (fulltext)

[Jerier2009] Jerier, J.-F., Imbault, D.and Donzé, F.V., Doremus, P. (2009), A geometric algorithm
based on tetrahedral meshes to generate a dense polydisperse sphere packing. Granular
Matter (11). DOI 10.1007/s10035-008-0116-0

444 Bibliography

http://dx.doi.org/10.1016/j.compgeo.2009.08.004
http://dx.doi.org/10.1016/j.ijrmms.2010.09.008
http://dx.doi.org/10.1002/nag.1105
http://dx.doi.org/10.1002/nag.1105
http://dx.doi.org/10.12691/ajme-1-3-3
http://pubs.sciepub.com/ajme/1/3/3
http://dx.doi.org/10.1016/j.coldregions.2012.09.010
http://dx.doi.org/10.1007/s10035-013-0402-3
http://dx.doi.org/10.1007/s10035-013-0402-3
http://dx.doi.org/10.1016/j.ijsolstr.2009.05.008
http://dx.doi.org/10.1111/j.1365-246X.2012.05642.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05642.x
http://dx.doi.org/10.1103/PhysRevE.88.062203
http://dx.doi.org/10.1103/PhysRevE.88.062203
http://link.aps.org/doi/10.1103/PhysRevE.88.062203
http://dx.doi.org/10.1007/s10035-008-0116-0

Yade Documentation, Release 1.07.0

[Jerier2010a] Jerier, J.-F., Richefeu, V., Imbault, D., Donzé, F.V. (2010), Packing spherical discrete
elements for large scale simulations. Computer Methods in Applied Mechanics and Engineering.
DOI 10.1016/j.cma.2010.01.016

[Jerier2010b] Jerier, J.-F., Hathong, B., Richefeu, V., Chareyre, B., Imbault, D., Donzé, F.-V., Doremus,
P. (2010), Study of cold powder compaction by using the discrete element method. Powder
Technology (In Press). DOI 10.1016/j.powtec.2010.08.056

[Kozicki2005a] Kozicki, J. (2005), Discrete lattice model used to describe the fracture process
of concrete. Discrete Element Group for Risk Mitigation Annual Report 1, Grenoble University of
Joseph Fourier, France, pages 95–101. (fulltext)

[Kozicki2006a] Kozicki, J., Tejchman, J. (2006), 2D lattice model for fracture in brittle materials.
Archives of Hydro-Engineering and Environmental Mechanics (53), pages 71–88. (fulltext)

[Kozicki2007a] Kozicki, J., Tejchman, J. (2007), Effect of aggregate structure on fracture process
in concrete using 2d lattice model”. Archives of Mechanics (59), pages 365–384. (fulltext)

[Kozicki2008] Kozicki, J., Donzé, F.V. (2008), A new open-source software developed for numer-
ical simulations using discrete modeling methods. Computer Methods in Applied Mechanics
and Engineering (197), pages 4429–4443. DOI 10.1016/j.cma.2008.05.023 (fulltext)

[Kozicki2009] Kozicki, J., Donzé, F.V. (2009), Yade-open dem: an open-source software using
a discrete element method to simulate granular material. Engineering Computations (26),
pages 786–805. DOI 10.1108/02644400910985170 (fulltext)

[Lomine2013] Lominé, F., Scholtès, L., Sibille, L., Poullain, P. (2013), Modelling of fluid-solid in-
teraction in granular media with coupled lb/de methods: application to piping erosion.
International Journal for Numerical and Analytical Methods in Geomechanics (37), pages 577-596.
DOI 10.1002/nag.1109

[Nicot2011] Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Darve, F. (2011), Failure mechanisms
in granular media: a discrete element analysis. Granular Matter (13), pages 255-260. DOI
10.1007/s10035-010-0242-3

[Nicot2012] Nicot, F., Sibille, L., Darve, F. (2012), Failure in rate-independent granular materials
as a bifurcation toward a dynamic regime. International Journal of Plasticity (29), pages 136-
154. DOI 10.1016/j.ijplas.2011.08.002

[Nicot2013a] Nicot, F., Hadda, N., Darve, F. (2013), Second-order work analysis for granular
materials using a multiscale approach. International Journal for Numerical and Analytical
Methods in Geomechanics. DOI 10.1002/nag.2175

[Nicot2013b] Nicot, F., Hadda, N., Guessasma, M., Fortin, J., Millet, O. (2013), On the definition
of the stress tensor in granular media. International Journal of Solids and Structures. DOI
10.1016/j.ijsolstr.2013.04.001 (fulltext)

[Puckett2011] Puckett, J.G., Lechenault, F., Daniels, K.E. (2011), Local origins of volume frac-
tion fluctuations in dense granular materials. *Physical Review E*4 (83), pages 041301. DOI
10.1103/PhysRevE.83.041301 (fulltext)

[Sayeed2011] Sayeed, M.A., Suzuki, K., Rahman, M.M., Mohamad, W.H.W., Razlan, M.A., Ahmad,
Z., Thumrongvut, J., Seangatith, S., Sobhan, MA, Mofiz, SA, others (2011), Strength and de-
formation characteristics of granular materials under extremely low to high confining
pressures in triaxial compression. International Journal of Civil & Environmental Engineering
IJCEE-IJENS (11).

[Scholtes2009a] Scholtès, L., Chareyre, B., Nicot, F., Darve, F. (2009), Micromechanics of granular
materials with capillary effects. International Journal of Engineering Science (47), pages 64–75.
DOI 10.1016/j.ijengsci.2008.07.002 (fulltext)

[Scholtes2009b] Scholtès, L., Hicher, P.-Y., Chareyre, B., Nicot, F., Darve, F. (2009), On the capillary
stress tensor in wet granular materials. International Journal for Numerical and Analytical
Methods in Geomechanics (33), pages 1289–1313. DOI 10.1002/nag.767 (fulltext)

Bibliography 445

http://dx.doi.org/10.1016/j.cma.2010.01.016
http://dx.doi.org/10.1016/j.powtec.2010.08.056
https://yade-dem.org/w/images/f/f0/Discrete_lattice_model_DEM_risk_mitigation_kozicki.pdf
https://yade-dem.org/w/images/5/54/Ahem_2006_kozicki.pdf
https://yade-dem.org/w/images/0/09/Ams_2007_kozicki_tejchman.pdf
http://dx.doi.org/10.1016/j.cma.2008.05.023
https://yade-dem.org/w/images/3/30/CMAME_YADE_2008.pdf
http://dx.doi.org/10.1108/02644400910985170
https://yade-dem.org/w/images/8/80/EC_YADE_2008.pdf
http://dx.doi.org/10.1002/nag.1109
http://dx.doi.org/10.1007/s10035-010-0242-3
http://dx.doi.org/10.1016/j.ijplas.2011.08.002
http://dx.doi.org/10.1002/nag.2175
http://dx.doi.org/10.1016/j.ijsolstr.2013.04.001
http://www.sciencedirect.com/science/article/pii/S0020768313001492
http://dx.doi.org/10.1103/PhysRevE.83.041301
http://link.aps.org/doi/10.1103/PhysRevE.83.041301
http://dx.doi.org/10.1016/j.ijengsci.2008.07.002
http://dx.doi.org/10.1016/j.ijengsci.2008.07.002
http://dx.doi.org/10.1002/nag.767
http://arxiv.org/abs/1105.1013

Yade Documentation, Release 1.07.0

[Scholtes2009c] Scholtès, L., Chareyre, B., Nicot, F., Darve, F. (2009), Discrete modelling of cap-
illary mechanisms in multi-phase granular media. Computer Modeling in Engineering and
Sciences (52), pages 297–318. (fulltext)

[Scholtes2010] Scholtès, L., Hicher, P.-Y., Sibille, L. (2010), Multiscale approaches to describe
mechanical responses induced by particle removal in granular materials. Comptes Rendus
Mécanique (338), pages 627–638. DOI 10.1016/j.crme.2010.10.003 (fulltext)

[Scholtes2011] Scholtès, L., Donzé, F.V., Khanal, M. (2011), Scale effects on strength of geoma-
terials, case study: coal. Journal of the Mechanics and Physics of Solids (59), pages 1131–1146.
DOI 10.1016/j.jmps.2011.01.009 (fulltext)

[Scholtes2012] Scholtès, L., Donzé, F.V. (2012), Modelling progressive failure in fractured rock
masses using a 3d discrete element method. International Journal of Rock Mechanics and
Mining Sciences (52), pages 18–30. DOI 10.1016/j.ijrmms.2012.02.009 (fulltext)

[Scholtes2013] Scholtès, L., Donzé, F.V. (2013), A DEM model for soft and hard rocks: role
of grain interlocking on strength. Journal of the Mechanics and Physics of Solids (61), pages
352–369. DOI 10.1016/j.jmps.2012.10.005 (fulltext)

[Shiu2008] Shiu, W., Donzé, F.V., Daudeville, L. (2008), Compaction process in concrete during
missile impact: a dem analysis. Computers and Concrete (5), pages 329–342.

[Shiu2009] Shiu, W., Donzé, F.V., Daudeville, L. (2009), Discrete element modelling of missile
impacts on a reinforced concrete target. International Journal of Computer Applications in
Technology (34), pages 33–41.

[Smilauer2006] Václav Šmilauer (2006), The splendors and miseries of yade design. Annual Report
of Discrete Element Group for Hazard Mitigation. (fulltext)

[Tejchman2011] Tejchman, J. (2011), Comparative modelling of shear zone patterns in granular
bodies with finite and discrete element model. Advances in Bifurcation and Degradation in
Geomaterials, pages 255–260.

[Thoeni2013] K. Thoeni, C. Lambert, A. Giacomini, S.W. Sloan (2013),Discrete modelling of hexag-
onal wire meshes with a stochastically distorted contact model. Computers and Geotechnics
(49), pages 158–169. DOI 10.1016/j.compgeo.2012.10.014 (fulltext)

[Tong2012] Tong, A.-T., Catalano, E., Chareyre, B. (2012), Pore-scale flow simulations: model
predictions compared with experiments on bi-dispersed granular assemblies. Oil & Gas
Science and Technology - Rev. IFP Energies nouvelles. DOI 10.2516/ogst/2012032 (fulltext)

[Tran2011] Tran, V.T., Donzé, F.V., Marin, P. (2011), A discrete element model of concrete under
high triaxial loading. Cement and Concrete Composites.

[Tran2012] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2012), An algorithm for the propaga-
tion of uncertainty in soils using the discrete element method. The Electronic Journal of
Geotechnical Engineering. (fulltext)

[Tran2012c] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2012), Discrete element and experi-
mental investigations of the earth pressure distribution on cylindrical shafts. International
Journal of Geomechanics. DOI 10.1061/(ASCE)GM.1943-5622.0000277

[Tran2013] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2013), A finite–discrete element frame-
work for the 3d modeling of geogrid–soil interaction under pullout loading conditions.
Geotextiles and Geomembranes (37), pages 1-9. DOI 10.1016/j.geotexmem.2013.01.003

[Catalano2009] E. Catalano, B. Chareyre, E. Barthélémy (2009), Fluid-solid coupling in discrete
models. In Alert Geomaterials Workshop 2009.

[Catalano2010a] E. Catalano, B. Chareyre, E. Barthélémy (2010), A coupled model for fluid-solid
interaction analysis in geomaterials. In Alert Geomaterials Workshop 2010.

[Catalano2010b] E. Catalano, B. Chareyre, E. Barthélémy (2010), Pore scale modelling of stokes
flow. In GdR MeGe.

[Catalano2011a] E. Catalano, B. Chareyre, A. Cortis, E. Barthélémy (2011), A pore-scale hydro-
mechanical coupled model for geomaterials. In II International Conference on Particle-based
Methods - Fundamentals and Applications. (fulltext)

446 Bibliography

http://arxiv.org/abs/1203.1234
http://dx.doi.org/10.1016/j.crme.2010.10.003
http://dx.doi.org/10.1016/j.crme.2010.10.003
http://dx.doi.org/10.1016/j.jmps.2011.01.009
http://dx.doi.org/10.1016/j.jmps.2011.01.009
http://dx.doi.org/10.1016/j.ijrmms.2012.02.009
http://dx.doi.org/10.1016/j.ijrmms.2012.02.009
http://dx.doi.org/10.1016/j.jmps.2012.10.005
http://dx.doi.org/10.1016/j.jmps.2012.10.005
https://yade-dem.org/w/images/a/a6/Smilauer-the_splendors_and_miseries_of_yade_design-2007.pdf
http://dx.doi.org/10.1016/j.compgeo.2012.10.014
http://www.sciencedirect.com/science/article/pii/S0266352X12002121
http://dx.doi.org/10.2516/ogst/2012032
http://dx.doi.org/10.2516/ogst/2012032
http://www.ejge.com/2012/Ppr12.283alr.pdf
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000277
http://dx.doi.org/10.1016/j.geotexmem.2013.01.003
http://geo.hmg.inpg.fr/~chareyre/pubs/CatalanoChareyreCortisBarthelemy_Particles2011.pdf

Yade Documentation, Release 1.07.0

[Catalano2013b] Catalano E., Chareyre B., Barthélémy E. (2013), Dem-pfv analysis of solid-fluid
transition in granular sediments under the action of waves. In Powders and Grains 2013:
Proceedings of the 6th International Conference on Micromechanics of Granular Media. AIP Con-
ference Proceedings. DOI 10.1063/1.4812118 (fulltext)

[Chareyre2009] Chareyre B., Scholtès L. (2009), Micro-statics and micro-kinematics of capillary
phenomena in dense granular materials. In POWDERS AND GRAINS 2009: Proceedings of the
6th International Conference on Micromechanics of Granular Media. AIP Conference Proceedings.
DOI 10.1063/1.3180083

[Chareyre2011] B. Chareyre, E. Catalano, E. Barthélémy (2011), Numerical simulation of hydrome-
chanical couplings by combined discrete element method and finite-volumes. In Interna-
tional Conference on Flows and Mechanics in Natural Porous Media from Pore to Field Scale -
Pore2Field. (fulltext)

[Chareyre2012b] B. Chareyre, L. Scholtès, F. Darve (2012), The properties of some stress tensors
investigated by dem simulations. In Euromech Colloquium 539; Mechanics of Unsaturated Porous
Media: Effective Stress principle; from micromechanics to thermodynamics (fulltext)

[Chareyre2012c] B. Chareyre (2012), Micro-poromechanics: recent advances in numerical mod-
els and perspectives. In ICACM symposium 2012, The role of structure on emerging material
properties

[Chen2008a] Chen, F., Drumm, E.C., Guiochon, G., Suzuki, K. (2008), Discrete element simulation
of 1d upward seepage flow with particle-fluid interaction using coupled open source
software. In Proceedings of The 12th International Conference of the International Association for
Computer Methods and Advances in Geomechanics (IACMAG) Goa, India.

[Chen2009b] Chen, F., Drumm, E.C., Guiochon, G. (2009), 3d dem analysis of graded rock fill sink-
hole repair: particle size effects on the probability of stability. In Transportation Research
Board Conference (Washington DC).

[Dang2008a] Dang, H.K., Mohamed, M.A. (2008), An algorithm to generate a specimen for dis-
crete element simulations with a predefined grain size distribution.. In 61th Canadian
Geotechnical Conference, Edmonton, Alberta.

[Dang2008b] Dang, H.K., Mohamed, M.A. (2008), 3d simulation of the trap door problem using
the discrete element method.. In 61th Canadian Geotechnical Conference, Edmonton, Alberta.

[Favier2009b] L. Favier, D. Daudon, F. Donzé, J. Mazars (2009), Validation of a dem granular flow
model aimed at forecasting snow avalanche pressure. In AIP Conference Proceedings. DOI
10.1063/1.3180002 (fulltext)

[Gillibert2009] Gillibert L., Flin F., Rolland du Roscoat S., Chareyre B., Philip A., Lesaffre B.,
Meyssonier J. (2009), Curvature-driven grain segmentation: application to snow images
from x-ray microtomography. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (Miami, USA).

[Guo2013] Ning Guo, Jidong Zhao (2013), A hierarchical model for cross-scale simulation of
granular media. In Powders and Grains 2013: Proceedings of the 6th International Conference on
Micromechanics of Granular Media. AIP Conference Proceedings. DOI 10.1063/1.4812158 (fulltext)

[Hadda2013b] Nejib Hadda, François Nicot, Luc Sibille, Farhang Radjai, Antoinette Tordesillas, Félix
Darve (2013),Amultiscale description of failure in granular materials. In Powders and Grains
2013: Proceedings of the 6th International Conference on Micromechanics of Granular Media. AIP
Conference Proceedings. DOI 10.1063/1.4811999 (fulltext)

[Harthong2013] Barthélémy Harthong, Richard G Wan (2009), Directional plastic flow and fabric
dependencies in granular materials. In Powders and Grains 2013: Proceedings of the 6th In-
ternational Conference on Micromechanics of Granular Media. AIP Conference Proceedings. DOI
http://dx.doi.org/10.1063/1.4811900 (fulltext)

[Hasan2010b] A. Hasan, B. Chareyre, J. Kozicki, F. Flin, F. Darve, J. Meyssonnier (2010),
Microtomography-based discrete element modeling to simulate snow microstructure
deformation. In AGU Fall Meeting Abstracts

Bibliography 447

http://dx.doi.org/10.1063/1.4812118
http://link.aip.org/link/?APC/1542/1063/1
http://dx.doi.org/10.1063/1.3180083
http://geo.hmg.inpg.fr/~chareyre/pubs/IFPEN-Pore2Field-Chareyre_et_al_Meta.pdf
http://www.geo.uu.nl/hydrogeology/Colloquium2012/Bruno%20Chareyre_Euromech.pdf
http://dx.doi.org/10.1063/1.3180002
http://link.aip.org/link/?APC/1145/617/1
http://dx.doi.org/10.1063/1.4812158
https://www.yade-dem.org/publi/APC001222.pdf
http://dx.doi.org/10.1063/1.4811999
https://www.yade-dem.org/publi/APC000585.pdf
http://dx.doi.org/http://dx.doi.org/10.1063/1.4811900
https://www.yade-dem.org/publi/APC000193.pdf

Yade Documentation, Release 1.07.0

[Hicher2009] Hicher P.-Y., Scholtès L., Chareyre B., Nicot F., Darve F. (2008), On the capillary
stress tensor in wet granular materials. In Inaugural International Conference of the Engineering
Mechanics Institute (EM08) - (Minneapolis, USA).

[Hicher2011] Hicher, P.Y, Scholtès, L., Sibille, L. (2011), Multiscale modeling of particle removal
impact on granular material behavior. In Engineering Mechanics Institute, EMI 2011.

[Hilton2013] J. E. Hilton, P. W. Cleary, A. Tordesillas (2013), Unitary stick-slip motion in granular
beds. In Powders and Grains 2013: Proceedings of the 6th International Conference on Microme-
chanics of Granular Media. AIP Conference Proceedings. DOI 10.1063/1.4812063 (fulltext)

[Kozicki2003a] J. Kozicki, J. Tejchman (2003), Discrete methods to describe the behaviour of
quasi-brittle and granular materials. In 16th Engineering Mechanics Conference, University of
Washington, Seattle, CD–ROM.

[Kozicki2003c] J. Kozicki, J. Tejchman (2003), Lattice method to describe the behaviour of quasi-
brittle materials. In CURE Workshop, Effective use of building materials, Sopot.

[Kozicki2004a] J. Kozicki, J. Tejchman (2004), Study of fracture process in concrete using a
discrete lattice model. In CURE Workshop, Simulations in Urban Engineering, Gdansk.

[Kozicki2005b] J. Kozicki, J. Tejchman (2005), Simulations of fracture in concrete elements us-
ing a discrete lattice model. In Proc. Conf. Computer Methods in Mechanics (CMM 2005),
Czestochowa, Poland.

[Kozicki2005c] J. Kozicki, J. Tejchman (2005), Simulation of the crack propagation in concrete
with a discrete lattice model. In Proc. Conf. Analytical Models and New Concepts in Concrete
and Masonry Structures (AMCM 2005), Gliwice, Poland.

[Kozicki2006b] J. Kozicki, J. Tejchman (2006), Modelling of fracture process in brittle materials
using a lattice model. In Computational Modelling of Concrete Structures, EURO-C (eds.: G.
Meschke, R. de Borst, H. Mang and N. Bicanic), Taylor anf Francis.

[Kozicki2006c] J. Kozicki, J. Tejchman (2006), Lattice type fracture model for brittle materials.
In 35th Solid Mechanics Conference (SOLMECH 2006), Krakow.

[Kozicki2007c] J. Kozicki, J. Tejchman (2007), Simulations of fracture processes in concrete using
a 3d lattice model. In Int. Conf. on Computational Fracture and Failure of Materials and Structures
(CFRAC 2007), Nantes. (fulltext)

[Kozicki2007d] J. Kozicki, J. Tejchman (2007), Effect of aggregate density on fracture process
in concrete using 2d discrete lattice model. In Proc. Conf. Computer Methods in Mechanics
(CMM 2007), Lodz-Spala.

[Kozicki2007e] J. Kozicki, J. Tejchman (2007), Modelling of a direct shear test in granular bodies
with a continuum and a discrete approach. In Proc. Conf. Computer Methods in Mechanics
(CMM 2007), Lodz-Spala.

[Kozicki2007f] J. Kozicki, J. Tejchman (2007), Investigations of size effect in tensile fracture
of concrete using a lattice model. In Proc. Conf. Modelling of Heterogeneous Materials with
Applications in Construction and Biomedical Engineering (MHM 2007), Prague.

[Kozicki2011] J. Kozicki, J. Tejchman (2011), Numerical simulation of sand behaviour using dem
with two different descriptions of grain roughness. In II International Conference on Particle-
based Methods - Fundamentals and Applications. (fulltext)

[Kozicki2013] Jan Kozicki, Jacek Tejchman, Danuta Lesniewska (2013), Study of some micro-
structural phenomena in granular shear zones. In Powders and Grains 2013: Proceedings
of the 6th International Conference on Micromechanics of Granular Media. AIP Conference Pro-
ceedings. DOI 10.1063/1.4811976 (fulltext)

[Lomine2010a] Lominé, F., Scholtès, L., Poullain, P., Sibille, L. (2010), Soil microstructure changes
induced by internal fluid flow: investigations with coupled de/lb methods. In Proc. of 3rd
Euromediterranean Symposium on Advances in Geomaterials and Structures, AGS‘10.

[Lomine2010b] Lominé, F., Poullain, P., Sibille, L. (2010), Modelling of fluid-solid interaction in
granular media with coupled lb/de methods: application to solid particle detachment
under hydraulic loading. In 19th Discrete Simulation of Fluid Dynamics, DSFD 2010.

448 Bibliography

http://dx.doi.org/10.1063/1.4812063
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=APCPCS001542000001000843000001&idtype=cvips&doi=10.1063/1.4812063&prog=normal
https://yade-dem.org/w/images/2/27/Nantes_2007_kozicki.pdf
https://yade-dem.org/w/images/9/96/KozickyTejchmanParticles2011.pdf
http://dx.doi.org/10.1063/1.4811976
https://www.yade-dem.org/publi/APC000495.pdf

Yade Documentation, Release 1.07.0

[Lomine2011] Lominé, F., Sibille, L., Marot, D. (2011), A coupled discrete element - lattice botz-
mann method to investigate internal erosion in soil. In Proc. 2nd Int. Symposium on Com-
putational Geomechanics (ComGeo II).

[Maurin2013] Maurin, Raphael, Chareyre, Bruno, Chauchat, Julien, Frey, Philippe (2013), Discrete
element modelling of bedload transport. In Proceedings of THESIS 2013, Two-pHase modElling
for Sediment dynamIcS in Geophysical Flows. (fulltext)

[Michallet2012] H. Michallet, E. Catalano, C. Berni, V. Rameliarison, E. Barthélémy (2012), Physical
and numerical modelling of sand liquefaction in waves interacting with a vertical wall.
In ICSE6 - 6th International conference on Scour and Erosion

[Modenese2012] C. Modenese, S. Utili, G.T. Houlsby (2012),Demmodelling of elastic adhesive par-
ticles with application to lunar soil. In Earth and Space 2012: Engineering, Science, Construc-
tion, and Operations in Challenging Environments ¬© 2012 ASCE. DOI 10.1061/9780784412190.006
(fulltext)

[Modenese2012a] Modenese, C, Utili, S, Houlsby, G T (2012),A study of the influence of surface en-
ergy on the mechanical properties of lunar soil using DEM. In Discrete Element Modelling of
Particulate Media (Wu, Chuan-Yu, ed.), Royal Society of Chemistry , DOI 10.1039/9781849735032-
00069 (fulltext)

[Modenese2012b] Modenese, C, Utili, S, Houlsby, G T (2012), A numerical investigation of quasi-
static conditions for granular media. In Discrete Element Modelling of Particulate Media (Wu,
Chuan-Yu, ed.), Royal Society of Chemistry , DOI 10.1039/9781849735032-00187 (fulltext)

[Nicot2010] Nicot, F., Sibille, L., Daouadji, A., Hicher, P.Y., Darve, F. (2010), Multiscale modeling
of instability in granular materials. In Engineering Mechanics Institute, EMI 2010.

[Nicot2011b] Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Darve, F. (2011), A discrete element
analysis of collapse mechanisms in granular materials. In Proc. 2nd Int. Symposium on Com-
putational Geomechanics (ComGeo II).

[Sari2011] H. Sari, B. Chareyre, E. Catalano, P. Philippe, E. Vincens (2011), Investigation of inter-
nal erosion processes using a coupled dem-fluid method. In II International Conference on
Particle-based Methods - Fundamentals and Applications. (fulltext)

[Scholtes2007a] L. Scholtès, B. Chareyre, F. Nicot, F. Darve (2007), Micromechanical modelling of
unsaturated granular media. In Proceedings ECCOMAS-MHM07, Prague.

[Scholtes2008a] L. Scholtès, B. Chareyre, F. Nicot, F. Darve (2008), Capillary effects modelling
in unsaturated granular materials. In 8th World Congress on Computational Mechanics - 5th
European Congress on Computational Methods in Applied Sciences and Engineering, Venice.

[Scholtes2008b] L. Scholtès, P.-Y. Hicher, F.Nicot, B. Chareyre, F. Darve (2008), On the capillary
stress tensor in unsaturated granular materials. In EM08: Inaugural International Conference
of the Engineering Mechanics Institute, Minneapolis.

[Scholtes2009e] Scholtes L, Chareyre B, Darve F (2009), Micromechanics of partialy saturated
granular material. In Int. Conf. on Particle Based Methods, ECCOMAS-Particles.

[Scholtes2011b] L. Scholtès, F. Donzé (2011), Progressive failure mechanisms in jointed rock:
insight from 3d dem modelling. In II International Conference on Particle-based Methods -
Fundamentals and Applications. (fulltext)

[Scholtes2011c] Scholtès, L., Hicher, P.Y., Sibille, L. (2011), A micromechanical approach to de-
scribe internal erosion effects in soils. In Proc. of Geomechanics and Geotechnics: from micro
to macro, IS-Shanghai 2011.

[Shiu2007a] W. Shiu, F.V. Donze, L. Daudeville (2007), Discrete element modelling of missile
impacts on a reinforced concrete target. In Int. Conf. on Computational Fracture and Failure
of Materials and Structures (CFRAC 2007), Nantes.

[Sibille2009] Sibille, L., Scholtès, L. (2009), Effects of internal erosion on mechanical behaviour of
soils: a dem approach. In Proc. of International Conference on Particle-Based Methods, Particles
2009.

Bibliography 449

https://www.yade-dem.org/publi/Maurin_et_al_THESIS_meta.pdf
http://dx.doi.org/10.1061/9780784412190.006
http://ascelibrary.org/doi/abs/10.1061/9780784412190.006
http://dx.doi.org/10.1039/9781849735032-00069
http://dx.doi.org/10.1039/9781849735032-00069
http://pubs.rsc.org/en/content/chapter/bk9781849733601-00069/978-1-84973-503-2
http://dx.doi.org/10.1039/9781849735032-00187
http://pubs.rsc.org/en/content/chapter/bk9781849733601-00187/978-1-84973-503-2
http://geo.hmg.inpg.fr/~chareyre/pubs/SariChareyreCatalanoPhilippeVincens_Particles2011.pdf
https://yade-dem.org/w/images/3/32/ScholtesDonzeParticles2011.pdf

Yade Documentation, Release 1.07.0

[Smilauer2007a] V. Šmilauer (2007), Discrete and hybrid models: applications to concrete dam-
age. In Unpublished. (fulltext)

[Smilauer2008] Václav Šmilauer (2008), Commanding c++ with python. In ALERT Doctoral school
talk. (fulltext)

[Smilauer2010a] Václav Šmilauer (2010), Yade: past, present, future. In Internal seminary in Labo-
ratoire 3S-R, Grenoble. (fulltext) (LaTeX sources)

[Stransky2010] Jan Stránský, Milan Jirásek, Václav Šmilauer (2010), Macroscopic elastic properties
of particle models. In Proceedings of the International Conference on Modelling and Simulation
2010, Prague. (fulltext)

[Stransky2011] J. Stransky, M. Jirasek (2011), Calibration of particle-based models using cells
with periodic boundary conditions. In II International Conference on Particle-based Methods -
Fundamentals and Applications. (fulltext)

[Thoeni2011] K. Thoeni, C. Lambert, A. Giacomini, S.W. Sloan (2011), Discrete modelling of a
rockfall protective system. In Particles 2011: Fundamentals and Applications. (fulltext)

[Tran2012b] Tran, V.D.H, Meguid, M.A, Chouinard, L.E (2012), A discrete element study of the
earth pressure distribution on cylindrical shafts. In Tunnelling Association of Canada (TAC)
Conference 2012, Montreal

[Catalano2008a] E. Catalano (2008), Infiltration effects on a partially saturated slope - an ap-
plication of the discrete element method and its implementation in the open-source
software yade. Master thesis at UJF-Grenoble. (fulltext)

[Catalano2012] Emanuele Catalano (2012), A pore-scale coupled hydromechanical model for
biphasic granular media. PhD thesis at Université de Grenoble. (fulltext)

[Charlas2013] Benoit Charlas (2013), Etude du comportement mécanique d’un hydrure intermé-
tallique utilisé pour le stockage d’hydrogène. PhD thesis at Université de Grenoble. (fulltext)

[Chen2009a] Chen, F. (2009), Coupled flow discrete element method application in granular
porous media using open source codes. PhD thesis at University of Tennessee, Knoxville.
(fulltext)

[Chen2011b] Chen, J. (2011), Discrete element method (dem) analyses for hot-mix asphalt
(hma) mixture compaction. PhD thesis at University of Tennessee, Knoxville. (fulltext)

[Duriez2009a] J. Duriez (2009), Stabilité des massifs rocheux : une approche mécanique. PhD
thesis at Institut polytechnique de Grenoble. (fulltext)

[Favier2009c] Favier, L. (2009), Approche numérique par éléments discrets 3d de la sollicitation
d’un écoulement granulaire sur un obstacle. PhD thesis at Université Grenoble I – Joseph
Fourier.

[Jerier2009b] Jerier, J.F. (2009), Modélisation de la compression haute densité des poudres mé-
talliques ductiles par la méthode des éléments discrets (in french). PhD thesis at Université
Grenoble I – Joseph Fourier. (fulltext)

[Kozicki2007b] J. Kozicki (2007),Application of discrete models to describe the fracture process
in brittle materials. PhD thesis at Gdansk University of Technology. (fulltext)

[Marzougui2011] Marzougui, D. (2011), Hydromechanical modeling of the transport and defor-
mation in bed load sediment with discrete elements and finite volume. Master thesis at
Ecole Nationale d’Ingénieur de Tunis. (fulltext)

[Scholtes2009d] Luc Scholtès (2009), modélisation micromécanique des milieux granulaires par-
tiellement saturés. PhD thesis at Institut National Polytechnique de Grenoble. (fulltext)

[Smilauer2010b] Václav Šmilauer (2010), Cohesive particle model using the discrete element
method on the yade platform. PhD thesis at Czech Technical University in Prague, Faculty
of Civil Engineering & Université Grenoble I – Joseph Fourier, École doctorale I-MEP2. (fulltext)
(LaTeX sources)

[Smilauer2010c] Václav Šmilauer (2010),Doctoral thesis statement. (PhD thesis summary). (fulltext)
(LaTeX sources)

450 Bibliography

https://yade-dem.org/w/images/c/c8/Smilauer-discrete_and_hybrid_models_for_concrete-2007.pdf
https://yade-dem.org/w/images/4/40/Yade-python-aussois-2008.pdf
https://yade-dem.org/w/images/5/59/Eudoxos2010-yade-past-present-future.pdf
http://bazaar.launchpad.net/~eudoxos/yade/pres-grenoble2010/files
https://yade-dem.org/w/images/6/64/Stransky2010-Macroscopic-elastic-properties-of-particle-models.pdf
http://yade-dem.org/publi/Stransky2011Barcelona_meta.pdf
https://yade-dem.org/w/images/7/7d/ThoenietAlParticles2011.pdf
https://yade-dem.org/w/images/a/af/SlopeStability.pdf
https://yade-dem.org/publi/Catalano_Thesis.pdf
https://www.yade-dem.org/w/images/8/89/These_BenoitCharlas.pdf
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1051&context=utk_graddiss
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=2102&context=utk_graddiss
http://tel.archives-ouvertes.fr/tel-00462072/fr/
http://tel.archives-ouvertes.fr/tel-00443670/fr/
http://janek.kozicki.pl/phdthesis/kozicki_2007_PhD.pdf
http://yade-dem.org/publi/MasterMarzougui_meta.pdf
http://tel.archives-ouvertes.fr/tel-00363961/en/
http://beta.arcig.cz/~eudoxos/smilauer2010-phd-thesis.pdf
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files
http://beta.arcig.cz/~eudoxos/smilauer2010-phd-thesis-statement.pdf
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files

Yade Documentation, Release 1.07.0

[Tran2011b] Van Tieng TRAN (2011), Structures en béton soumises à des chargements mé-
caniques extrêmes: modélisation de la réponse locale par la méthode des éléments dis-
crets (in french). PhD thesis at Université Grenoble I – Joseph Fourier. (fulltext)

[Addetta2001] G.A. D’Addetta, F. Kun, E. Ramm, H.J. Herrmann (2001), From solids to granulates
- Discrete element simulations of fracture and fragmentation processes in geomaterials..
In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. (fulltext)

[Allen1989] M. P. Allen, D. J. Tildesley (1989), Computer simulation of liquids. Clarendon Press.
[Alonso2004] F. Alonso-Marroquin, R. Garcia-Rojo, H.J. Herrmann (2004), Micro-mechanical inves-

tigation of the granular ratcheting. In Cyclic Behaviour of Soils and Liquefaction Phenomena.
(fulltext)

[Antypov2011] D. Antypov, J. A. Elliott (2011), On an analytical solution for the damped
hertzian spring. EPL (Europhysics Letters) (94), pages 50004. (fulltext)

[Bagi2006] Katalin Bagi (2006), Analysis of microstructural strain tensors for granular
assemblies. International Journal of Solids and Structures (43), pages 3166 - 3184. DOI
10.1016/j.ijsolstr.2005.07.016

[Bertrand2005] D. Bertrand, F. Nicot, P. Gotteland, S. Lambert (2005), Modelling a geo-composite
cell using discrete analysis. Computers and Geotechnics (32), pages 564–577.

[Bertrand2008] D. Bertrand, F. Nicot, P. Gotteland, S. Lambert (2008), Discrete element method
(dem) numerical modeling of double-twisted hexagonal mesh. Canadian Geotechnical Jour-
nal (45), pages 1104–1117.

[Calvetti1997] Calvetti, F., Combe, G., Lanier, J. (1997), Experimental micromechanical analy-
sis of a 2d granular material: relation between structure evolution and loading path.
Mechanics of Cohesive-frictional Materials (2), pages 121–163.

[Camborde2000a] F. Camborde, C. Mariotti, F.V. Donzé (2000), Numerical study of rock and con-
crete behaviour by discrete element modelling. Computers and Geotechnics (27), pages 225–
247.

[Chareyre2002a] B. Chareyre, L. Briancon, P. Villard (2002), Theoretical versus experimental
modeling of the anchorage capacity of geotextiles in trenches.. Geosynthet. Int. (9), pages
97–123.

[Chareyre2002b] B. Chareyre, P. Villard (2002), Discrete element modeling of curved geosyn-
thetic anchorages with known macro-properties.. In Proc., First Int. PFC Symposium,
Gelsenkirchen, Germany.

[Chareyre2003] Bruno Chareyre (2003), Modélisation du comportement d’ouvrages composites
sol-géosynthétique par éléments discrets - application aux tranchées d’ancrage en tête
de talus.. PhD thesis at Grenoble University. (fulltext)

[Chareyre2005] Bruno Chareyre, Pascal Villard (2005), Dynamic spar elements and discrete ele-
ment methods in two dimensions for the modeling of soil-inclusion problems. Journal of
Engineering Mechanics (131), pages 689–698. DOI 10.1061/(ASCE)0733-9399(2005)131:7(689) (full-
text)

[CundallStrack1979] P.A. Cundall, O.D.L. Strack (1979), A discrete numerical model for granular
assemblies. Geotechnique (), pages 47–65. DOI 10.1680/geot.1979.29.1.47

[DeghmReport2006] F. V. Donzé (ed.),Annual report 2006 (2006).Discrete Element Group for Hazard
Mitigation. Université Joseph Fourier, Grenoble (fulltext)

[Donze1994a] F.V. Donzé, P. Mora, S.A. Magnier (1994), Numerical simulation of faults and shear
zones. Geophys. J. Int. (116), pages 46–52.

[Donze1995a] F.V. Donzé, S.A. Magnier (1995), Formulation of a three-dimensional numerical
model of brittle behavior. Geophys. J. Int. (122), pages 790–802.

[Donze1999a] F.V. Donzé, S.A. Magnier, L. Daudeville, C. Mariotti, L. Davenne (1999), Study of the
behavior of concrete at high strain rate compressions by a discrete element method.
ASCE J. of Eng. Mech (125), pages 1154–1163. DOI 10.1016/S0266-352X(00)00013-6

Bibliography 451

https://yade-dem.org/w/images/2/27/VanTranTiengThesis.pdf
http://www.comphys.ethz.ch/hans/p/267.pdf
http://www.comphys.ethz.ch/hans/p/334.pdf
http://stacks.iop.org/0295-5075/94/i=5/a=50004
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.016
http://tel.archives-ouvertes.fr/tel-00486807/fr/
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:7(689)
https://yade-dem.org/wiki/File:Chareyre%26Villard2005_licensed.pdf
https://yade-dem.org/wiki/File:Chareyre%26Villard2005_licensed.pdf
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://geo.hmg.inpg.fr/frederic/Discrete_Element_Group_FVD.html
http://dx.doi.org/10.1016/S0266-352X(00)00013-6

Yade Documentation, Release 1.07.0

[Donze2004a] F.V. Donzé, P. Bernasconi (2004), Simulation of the blasting patterns in shaft
sinking using a discrete element method. Electronic Journal of Geotechnical Engineering (9),
pages 1–44.

[GarciaRojo2004] R. García-Rojo, S. McNamara, H. J. Herrmann (2004), Discrete element methods
for the micro-mechanical investigation of granular ratcheting. In Proceedings ECCOMAS
2004. (fulltext)

[Hentz2003] Séebastien Hentz (2003), Modélisation d’une structure en béton armé soumise à
un choc par la méthode des eléments discrets. PhD thesis at Université Grenoble 1 – Joseph
Fourier.

[Hentz2004a] S. Hentz, F.V. Donzé, L.Daudeville (2004), Discrete element modelling of concrete
submitted to dynamic loading at high strain rates. Computers and Structures (82), pages
2509–2524. DOI 10.1016/j.compstruc.2004.05.016

[Hentz2004b] S. Hentz, L. Daudeville, F.V. Donzé (2004), Identification and validation of a discrete
element model for concrete. ASCE Journal of Engineering Mechanics (130), pages 709–719. DOI
10.1061/(ASCE)0733-9399(2004)130:6(709)

[Hentz2005a] S. Hentz, F.V. Donzé, L.Daudeville (2005), Discrete elements modeling of a rein-
forced concrete structure submitted to a rock impact. Italian Geotechnical Journal (XXXIX),
pages 83–94.

[Herminghaus2005] Herminghaus, S. (2005), Dynamics of wet granular matter. Advances in Physics
(54), pages 221-261. DOI 10.1080/00018730500167855 (fulltext)

[Hubbard1996] Philip M. Hubbard (1996), Approximating polyhedra with spheres for time-
critical collision detection. ACM Trans. Graph. (15), pages 179–210. DOI 10.1145/231731.231732

[Ivars2011] Diego Mas Ivars, Matthew E. Pierce, Caroline Darcel, Juan Reyes-Montes, David O. Po-
tyondy, R. Paul Young, Peter A. Cundall (2011), The synthetic rock mass approach for jointed
rock mass modelling. International Journal of Rock Mechanics and Mining Sciences (48), pages
219 - 244. DOI 10.1016/j.ijrmms.2010.11.014

[Johnson2008] Scott M. Johnson, John R. Williams, Benjamin K. Cook (2008), Quaternion-based
rigid body rotation integration algorithms for use in particle methods. International Jour-
nal for Numerical Methods in Engineering (74), pages 1303–1313. DOI 10.1002/nme.2210

[Jung1997] Derek Jung, Kamal K. Gupta (1997), Octree-based hierarchical distance maps for
collision detection. Journal of Robotic Systems (14), pages 789–806. DOI 10.1002/(SICI)1097-
4563(199711)14:11<789::AID-ROB3>3.0.CO;2-Q

[Kettner2011] Lutz Kettner, Andreas Meyer, Afra Zomorodian (2011), Intersecting sequences of dD
iso-oriented boxes. In CGAL User and Reference Manual. (fulltext)

[Klosowski1998] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral, Karel Zikan
(1998), Efficient collision detection using bounding volume hierarchies of k-dops. IEEE
Transactions on Visualization and Computer Graphics (4), pages 21–36. (fulltext)

[Kuhl2001] E. Kuhl, G. A. D’Addetta, M. Leukart, E. Ramm (2001), Microplane modelling and
particle modelling of cohesive-frictional materials. In Continuous and Discontinuous Modelling
of Cohesive-Frictional Materials. DOI 10.1007/3-540-44424-6_3 (fulltext)

[Lu1998] Ya Yan Lu (1998), Computing the logarithm of a symmetric positive definite matrix.
Appl. Numer. Math (26), pages 483–496. DOI 10.1016/S0168-9274(97)00103-7 (fulltext)

[Luding2008] Luding, Stefan (2008), Cohesive, frictional powders: contact models for tension.
Granular Matter (10), pages 235-246. DOI 10.1007/s10035-008-0099-x (fulltext)

[Magnier1998a] S.A. Magnier, F.V. Donzé (1998), Numerical simulation of impacts using a dis-
crete element method. Mech. Cohes.-frict. Mater. (3), pages 257–276. DOI 10.1002/(SICI)1099-
1484(199807)3:3<257::AID-CFM50>3.0.CO;2-Z

[McNamara2008] S. McNamara, R. García-Rojo, H. J. Herrmann (2008), Microscopic origin of gran-
ular ratcheting. Physical Review E (77). DOI 11.1103/PhysRevE.77.031304

452 Bibliography

http://www.ica1.uni-stuttgart.de/publications/2004/GMH04
http://dx.doi.org/10.1016/j.compstruc.2004.05.016
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
http://dx.doi.org/10.1080/00018730500167855
http://www.tandfonline.com/doi/abs/10.1080/00018730500167855
http://dx.doi.org/10.1145/231731.231732
http://dx.doi.org/10.1016/j.ijrmms.2010.11.014
http://dx.doi.org/10.1002/nme.2210
http://dx.doi.org/10.1002/(SICI)1097-4563(199711)14:11%3c789::AID-ROB3%3e3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-4563(199711)14:11%3c789::AID-ROB3%3e3.0.CO;2-Q
http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html#Pkg:BoxIntersectionD
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6555&rep=rep1&type=pdf
http://dx.doi.org/10.1007/3-540-44424-6_3
http://www.springerlink.com/content/e50544266r506615
http://dx.doi.org/10.1016/S0168-9274(97)00103-7
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.759&rep=rep1&type=pdf
http://dx.doi.org/10.1007/s10035-008-0099-x
http://dx.doi.org/10.1007/s10035-008-0099-x
http://dx.doi.org/10.1002/(SICI)1099-1484(199807)3:3%3c257::AID-CFM50%3e3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1099-1484(199807)3:3%3c257::AID-CFM50%3e3.0.CO;2-Z
http://dx.doi.org/11.1103/PhysRevE.77.031304

Yade Documentation, Release 1.07.0

[Munjiza1998] A. Munjiza, K. R. F. Andrews (1998), Nbs contact detection algorithm for bodies
of similar size. International Journal for Numerical Methods in Engineering (43), pages 131–149.
DOI 10.1002/(SICI)1097-0207(19980915)43:1<131::AID-NME447>3.0.CO;2-S

[Munjiza2006] A. Munjiza, E. Rougier, N. W. M. John (2006), Mr linear contact detection al-
gorithm. International Journal for Numerical Methods in Engineering (66), pages 46–71. DOI
10.1002/nme.1538

[Neto2006] Natale Neto, Luca Bellucci (2006), A new algorithm for rigid body molecular dynam-
ics. Chemical Physics (328), pages 259–268. DOI 10.1016/j.chemphys.2006.07.009

[Omelyan1999] Igor P. Omelyan (1999), A new leapfrog integrator of rotational mo-
tion. the revised angular-momentum approach. Molecular Simulation (22). DOI
10.1080/08927029908022097 (fulltext)

[Pfc3dManual30] ICG (2003), Pfc3d (particle flow code in 3d) theory and background manual,
version 3.0. Itasca Consulting Group.

[Pion2011] Sylvain Pion, Monique Teillaud (2011), 3D triangulations. In CGAL User and Reference
Manual. (fulltext)

[Pournin2001] L. Pournin, Th. M. Liebling, A. Mocellin (2001), Molecular-dynamics force models
for better control of energy dissipation in numerical simulations of dense granular media.
Phys. Rev. E (65), pages 011302. DOI 10.1103/PhysRevE.65.011302

[Price2007] Mathew Price, Vasile Murariu, Garry Morrison (2007), Sphere clump generation and
trajectory comparison for real particles. In Proceedings of Discrete Element Modelling 2007.
(fulltext)

[Rabinov2005] RABINOVICH Yakov I., ESAYANUR Madhavan S., MOUDGIL Brij M. (2005), Capil-
lary forces between two spheres with a fixed volume liquid bridge : theory and experi-
ment. Langmuir (21), pages 10992–10997. (fulltext) (eng)

[Radjai2011] Radjai, F., Dubois, F. (2011), Discrete-element modeling of granular materials.
John Wiley & Sons. (fulltext)

[Satake1982] M. Satake (1982), Fabric tensor in granular materials.. In Proc., IUTAM Symp. on
Deformation and Failure of Granular materials, Delft, The Netherlands.

[Schwager2007] Schwager, Thomas, Pöschel, Thorsten (2007), Coefficient of restitution and linear–
dashpot model revisited. Granular Matter (9), pages 465-469. DOI 10.1007/s10035-007-0065-z
(fulltext)

[Thornton1991] Colin Thornton, K. K. Yin (1991), Impact of elastic spheres with and without
adhesion. Powder technology (65), pages 153–166. DOI 10.1016/0032-5910(91)80178-L

[Thornton2000] Colin Thornton (2000), Numerical simulations of deviatoric shear deformation
of granular media. Géotechnique (50), pages 43–53. DOI 10.1680/geot.2000.50.1.43

[Verlet1967] Loup Verlet (1967), Computer ‘‘experiments” on classical fluids. i. thermodynam-
ical properties of lennard-jones molecules. Phys. Rev. (159), pages 98. DOI 10.1103/Phys-
Rev.159.98

[Villard2004a] P. Villard, B. Chareyre (2004), Design methods for geosynthetic anchor trenches
on the basis of true scale experiments and discrete element modelling. Canadian Geotech-
nical Journal (41), pages 1193–1205.

[Wang2009] Yucang Wang (2009), A new algorithm to model the dynamics of 3-d bonded
rigid bodies with rotations. Acta Geotechnica (4), pages 117–127. DOI 10.1007/s11440-008-0072-
1 (fulltext)

[Weigert1999] Weigert, Tom, Ripperger, Siegfried (1999), Calculation of the liquid bridge volume
and bulk saturation from the half-filling angle. Particle & Particle Systems Characteriza-
tion (16), pages 238–242. DOI 10.1002/(SICI)1521-4117(199910)16:5<238::AID-PPSC238>3.0.CO;2-
E (fulltext)

[Willett2000] Willett, Christopher D., Adams, Michael J., Johnson, Simon A., Seville, Jonathan P. K.
(2000), Capillary bridges between two spherical bodies. Langmuir (16), pages 9396-9405. DOI
10.1021/la000657y (fulltext)

Bibliography 453

http://dx.doi.org/10.1002/(SICI)1097-0207(19980915)43:1%3c131::AID-NME447%3e3.0.CO;2-S
http://dx.doi.org/10.1002/nme.1538
http://dx.doi.org/10.1016/j.chemphys.2006.07.009
http://dx.doi.org/10.1080/08927029908022097
http://arxiv.org/pdf/physics/9901025
http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html#Pkg:Triangulation3
http://dx.doi.org/10.1103/PhysRevE.65.011302
http://www.cogency.co.za/images/info/dem2007_sphereclump.pdf
http://www.refdoc.fr/Detailnotice?idarticle=7435486
http://books.google.com/books?id=w2ijcQAACAAJ
http://dx.doi.org/10.1007/s10035-007-0065-z
http://dx.doi.org/10.1007/s10035-007-0065-z
http://dx.doi.org/10.1016/0032-5910(91)80178-L
http://dx.doi.org/10.1680/geot.2000.50.1.43
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1007/s11440-008-0072-1
http://dx.doi.org/10.1007/s11440-008-0072-1
http://www.springerlink.com/content/l2306412v1004871/
http://dx.doi.org/10.1002/(SICI)1521-4117(199910)16:5%3c238::AID-PPSC238%3e3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1521-4117(199910)16:5%3c238::AID-PPSC238%3e3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1521-4117(199910)16:5%3c238::AID-PPSC238%3e3.0.CO;2-E
http://dx.doi.org/10.1021/la000657y
http://pubs.acs.org/doi/abs/10.1021/la000657y

Yade Documentation, Release 1.07.0

[Zhou1999536] Y.C. Zhou, B.D. Wright, R.Y. Yang, B.H. Xu, A.B. Yu (1999), Rolling friction in the
dynamic simulation of sandpile formation. Physica A: Statistical Mechanics and its Applications
(269), pages 536–553. DOI 10.1016/S0378-4371(99)00183-1 (fulltext)

[cgal] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, Mariette Yvinec (2002),
Triangulations in cgal. Computational Geometry: Theory and Applications (22), pages 5–19.

454 Bibliography

http://dx.doi.org/10.1016/S0378-4371(99)00183-1
http://www.sciencedirect.com/science/article/pii/S0378437199001831

Python Module Index

_
yade._packObb, 410
yade._packPredicates, 407
yade._packSpheres, 403
yade._polyhedra_utils, 414
yade._utils, 426

b
yade.bodiesHandling, 393

e
yade.export, 394

g
yade.geom, 396

l
yade.linterpolation, 399

p
yade.pack, 400
yade.plot, 410
yade.polyhedra_utils, 413
yade.post2d, 415

t
yade.timing, 417

u
yade.utils, 418

y
yade.ymport, 431

455

	Introduction
	Getting started
	Architecture overview

	Tutorial
	Introduction
	Hands-on
	Data mining
	Towards geomechanics
	Advanced & more
	Examples

	User's manual
	Scene construction
	Controlling simulation
	Postprocessing
	Python specialties and tricks
	Extending Yade
	Troubleshooting

	Programmer's manual
	Build system
	Development tools
	Conventions
	Support framework
	Simulation framework
	Runtime structure
	Python framework
	Maintaining compatibility
	Debian packaging instructions

	Installation
	Packages
	Source code

	DEM Background
	Collision detection
	Creating interaction between particles
	Strain evaluation
	Stress evaluation (example)
	Motion integration
	Periodic boundary conditions
	Computational aspects

	Class reference (yade.wrapper module)
	Bodies
	Interactions
	Global engines
	Partial engines
	Bounding volume creation
	Interaction Geometry creation
	Interaction Physics creation
	Constitutive laws
	Callbacks
	Preprocessors
	Rendering
	Simulation data
	Other classes

	Yade modules
	yade.bodiesHandling module
	yade.export module
	yade.geom module
	yade.linterpolation module
	yade.pack module
	yade.plot module
	yade.polyhedra_utils module
	yade.post2d module
	yade.qt module
	yade.timing module
	yade.utils module
	yade.ymport module

	Acknowledging Yade
	Citing the Yade Project as a whole (the lazy citation method)
	Citing chapters of Yade Documentation

	Publications on Yade
	Citing Yade
	Journal articles
	Conference materials
	Master and PhD theses

	References
	Indices and tables
	Bibliography
	Python Module Index

